nmhw: add support for password login

- backport from nrsw
This commit is contained in:
Rene Straub 2019-09-26 09:08:02 +02:00
parent d9bbba2295
commit 82f1fedaa3
5 changed files with 449 additions and 0 deletions

View File

@ -13,6 +13,13 @@
#include <console.h>
#include <version.h>
#ifdef CONFIG_NM_LOGIN
#include <fs.h>
#include <u-boot/md5.h>
#include <malloc.h>
#include <crypt.h>
#endif
DECLARE_GLOBAL_DATA_PTR;
/*
@ -20,6 +27,100 @@ DECLARE_GLOBAL_DATA_PTR;
*/
__weak void show_boot_progress(int val) {}
#ifdef CONFIG_NM_LOGIN
/****************************************************************************
* check if ubootpwd exists in data partition and perform a login,
* otherwise continue booting
*/
int login (void)
{
#define PASS_LEN 256
char stored[PASS_LEN];
char buf[PASS_LEN], entered[32];
int res, i, tries;
int legacy_md5 = 0;
loff_t actread;
puts("\nautoboot has been stopped, press 'e' to enter: ");
/* TODO: where does magic number 4096 come from */
for (i=0; i<=4096; i++) {
buf[0] = getc();
if (buf[0] == 'e' || buf[0] == '\n') {
puts("e");
break;
}
if (i == 4096) return 0;
}
puts("\n");
memset(stored, 0x0, sizeof(stored));
if (fs_set_blk_dev("mmc", "1:3", FS_TYPE_EXT) != 0) {
puts("Error, can not set blk devicet"); /* TODO: typo, \n missing */
return 1;
}
res = fs_read("/root/boot/bootpass", (ulong)stored, 0, sizeof(stored), &actread);
if ((res!=0) || (actread <= 0)) {
/* no file or hash found */
puts("Login succeeded\n\n");
return 1;
} else if (actread == 16) {
legacy_md5 = 1;
}
for (tries = 1; ; tries++) {
puts("\nEnter password: ");
/* TODO: no backspace ? */
/* TODO: rename buf to something more useful */
/* TODO: print a dot or blind? */
buf[0] = 0;
for (i=0; i<PASS_LEN; i++) {
buf[i] = getc();
if (buf[i] == '\r' || buf[i] == '\n') {
buf[i] = 0;
break;
}
}
buf[PASS_LEN-1] = 0;
if (strlen(buf) > 0) {
puts("\n");
if (legacy_md5) {
md5((unsigned char*) buf, strlen(buf), (unsigned char *)entered);
if (memcmp(stored, entered, 16) == 0) {
break;
}
}
else {
char *cp = sha_crypt(buf, stored);
if (memcmp(cp, stored, actread) == 0) {
free(cp);
break;
}
free(cp);
}
/* TODO: exponentional delay */
puts("Login incorrect\n");
if (tries == 3) {
return 0;
}
}
/* TODO: remove password from memory !!!!! */
}
/* succeeded */
puts("Login succeeded\n\n");
return 1;
}
#endif /* CONIFG_NM_LOGIN */
/****************************************************************************/
static void run_preboot_environment_command(void)
{
#ifdef CONFIG_PREBOOT
@ -65,6 +166,13 @@ void main_loop(void)
autoboot_command(s);
#ifdef CONFIG_NM_LOGIN
if (!login()) {
puts ("Login failed, resetting...\n");
do_reset (NULL, 0, 0, NULL);
}
#endif
cli_loop();
panic("No CLI available");
}

View File

@ -290,6 +290,11 @@ int eth_phy_timeout(void);
#define CONFIG_SYS_MEMTEST_START 0x84000000
#define CONFIG_SYS_MEMTEST_END 0x87900000
/* Enable for NRSW support
#define CONFIG_NM_LOGIN
#define CONFIG_CRYPT
*/
#define CONFIG_CMD_PXE
#define CONFIG_OF_BOARD_SETUP

6
include/crypt.h Executable file
View File

@ -0,0 +1,6 @@
#ifndef _CRYPT_H
#define _CRYPT_H
extern char * sha_crypt(const char *key, const char *salt);
#endif /* _CRYPT_H */

View File

@ -20,6 +20,7 @@ obj-$(CONFIG_CMD_DHRYSTONE) += dhry/
obj-$(CONFIG_AES) += aes.o
obj-$(CONFIG_USB_TTY) += circbuf.o
obj-$(CONFIG_CRYPT) += crypt.o
obj-y += crc7.o
obj-y += crc8.o
obj-y += crc16.o

