2390 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			2390 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * MUSB OTG driver host support
 | |
|  *
 | |
|  * Copyright 2005 Mentor Graphics Corporation
 | |
|  * Copyright (C) 2005-2006 by Texas Instruments
 | |
|  * Copyright (C) 2006-2007 Nokia Corporation
 | |
|  * Copyright (C) 2008-2009 MontaVista Software, Inc. <source@mvista.com>
 | |
|  *
 | |
|  * SPDX-License-Identifier:	GPL-2.0
 | |
|  */
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #else
 | |
| #include <common.h>
 | |
| #include <usb.h>
 | |
| #include "linux-compat.h"
 | |
| #include "usb-compat.h"
 | |
| #endif
 | |
| 
 | |
| #include "musb_core.h"
 | |
| #include "musb_host.h"
 | |
| 
 | |
| 
 | |
| /* MUSB HOST status 22-mar-2006
 | |
|  *
 | |
|  * - There's still lots of partial code duplication for fault paths, so
 | |
|  *   they aren't handled as consistently as they need to be.
 | |
|  *
 | |
|  * - PIO mostly behaved when last tested.
 | |
|  *     + including ep0, with all usbtest cases 9, 10
 | |
|  *     + usbtest 14 (ep0out) doesn't seem to run at all
 | |
|  *     + double buffered OUT/TX endpoints saw stalls(!) with certain usbtest
 | |
|  *       configurations, but otherwise double buffering passes basic tests.
 | |
|  *     + for 2.6.N, for N > ~10, needs API changes for hcd framework.
 | |
|  *
 | |
|  * - DMA (CPPI) ... partially behaves, not currently recommended
 | |
|  *     + about 1/15 the speed of typical EHCI implementations (PCI)
 | |
|  *     + RX, all too often reqpkt seems to misbehave after tx
 | |
|  *     + TX, no known issues (other than evident silicon issue)
 | |
|  *
 | |
|  * - DMA (Mentor/OMAP) ...has at least toggle update problems
 | |
|  *
 | |
|  * - [23-feb-2009] minimal traffic scheduling to avoid bulk RX packet
 | |
|  *   starvation ... nothing yet for TX, interrupt, or bulk.
 | |
|  *
 | |
|  * - Not tested with HNP, but some SRP paths seem to behave.
 | |
|  *
 | |
|  * NOTE 24-August-2006:
 | |
|  *
 | |
|  * - Bulk traffic finally uses both sides of hardware ep1, freeing up an
 | |
|  *   extra endpoint for periodic use enabling hub + keybd + mouse.  That
 | |
|  *   mostly works, except that with "usbnet" it's easy to trigger cases
 | |
|  *   with "ping" where RX loses.  (a) ping to davinci, even "ping -f",
 | |
|  *   fine; but (b) ping _from_ davinci, even "ping -c 1", ICMP RX loses
 | |
|  *   although ARP RX wins.  (That test was done with a full speed link.)
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * NOTE on endpoint usage:
 | |
|  *
 | |
|  * CONTROL transfers all go through ep0.  BULK ones go through dedicated IN
 | |
|  * and OUT endpoints ... hardware is dedicated for those "async" queue(s).
 | |
|  * (Yes, bulk _could_ use more of the endpoints than that, and would even
 | |
|  * benefit from it.)
 | |
|  *
 | |
|  * INTERUPPT and ISOCHRONOUS transfers are scheduled to the other endpoints.
 | |
|  * So far that scheduling is both dumb and optimistic:  the endpoint will be
 | |
|  * "claimed" until its software queue is no longer refilled.  No multiplexing
 | |
|  * of transfers between endpoints, or anything clever.
 | |
|  */
 | |
| 
 | |
| 
 | |
| static void musb_ep_program(struct musb *musb, u8 epnum,
 | |
| 			struct urb *urb, int is_out,
 | |
| 			u8 *buf, u32 offset, u32 len);
 | |
| 
 | |
| /*
 | |
|  * Clear TX fifo. Needed to avoid BABBLE errors.