329
lib/crypt.c Executable file
View File

@ -0,0 +1,329 @@
#include <common.h>
#include <u-boot/sha256.h>
#include <malloc.h>
#include <linux/types.h>
/* The crypt source code was ported from busybox sources pw_crypt */
/* Used by pw_encrypt_XXX.c */
static const uint8_t ascii64[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
static char*
to64(char *s, unsigned v, int n)
{
while (--n >= 0) {
*s++ = ascii64[v & 0x3f];
v >>= 6;
}
return s;
}
/* SHA256 and SHA512-based Unix crypt implementation.
* Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.
*/
/* Prefix for optional rounds specification. */
static const char str_rounds[] = "rounds=%u$";
/* Maximum salt string length. */
#define SALT_LEN_MAX 16
/* Default number of rounds if not explicitly specified. */
#define ROUNDS_DEFAULT 5000
/* Minimum number of rounds. */
#define ROUNDS_MIN 1000
/* Maximum number of rounds. */
#define ROUNDS_MAX 999999999
char *sha_crypt(const char *key_data, const char *salt_data)
{
void (*sha_begin)(void *ctx);
void (*sha_hash)(void *ctx, const void *buffer, size_t len);
void* (*sha_end)( void *ctx, void *resbuf);
int _32or64;
char *result, *resptr;
/* btw, sha256 needs [32] and uint32_t only */
unsigned char alt_result[64] __attribute__((__aligned__(__alignof__(uint64_t))));
unsigned char temp_result[64] __attribute__((__aligned__(__alignof__(uint64_t))));
union {
sha256_context x;
#if 0
sha512_ctx_t y;
#endif
} ctx;
union {
sha256_context x;
#if 0
sha512_ctx_t y;
#endif
} alt_ctx;
unsigned salt_len;
unsigned key_len;
unsigned cnt;
unsigned rounds;
char *cp;
char is_sha512;
char *tmp;
/* Analyze salt, construct already known part of result */
cnt = strlen(salt_data) + 1 + 43 + 1;
is_sha512 = salt_data[1];
if (is_sha512 == '6') {
printf("SHA-512 is not supported yet");
return 0;
/* cnt += 43; */
}
result = resptr = malloc(cnt); /* will provide NUL terminator */
memset(result, 0, cnt);
*resptr++ = '$';
*resptr++ = is_sha512;
*resptr++ = '$';
rounds = ROUNDS_DEFAULT;
salt_data += 3;
if (strncmp(salt_data, str_rounds, 7) == 0) {
/* 7 == strlen("rounds=") */
char *endp;
cnt = simple_strtoul(salt_data + 7, &endp, 10);
if (*endp == '$') {
salt_data = endp + 1;
rounds = cnt;
if (rounds < ROUNDS_MIN)
rounds = ROUNDS_MIN;
if (rounds > ROUNDS_MAX)
rounds = ROUNDS_MAX;
/* add "rounds=NNNNN$" to result */
resptr += sprintf(resptr, str_rounds, rounds);
}
}
{
char *salt_end = strchr(salt_data, '$');
if (salt_end != 0) {
salt_len = salt_end - salt_data;
}
else {
salt_len = strnlen(salt_data, SALT_LEN_MAX);
}
}
// salt_len = (int)strchrnul(salt_data, '$') - (int)salt_data;
if (salt_len > SALT_LEN_MAX)
salt_len = SALT_LEN_MAX;
/* xstrdup assures suitable alignment; also we will use it
as a scratch space later. */
tmp = malloc(strnlen(salt_data, 128));
memcpy(tmp, salt_data, strnlen(salt_data, 128));
salt_data = tmp;
//salt_data = xstrndup(salt_data, salt_len);
/* add "salt$" to result */
strcpy(resptr, salt_data);
resptr += salt_len;
*resptr++ = '$';
/* key data doesn't need much processing */
key_len = strlen(key_data);
tmp = malloc(strnlen(key_data, 256));
memcpy(tmp, key_data, strnlen(key_data, 256));
key_data = tmp;
// key_data = xstrdup(key_data);
/* Which flavor of SHAnnn ops to use? */
sha_begin = (void*)sha256_starts;
sha_hash = (void*)sha256_update;
sha_end = (void*)sha256_finish;
_32or64 = 32;
/* Not supported */
#if 0
if (is_sha512 == '6') {
sha_begin = (void*)sha512_begin;
sha_hash = (void*)sha512_hash;
sha_end = (void*)sha512_end;
_32or64 = 64;
}
#endif
/* Add KEY, SALT. */
sha_begin(&ctx);
sha_hash(&ctx, key_data, key_len);
sha_hash(&ctx, salt_data, salt_len);
/* Compute alternate SHA sum with input KEY, SALT, and KEY.
The final result will be added to the first context. */
sha_begin(&alt_ctx);
sha_hash(&alt_ctx, key_data, key_len);
sha_hash(&alt_ctx, salt_data, salt_len);
sha_hash(&alt_ctx, key_data, key_len);
sha_end(&alt_ctx, alt_result);
/* Add result of this to the other context. */
/* Add for any character in the key one byte of the alternate sum. */
for (cnt = key_len; cnt > _32or64; cnt -= _32or64)
sha_hash(&ctx, alt_result, _32or64);
sha_hash(&ctx, alt_result, cnt);
/* Take the binary representation of the length of the key and for every
1 add the alternate sum, for every 0 the key. */
for (cnt = key_len; cnt != 0; cnt >>= 1)
if ((cnt & 1) != 0)
sha_hash(&ctx, alt_result, _32or64);
else
sha_hash(&ctx, key_data, key_len);
/* Create intermediate result. */
sha_end(&ctx, alt_result);
/* Start computation of P byte sequence. */
/* For every character in the password add the entire password. */
sha_begin(&alt_ctx);
for (cnt = 0; cnt < key_len; ++cnt)
sha_hash(&alt_ctx, key_data, key_len);
sha_end(&alt_ctx, temp_result);
/* NB: past this point, raw key_data is not used anymore */
/* Create byte sequence P. */
#define p_bytes key_data /* reuse the buffer as it is of the key_len size */
cp = p_bytes; /* was: ... = alloca(key_len); */
for (cnt = key_len; cnt >= _32or64; cnt -= _32or64) {
cp = memcpy(cp, temp_result, _32or64);
cp += _32or64;
}
memcpy(cp, temp_result, cnt);
/* Start computation of S byte sequence. */
/* For every character in the password add the entire password. */
sha_begin(&alt_ctx);
for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
sha_hash(&alt_ctx, salt_data, salt_len);
sha_end(&alt_ctx, temp_result);
/* NB: past this point, raw salt_data is not used anymore */
/* Create byte sequence S. */
#define s_bytes salt_data /* reuse the buffer as it is of the salt_len size */
cp = s_bytes; /* was: ... = alloca(salt_len); */
for (cnt = salt_len; cnt >= _32or64; cnt -= _32or64) {
cp = memcpy(cp, temp_result, _32or64);
cp += _32or64;
}
memcpy(cp, temp_result, cnt);
/* Repeatedly run the collected hash value through SHA to burn
CPU cycles. */
for (cnt = 0; cnt < rounds; ++cnt) {
sha_begin(&ctx);
/* Add key or last result. */
if ((cnt & 1) != 0)
sha_hash(&ctx, p_bytes, key_len);
else
sha_hash(&ctx, alt_result, _32or64);
/* Add salt for numbers not divisible by 3. */
if (cnt % 3 != 0)
sha_hash(&ctx, s_bytes, salt_len);
/* Add key for numbers not divisible by 7. */
if (cnt % 7 != 0)
sha_hash(&ctx, p_bytes, key_len);
/* Add key or last result. */
if ((cnt & 1) != 0)
sha_hash(&ctx, alt_result, _32or64);
else
sha_hash(&ctx, p_bytes, key_len);
sha_end(&ctx, alt_result);
}
/* Append encrypted password to result buffer */
//TODO: replace with something like
// bb_uuencode(cp, src, length, bb_uuenc_tbl_XXXbase64);
#define b64_from_24bit(B2, B1, B0, N) \
do { \
unsigned w = ((B2) << 16) | ((B1) << 8) | (B0); \
resptr = to64(resptr, w, N); \
} while (0)
if (is_sha512 == '5') {
unsigned i = 0;
unsigned j = 10;
unsigned k = 20;
/* strange swap of one byte (see below why) */
unsigned char alt_result_31 = alt_result[31];
alt_result[31] = alt_result[1];
while (1) {
b64_from_24bit(alt_result[i], alt_result[j], alt_result[k], 4);
if (i == 9)
break;
i += 21; i = (((i >> 4) & 2) + i) & 0x1f;
j += 21; j = (((j >> 4) & 2) + j) & 0x1f;
k += 21; k = (((k >> 4) & 2) + k) & 0x1f;
}
b64_from_24bit(0, alt_result_31, alt_result[30], 3);
/* was:
b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4);
b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4);
...............................^^^^^^^^^^^^^ why [1] and not [31]?
b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4);
b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4);
b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4);
b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4);
b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4);
b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4);
b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4);
b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4);
b64_from_24bit(0, alt_result[31], alt_result[30], 3);
*/
} else {
unsigned i = 0;
unsigned j = 21;
unsigned k = 42;
while (1) {
b64_from_24bit(alt_result[i], alt_result[j], alt_result[k], 4);
if (i == 62)
break;
i += 22; i = ((i >> 6) + i) & 0x3f;
j += 22; j = ((j >> 6) + j) & 0x3f;
k += 22; k = ((k >> 6) + k) & 0x3f;
}
b64_from_24bit(0, 0, alt_result[63], 2);
/* was:
b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4);
b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4);
b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4);
b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4);
b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4);
b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4);
b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4);
b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4);
b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4);
b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4);
b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4);
b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4);
b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4);
b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4);
b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4);
b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4);
b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4);
b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4);
b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4);
b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4);
b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4);
b64_from_24bit(0, 0, alt_result[63], 2);
*/
}
/* *resptr = '\0'; - xzalloc did it */
#undef b64_from_24bit
/* Clear the buffer for the intermediate result so that people
attaching to processes or reading core dumps cannot get any
information. */
memset(temp_result, 0, sizeof(temp_result));
memset(alt_result, 0, sizeof(alt_result));
memset(&ctx, 0, sizeof(ctx));
memset(&alt_ctx, 0, sizeof(alt_ctx));
memset(key_data, 0, key_len); /* also p_bytes */
memset(salt_data, 0, salt_len); /* also s_bytes */
free(key_data);
free(salt_data);
#undef p_bytes
#undef s_bytes
return result;
}