 | |
|  */
 | |
| static void musb_h_tx_flush_fifo(struct musb_hw_ep *ep)
 | |
| {
 | |
| 	struct musb	*musb = ep->musb;
 | |
| 	void __iomem	*epio = ep->regs;
 | |
| 	u16		csr;
 | |
| 	u16		lastcsr = 0;
 | |
| 	int		retries = 1000;
 | |
| 
 | |
| 	csr = musb_readw(epio, MUSB_TXCSR);
 | |
| 	while (csr & MUSB_TXCSR_FIFONOTEMPTY) {
 | |
| 		if (csr != lastcsr)
 | |
| 			dev_dbg(musb->controller, "Host TX FIFONOTEMPTY csr: %02x\n", csr);
 | |
| 		lastcsr = csr;
 | |
| 		csr |= MUSB_TXCSR_FLUSHFIFO;
 | |
| 		musb_writew(epio, MUSB_TXCSR, csr);
 | |
| 		csr = musb_readw(epio, MUSB_TXCSR);
 | |
| 		if (WARN(retries-- < 1,
 | |
| 				"Could not flush host TX%d fifo: csr: %04x\n",
 | |
| 				ep->epnum, csr))
 | |
| 			return;
 | |
| 		mdelay(1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void musb_h_ep0_flush_fifo(struct musb_hw_ep *ep)
 | |
| {
 | |
| 	void __iomem	*epio = ep->regs;
 | |
| 	u16		csr;
 | |
| 	int		retries = 5;
 | |
| 
 | |
| 	/* scrub any data left in the fifo */
 | |
| 	do {
 | |
| 		csr = musb_readw(epio, MUSB_TXCSR);
 | |
| 		if (!(csr & (MUSB_CSR0_TXPKTRDY | MUSB_CSR0_RXPKTRDY)))
 | |
| 			break;
 | |
| 		musb_writew(epio, MUSB_TXCSR, MUSB_CSR0_FLUSHFIFO);
 | |
| 		csr = musb_readw(epio, MUSB_TXCSR);
 | |
| 		udelay(10);
 | |
| 	} while (--retries);
 | |
| 
 | |
| 	WARN(!retries, "Could not flush host TX%d fifo: csr: %04x\n",
 | |
| 			ep->epnum, csr);
 | |
| 
 | |
| 	/* and reset for the next transfer */
 | |
| 	musb_writew(epio, MUSB_TXCSR, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start transmit. Caller is responsible for locking shared resources.
 | |
|  * musb must be locked.
 | |
|  */
 | |
| static inline void musb_h_tx_start(struct musb_hw_ep *ep)
 | |
| {
 | |
| 	u16	txcsr;
 | |
| 
 | |
| 	/* NOTE: no locks here; caller should lock and select EP */
 | |
| 	if (ep->epnum) {
 | |
| 		txcsr = musb_readw(ep->regs, MUSB_TXCSR);
 | |
| 		txcsr |= MUSB_TXCSR_TXPKTRDY | MUSB_TXCSR_H_WZC_BITS;
 | |
| 		musb_writew(ep->regs, MUSB_TXCSR, txcsr);
 | |
| 	} else {
 | |
| 		txcsr = MUSB_CSR0_H_SETUPPKT | MUSB_CSR0_TXPKTRDY;
 | |
| 		musb_writew(ep->regs, MUSB_CSR0, txcsr);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| static inline void musb_h_tx_dma_start(struct musb_hw_ep *ep)
 | |
| {
 | |
| 	u16	txcsr;
 | |
| 
 | |
| 	/* NOTE: no locks here; caller should lock and select EP */
 | |
| 	txcsr = musb_readw(ep->regs, MUSB_TXCSR);
 | |
| 	txcsr |= MUSB_TXCSR_DMAENAB | MUSB_TXCSR_H_WZC_BITS;
 | |
| 	if (is_cppi_enabled())
 | |
| 		txcsr |= MUSB_TXCSR_DMAMODE;
 | |
| 	musb_writew(ep->regs, MUSB_TXCSR, txcsr);
 | |
| }
 | |
| 
 | |
| static void musb_ep_set_qh(struct musb_hw_ep *ep, int is_in, struct musb_qh *qh)
 | |
| {
 | |
| 	if (is_in != 0 || ep->is_shared_fifo)
 | |
| 		ep->in_qh  = qh;
 | |
| 	if (is_in == 0 || ep->is_shared_fifo)
 | |
| 		ep->out_qh = qh;
 | |
| }
 | |
| 
 | |
| static struct musb_qh *musb_ep_get_qh(struct musb_hw_ep *ep, int is_in)
 | |
| {
 | |
| 	return is_in ? ep->in_qh : ep->out_qh;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start the URB at the front of an endpoint's queue
 | |
|  * end must be claimed from the caller.
 | |
|  *
 | |
|  * Context: controller locked, irqs blocked
 | |
|  */
 | |
| static void
 | |
| musb_start_urb(struct musb *musb, int is_in, struct musb_qh *qh)
 | |
| {
 | |
| 	u16			frame;
 | |
| 	u32			len;
 | |
| 	void __iomem		*mbase =  musb->mregs;
 | |
| 	struct urb		*urb = next_urb(qh);
 | |
| 	void			*buf = urb->transfer_buffer;
 | |
| 	u32			offset = 0;
 | |
| 	struct musb_hw_ep	*hw_ep = qh->hw_ep;
 | |
| 	unsigned		pipe = urb->pipe;
 | |
| 	u8			address = usb_pipedevice(pipe);
 | |
| 	int			epnum = hw_ep->epnum;
 | |
| 
 | |
| 	/* initialize software qh state */
 | |
| 	qh->offset = 0;
 | |
| 	qh->segsize = 0;
 | |
| 
 | |
| 	/* gather right source of data */
 | |
| 	switch (qh->type) {
 | |
| 	case USB_ENDPOINT_XFER_CONTROL:
 | |
| 		/* control transfers always start with SETUP */
 | |
| 		is_in = 0;
 | |
| 		musb->ep0_stage = MUSB_EP0_START;
 | |
| 		buf = urb->setup_packet;
 | |
| 		len = 8;
 | |
| 		break;
 | |
| #ifndef __UBOOT__
 | |
| 	case USB_ENDPOINT_XFER_ISOC:
 | |
| 		qh->iso_idx = 0;
 | |
| 		qh->frame = 0;
 | |
| 		offset = urb->iso_frame_desc[0].offset;
 | |
| 		len = urb->iso_frame_desc[0].length;
 | |
| 		break;
 | |
| #endif
 | |
| 	default:		/* bulk, interrupt */
 | |
| 		/* actual_length may be nonzero on retry paths */
 | |
| 		buf = urb->transfer_buffer + urb->actual_length;
 | |
| 		len = urb->transfer_buffer_length - urb->actual_length;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(musb->controller, "qh %p urb %p dev%d ep%d%s%s, hw_ep %d, %p/%d\n",
 | |
| 			qh, urb, address, qh->epnum,
 | |
| 			is_in ? "in" : "out",
 | |
| 			({char *s; switch (qh->type) {
 | |
| 			case USB_ENDPOINT_XFER_CONTROL:	s = ""; break;
 | |
| 			case USB_ENDPOINT_XFER_BULK:	s = "-bulk"; break;
 | |
| #ifndef __UBOOT__
 | |
| 			case USB_ENDPOINT_XFER_ISOC:	s = "-iso"; break;
 | |
| #endif
 | |
| 			default:			s = "-intr"; break;
 | |
| 			}; s; }),
 | |
| 			epnum, buf + offset, len);
 | |
| 
 | |
| 	/* Configure endpoint */
 | |
| 	musb_ep_set_qh(hw_ep, is_in, qh);
 | |
| 	musb_ep_program(musb, epnum, urb, !is_in, buf, offset, len);
 | |
| 
 | |
| 	/* transmit may have more work: start it when it is time */
 | |
| 	if (is_in)
 | |
| 		return;
 | |
| 
 | |
| 	/* determine if the time is right for a periodic transfer */
 | |
| 	switch (qh->type) {
 | |
| #ifndef __UBOOT__
 | |
| 	case USB_ENDPOINT_XFER_ISOC:
 | |
| #endif
 | |
| 	case USB_ENDPOINT_XFER_INT:
 | |
| 		dev_dbg(musb->controller, "check whether there's still time for periodic Tx\n");
 | |
| 		frame = musb_readw(mbase, MUSB_FRAME);
 | |
| 		/* FIXME this doesn't implement that scheduling policy ...
 | |
| 		 * or handle framecounter wrapping
 | |
| 		 */
 | |
| #ifndef __UBOOT__
 | |
| 		if ((urb->transfer_flags & URB_ISO_ASAP)
 | |
| 				|| (frame >= urb->start_frame)) {
 | |
| 			/* REVISIT the SOF irq handler shouldn't duplicate
 | |
| 			 * this code; and we don't init urb->start_frame...
 | |
| 			 */
 | |
| 			qh->frame = 0;
 | |
| 			goto start;
 | |
| 		} else {
 | |
| #endif
 | |
| 			qh->frame = urb->start_frame;
 | |
| 			/* enable SOF interrupt so we can count down */
 | |
| 			dev_dbg(musb->controller, "SOF for %d\n", epnum);
 | |
| #if 1 /* ifndef	CONFIG_ARCH_DAVINCI */
 | |
| 			musb_writeb(mbase, MUSB_INTRUSBE, 0xff);
 | |
| #endif
 | |
| #ifndef __UBOOT__
 | |
| 		}
 | |
| #endif
 | |
| 		break;
 | |
| 	default:
 | |
| start:
 | |
| 		dev_dbg(musb->controller, "Start TX%d %s\n", epnum,
 | |
| 			hw_ep->tx_channel ? "dma" : "pio");
 | |
| 
 | |
| 		if (!hw_ep->tx_channel)
 | |
| 			musb_h_tx_start(hw_ep);
 | |
| 		else if (is_cppi_enabled() || tusb_dma_omap())
 | |
| 			musb_h_tx_dma_start(hw_ep);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Context: caller owns controller lock, IRQs are blocked */
 | |
| static void musb_giveback(struct musb *musb, struct urb *urb, int status)
 | |
| __releases(musb->lock)
 | |
| __acquires(musb->lock)
 | |
| {
 | |
| 	dev_dbg(musb->controller,
 | |
| 			"complete %p %pF (%d), dev%d ep%d%s, %d/%d\n",
 | |
| 			urb, urb->complete, status,
 | |
| 			usb_pipedevice(urb->pipe),
 | |
| 			usb_pipeendpoint(urb->pipe),
 | |
| 			usb_pipein(urb->pipe) ? "in" : "out",
 | |
| 			urb->actual_length, urb->transfer_buffer_length
 | |
| 			);
 | |
| 
 | |
| 	usb_hcd_unlink_urb_from_ep(musb_to_hcd(musb), urb);
 | |
| 	spin_unlock(&musb->lock);
 | |
| 	usb_hcd_giveback_urb(musb_to_hcd(musb), urb, status);
 | |
| 	spin_lock(&musb->lock);
 | |
| }
 | |
| 
 | |
| /* For bulk/interrupt endpoints only */
 | |
| static inline void musb_save_toggle(struct musb_qh *qh, int is_in,
 | |
| 				    struct urb *urb)
 | |
| {
 | |
| 	void __iomem		*epio = qh->hw_ep->regs;
 | |
| 	u16			csr;
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME: the current Mentor DMA code seems to have
 | |
| 	 * problems getting toggle correct.
 | |
| 	 */
 | |
| 
 | |
| 	if (is_in)
 | |
| 		csr = musb_readw(epio, MUSB_RXCSR) & MUSB_RXCSR_H_DATATOGGLE;
 | |
| 	else
 | |
| 		csr = musb_readw(epio, MUSB_TXCSR) & MUSB_TXCSR_H_DATATOGGLE;
 | |
| 
 | |
| 	usb_settoggle(urb->dev, qh->epnum, !is_in, csr ? 1 : 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Advance this hardware endpoint's queue, completing the specified URB and
 | |
|  * advancing to either the next URB queued to that qh, or else invalidating
 | |
|  * that qh and advancing to the next qh scheduled after the current one.
 | |
|  *
 | |
|  * Context: caller owns controller lock, IRQs are blocked
 | |
|  */
 | |
| static void musb_advance_schedule(struct musb *musb, struct urb *urb,
 | |
| 				  struct musb_hw_ep *hw_ep, int is_in)
 | |
| {
 | |
| 	struct musb_qh		*qh = musb_ep_get_qh(hw_ep, is_in);
 | |
| 	struct musb_hw_ep	*ep = qh->hw_ep;
 | |
| 	int			ready = qh->is_ready;
 | |
| 	int			status;
 | |
| 
 | |
| 	status = (urb->status == -EINPROGRESS) ? 0 : urb->status;
 | |
| 
 | |
| 	/* save toggle eagerly, for paranoia */
 | |
| 	switch (qh->type) {
 | |
| 	case USB_ENDPOINT_XFER_BULK:
 | |
| 	case USB_ENDPOINT_XFER_INT:
 | |
| 		musb_save_toggle(qh, is_in, urb);
 | |
| 		break;
 | |
| #ifndef __UBOOT__
 | |
| 	case USB_ENDPOINT_XFER_ISOC:
 | |
| 		if (status == 0 && urb->error_count)
 | |
| 			status = -EXDEV;
 | |
| 		break;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	qh->is_ready = 0;
 | |
| 	musb_giveback(musb, urb, status);
 | |
| 	qh->is_ready = ready;
 | |
| 
 | |
| 	/* reclaim resources (and bandwidth) ASAP; deschedule it, and
 | |
| 	 * invalidate qh as soon as list_empty(&hep->urb_list)
 | |
| 	 */
 | |
| 	if (list_empty(&qh->hep->urb_list)) {
 | |
| 		struct list_head	*head;
 | |
| 		struct dma_controller	*dma = musb->dma_controller;
 | |
| 
 | |
| 		if (is_in) {
 | |
| 			ep->rx_reinit = 1;
 | |
| 			if (ep->rx_channel) {
 | |
| 				dma->channel_release(ep->rx_channel);
 | |
| 				ep->rx_channel = NULL;
 | |
| 			}
 | |
| 		} else {
 | |
| 			ep->tx_reinit = 1;
 | |
| 			if (ep->tx_channel) {
 | |
| 				dma->channel_release(ep->tx_channel);
 | |
| 				ep->tx_channel = NULL;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Clobber old pointers to this qh */
 | |
| 		musb_ep_set_qh(ep, is_in, NULL);
 | |
| 		qh->hep->hcpriv = NULL;
 | |
| 
 | |
| 		switch (qh->type) {
 | |
| 
 | |
| 		case USB_ENDPOINT_XFER_CONTROL:
 | |
| 		case USB_ENDPOINT_XFER_BULK:
 | |
| 			/* fifo policy for these lists, except that NAKing
 | |
| 			 * should rotate a qh to the end (for fairness).
 | |
| 			 */
 | |
| 			if (qh->mux == 1) {
 | |
| 				head = qh->ring.prev;
 | |
| 				list_del(&qh->ring);
 | |
| 				kfree(qh);
 | |
| 				qh = first_qh(head);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 		case USB_ENDPOINT_XFER_ISOC:
 | |
| 		case USB_ENDPOINT_XFER_INT:
 | |
| 			/* this is where periodic bandwidth should be
 | |
| 			 * de-allocated if it's tracked and allocated;
 | |
| 			 * and where we'd update the schedule tree...
 | |
| 			 */
 | |
| 			kfree(qh);
 | |
| 			qh = NULL;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (qh != NULL && qh->is_ready) {
 | |
| 		dev_dbg(musb->controller, "... next ep%d %cX urb %p\n",
 | |
| 		    hw_ep->epnum, is_in ? 'R' : 'T', next_urb(qh));
 | |
| 		musb_start_urb(musb, is_in, qh);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static u16 musb_h_flush_rxfifo(struct musb_hw_ep *hw_ep, u16 csr)
 | |
| {
 | |
| 	/* we don't want fifo to fill itself again;
 | |
| 	 * ignore dma (various models),
 | |
| 	 * leave toggle alone (may not have been saved yet)
 | |
| 	 */
 | |
| 	csr |= MUSB_RXCSR_FLUSHFIFO | MUSB_RXCSR_RXPKTRDY;
 | |
| 	csr &= ~(MUSB_RXCSR_H_REQPKT
 | |
| 		| MUSB_RXCSR_H_AUTOREQ
 | |
| 		| MUSB_RXCSR_AUTOCLEAR);
 | |
| 
 | |
| 	/* write 2x to allow double buffering */
 | |
| 	musb_writew(hw_ep->regs, MUSB_RXCSR, csr);
 | |
| 	musb_writew(hw_ep->regs, MUSB_RXCSR, csr);
 | |
| 
 | |
| 	/* flush writebuffer */
 | |
| 	return musb_readw(hw_ep->regs, MUSB_RXCSR);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * PIO RX for a packet (or part of it).
 | |
|  */
 | |
| static bool
 | |
| musb_host_packet_rx(struct musb *musb, struct urb *urb, u8 epnum, u8 iso_err)
 | |
| {
 | |
| 	u16			rx_count;
 | |
| 	u8			*buf;
 | |
| 	u16			csr;
 | |
| 	bool			done = false;
 | |
| 	u32			length;
 | |
| 	int			do_flush = 0;
 | |
| 	struct musb_hw_ep	*hw_ep = musb->endpoints + epnum;
 | |
| 	void __iomem		*epio = hw_ep->regs;
 | |
| 	struct musb_qh		*qh = hw_ep->in_qh;
 | |
| 	int			pipe = urb->pipe;
 | |
| 	void			*buffer = urb->transfer_buffer;
 | |
| 
 | |
| 	/* musb_ep_select(mbase, epnum); */
 | |
| 	rx_count = musb_readw(epio, MUSB_RXCOUNT);
 | |
| 	dev_dbg(musb->controller, "RX%d count %d, buffer %p len %d/%d\n", epnum, rx_count,
 | |
| 			urb->transfer_buffer, qh->offset,
 | |
| 			urb->transfer_buffer_length);
 | |
| 
 | |
| 	/* unload FIFO */
 | |
| #ifndef __UBOOT__
 | |
| 	if (usb_pipeisoc(pipe)) {
 | |
| 		int					status = 0;
 | |
| 		struct usb_iso_packet_descriptor	*d;
 | |
| 
 | |
| 		if (iso_err) {
 | |
| 			status = -EILSEQ;
 | |
| 			urb->error_count++;
 | |
| 		}
 | |
| 
 | |
| 		d = urb->iso_frame_desc + qh->iso_idx;
 | |
| 		buf = buffer + d->offset;
 | |
| 		length = d->length;
 | |
| 		if (rx_count > length) {
 | |
| 			if (status == 0) {
 | |
| 				status = -EOVERFLOW;
 | |
| 				urb->error_count++;
 | |
| 			}
 | |
| 			dev_dbg(musb->controller, "** OVERFLOW %d into %d\n", rx_count, length);
 | |
| 			do_flush = 1;
 | |
| 		} else
 | |
| 			length = rx_count;
 | |
| 		urb->actual_length += length;
 | |
| 		d->actual_length = length;
 | |
| 
 | |
| 		d->status = status;
 | |
| 
 | |
| 		/* see if we are done */
 | |
| 		done = (++qh->iso_idx >= urb->number_of_packets);
 | |
| 	} else {
 | |
| #endif
 | |
| 		/* non-isoch */
 | |
| 		buf = buffer + qh->offset;
 | |
| 		length = urb->transfer_buffer_length - qh->offset;
 | |
| 		if (rx_count > length) {
 | |
| 			if (urb->status == -EINPROGRESS)
 | |
| 				urb->status = -EOVERFLOW;
 | |
| 			dev_dbg(musb->controller, "** OVERFLOW %d into %d\n", rx_count, length);
 | |
| 			do_flush = 1;
 | |
| 		} else
 | |
| 			length = rx_count;
 | |
| 		urb->actual_length += length;
 | |
| 		qh->offset += length;
 | |
| 
 | |
| 		/* see if we are done */
 | |
| 		done = (urb->actual_length == urb->transfer_buffer_length)
 | |
| 			|| (rx_count < qh->maxpacket)
 | |
| 			|| (urb->status != -EINPROGRESS);
 | |
| 		if (done
 | |
| 				&& (urb->status == -EINPROGRESS)
 | |
| 				&& (urb->transfer_flags & URB_SHORT_NOT_OK)
 | |
| 				&& (urb->actual_length
 | |
| 					< urb->transfer_buffer_length))
 | |
| 			urb->status = -EREMOTEIO;
 | |
| #ifndef __UBOOT__
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	musb_read_fifo(hw_ep, length, buf);
 | |
| 
 | |
| 	csr = musb_readw(epio, MUSB_RXCSR);
 | |
| 	csr |= MUSB_RXCSR_H_WZC_BITS;
 | |
| 	if (unlikely(do_flush))
 | |
| 		musb_h_flush_rxfifo(hw_ep, csr);
 | |
| 	else {
 | |
| 		/* REVISIT this assumes AUTOCLEAR is never set */
 | |
| 		csr &= ~(MUSB_RXCSR_RXPKTRDY | MUSB_RXCSR_H_REQPKT);
 | |
| 		if (!done)
 | |
| 			csr |= MUSB_RXCSR_H_REQPKT;
 | |
| 		musb_writew(epio, MUSB_RXCSR, csr);
 | |
| 	}
 | |
| 
 | |
| 	return done;
 | |
| }
 | |
| 
 | |
| /* we don't always need to reinit a given side of an endpoint...
 | |
|  * when we do, use tx/rx reinit routine and then construct a new CSR
 | |
|  * to address data toggle, NYET, and DMA or PIO.
 | |
|  *
 | |
|  * it's possible that driver bugs (especially for DMA) or aborting a
 | |
|  * transfer might have left the endpoint busier than it should be.
 | |
|  * the busy/not-empty tests are basically paranoia.
 | |
|  */
 | |
| static void
 | |
| musb_rx_reinit(struct musb *musb, struct musb_qh *qh, struct musb_hw_ep *ep)
 | |
| {
 | |
| 	u16	csr;
 | |
| 
 | |
| 	/* NOTE:  we know the "rx" fifo reinit never triggers for ep0.
 | |
| 	 * That always uses tx_reinit since ep0 repurposes TX register
 | |
| 	 * offsets; the initial SETUP packet is also a kind of OUT.
 | |
| 	 */
 | |
| 
 | |
| 	/* if programmed for Tx, put it in RX mode */
 | |
| 	if (ep->is_shared_fifo) {
 | |
| 		csr = musb_readw(ep->regs, MUSB_TXCSR);
 | |
| 		if (csr & MUSB_TXCSR_MODE) {
 | |
| 			musb_h_tx_flush_fifo(ep);
 | |
| 			csr = musb_readw(ep->regs, MUSB_TXCSR);
 | |
| 			musb_writew(ep->regs, MUSB_TXCSR,
 | |
| 				    csr | MUSB_TXCSR_FRCDATATOG);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Clear the MODE bit (and everything else) to enable Rx.
 | |
| 		 * NOTE: we mustn't clear the DMAMODE bit before DMAENAB.
 | |
| 		 */
 | |
| 		if (csr & MUSB_TXCSR_DMAMODE)
 | |
| 			musb_writew(ep->regs, MUSB_TXCSR, MUSB_TXCSR_DMAMODE);
 | |
| 		musb_writew(ep->regs, MUSB_TXCSR, 0);
 | |
| 
 | |
| 	/* scrub all previous state, clearing toggle */
 | |
| 	} else {
 | |
| 		csr = musb_readw(ep->regs, MUSB_RXCSR);
 | |
| 		if (csr & MUSB_RXCSR_RXPKTRDY)
 | |
| 			WARNING("rx%d, packet/%d ready?\n", ep->epnum,
 | |
| 				musb_readw(ep->regs, MUSB_RXCOUNT));
 | |
| 
 | |
| 		musb_h_flush_rxfifo(ep, MUSB_RXCSR_CLRDATATOG);
 | |
| 	}
 | |
| 
 | |
| 	/* target addr and (for multipoint) hub addr/port */
 | |
| 	if (musb->is_multipoint) {
 | |
| 		musb_write_rxfunaddr(ep->target_regs, qh->addr_reg);
 | |
| 		musb_write_rxhubaddr(ep->target_regs, qh->h_addr_reg);
 | |
| 		musb_write_rxhubport(ep->target_regs, qh->h_port_reg);
 | |
| 
 | |
| 	} else
 | |
| 		musb_writeb(musb->mregs, MUSB_FADDR, qh->addr_reg);
 | |
| 
 | |
| 	/* protocol/endpoint, interval/NAKlimit, i/o size */
 | |
| 	musb_writeb(ep->regs, MUSB_RXTYPE, qh->type_reg);
 | |
| 	musb_writeb(ep->regs, MUSB_RXINTERVAL, qh->intv_reg);
 | |
| 	/* NOTE: bulk combining rewrites high bits of maxpacket */
 | |
| 	/* Set RXMAXP with the FIFO size of the endpoint
 | |
| 	 * to disable double buffer mode.
 | |
| 	 */
 | |
| 	if (musb->double_buffer_not_ok)
 | |
| 		musb_writew(ep->regs, MUSB_RXMAXP, ep->max_packet_sz_rx);
 | |
| 	else
 | |
| 		musb_writew(ep->regs, MUSB_RXMAXP,
 | |
| 				qh->maxpacket | ((qh->hb_mult - 1) << 11));
 | |
| 
 | |
| 	ep->rx_reinit = 0;
 | |
| }
 | |
| 
 | |
| static bool musb_tx_dma_program(struct dma_controller *dma,
 | |
| 		struct musb_hw_ep *hw_ep, struct musb_qh *qh,
 | |
| 		struct urb *urb, u32 offset, u32 length)
 | |
| {
 | |
| 	struct dma_channel	*channel = hw_ep->tx_channel;
 | |
| 	void __iomem		*epio = hw_ep->regs;
 | |
| 	u16			pkt_size = qh->maxpacket;
 | |
| 	u16			csr;
 | |
| 	u8			mode;
 | |
| 
 | |
| #ifdef	CONFIG_USB_INVENTRA_DMA
 | |
| 	if (length > channel->max_len)
 | |
| 		length = channel->max_len;
 | |
| 
 | |
| 	csr = musb_readw(epio, MUSB_TXCSR);
 | |
| 	if (length > pkt_size) {
 | |
| 		mode = 1;
 | |
| 		csr |= MUSB_TXCSR_DMAMODE | MUSB_TXCSR_DMAENAB;
 | |
| 		/* autoset shouldn't be set in high bandwidth */
 | |
| 		if (qh->hb_mult == 1)
 | |
| 			csr |= MUSB_TXCSR_AUTOSET;
 | |
| 	} else {
 | |
| 		mode = 0;
 | |
| 		csr &= ~(MUSB_TXCSR_AUTOSET | MUSB_TXCSR_DMAMODE);
 | |
| 		csr |= MUSB_TXCSR_DMAENAB; /* against programmer's guide */
 | |
| 	}
 | |
| 	channel->desired_mode = mode;
 | |
| 	musb_writew(epio, MUSB_TXCSR, csr);
 | |
| #else
 | |
| 	if (!is_cppi_enabled() && !tusb_dma_omap())
 | |
| 		return false;
 | |
| 
 | |
| 	channel->actual_len = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * TX uses "RNDIS" mode automatically but needs help
 | |
| 	 * to identify the zero-length-final-packet case.
 | |
| 	 */
 | |
| 	mode = (urb->transfer_flags & URB_ZERO_PACKET) ? 1 : 0;
 | |
| #endif
 | |
| 
 | |
| 	qh->segsize = length;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure the data reaches to main memory before starting
 | |
| 	 * DMA transfer
 | |
| 	 */
 | |
| 	wmb();
 | |
| 
 | |
| 	if (!dma->channel_program(channel, pkt_size, mode,
 | |
| 			urb->transfer_dma + offset, length)) {
 | |
| 		dma->channel_release(channel);
 | |
| 		hw_ep->tx_channel = NULL;
 | |
| 
 | |
| 		csr = musb_readw(epio, MUSB_TXCSR);
 | |
| 		csr &= ~(MUSB_TXCSR_AUTOSET | MUSB_TXCSR_DMAENAB);
 | |
| 		musb_writew(epio, MUSB_TXCSR, csr | MUSB_TXCSR_H_WZC_BITS);
 | |
| 		return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Program an HDRC endpoint as per the given URB
 | |
|  * Context: irqs blocked, controller lock held
 | |
|  */
 | |
| static void musb_ep_program(struct musb *musb, u8 epnum,
 | |
| 			struct urb *urb, int is_out,
 | |
| 			u8 *buf, u32 offset, u32 len)
 | |
| {
 | |
| 	struct dma_controller	*dma_controller;
 | |
| 	struct dma_channel	*dma_channel;
 | |
| 	u8			dma_ok;
 | |
| 	void __iomem		*mbase = musb->mregs;
 | |
| 	struct musb_hw_ep	*hw_ep = musb->endpoints + epnum;
 | |
| 	void __iomem		*epio = hw_ep->regs;
 | |
| 	struct musb_qh		*qh = musb_ep_get_qh(hw_ep, !is_out);
 | |
| 	u16			packet_sz = qh->maxpacket;
 | |
| 
 | |
| 	dev_dbg(musb->controller, "%s hw%d urb %p spd%d dev%d ep%d%s "
 | |
| 				"h_addr%02x h_port%02x bytes %d\n",
 | |
| 			is_out ? "-->" : "<--",
 | |
| 			epnum, urb, urb->dev->speed,
 | |
| 			qh->addr_reg, qh->epnum, is_out ? "out" : "in",
 | |
| 			qh->h_addr_reg, qh->h_port_reg,
 | |
| 			len);
 | |
| 
 | |
| 	musb_ep_select(mbase, epnum);
 | |
| 
 | |
| 	/* candidate for DMA? */
 | |
| 	dma_controller = musb->dma_controller;
 | |
| 	if (is_dma_capable() && epnum && dma_controller) {
 | |
| 		dma_channel = is_out ? hw_ep->tx_channel : hw_ep->rx_channel;
 | |
| 		if (!dma_channel) {
 | |
| 			dma_channel = dma_controller->channel_alloc(
 | |
| 					dma_controller, hw_ep, is_out);
 | |
| 			if (is_out)
 | |
| 				hw_ep->tx_channel = dma_channel;
 | |
| 			else
 | |
| 				hw_ep->rx_channel = dma_channel;
 | |
| 		}
 | |
| 	} else
 | |
| 		dma_channel = NULL;
 | |
| 
 | |
| 	/* make sure we clear DMAEnab, autoSet bits from previous run */
 | |
| 
 | |
| 	/* OUT/transmit/EP0 or IN/receive? */
 | |
| 	if (is_out) {
 | |
| 		u16	csr;
 | |
| 		u16	int_txe;
 | |
| 		u16	load_count;
 | |
| 
 | |
| 		csr = musb_readw(epio, MUSB_TXCSR);
 | |
| 
 | |
| 		/* disable interrupt in case we flush */
 | |
| 		int_txe = musb_readw(mbase, MUSB_INTRTXE);
 | |
| 		musb_writew(mbase, MUSB_INTRTXE, int_txe & ~(1 << epnum));
 | |
| 
 | |
| 		/* general endpoint setup */
 | |
| 		if (epnum) {
 | |
| 			/* flush all old state, set default */
 | |
| 			musb_h_tx_flush_fifo(hw_ep);
 | |
| 
 | |
| 			/*
 | |
| 			 * We must not clear the DMAMODE bit before or in
 | |
| 			 * the same cycle with the DMAENAB bit, so we clear
 | |
| 			 * the latter first...
 | |
| 			 */
 | |
| 			csr &= ~(MUSB_TXCSR_H_NAKTIMEOUT
 | |
| 					| MUSB_TXCSR_AUTOSET
 | |
| 					| MUSB_TXCSR_DMAENAB
 | |
| 					| MUSB_TXCSR_FRCDATATOG
 | |
| 					| MUSB_TXCSR_H_RXSTALL
 | |
| 					| MUSB_TXCSR_H_ERROR
 | |
| 					| MUSB_TXCSR_TXPKTRDY
 | |
| 					);
 | |
| 			csr |= MUSB_TXCSR_MODE;
 | |
| 
 | |
| 			if (usb_gettoggle(urb->dev, qh->epnum, 1))
 | |
| 				csr |= MUSB_TXCSR_H_WR_DATATOGGLE
 | |
| 					| MUSB_TXCSR_H_DATATOGGLE;
 | |
| 			else
 | |
| 				csr |= MUSB_TXCSR_CLRDATATOG;
 | |
| 
 | |
| 			musb_writew(epio, MUSB_TXCSR, csr);
 | |
| 			/* REVISIT may need to clear FLUSHFIFO ... */
 | |
| 			csr &= ~MUSB_TXCSR_DMAMODE;
 | |
| 			musb_writew(epio, MUSB_TXCSR, csr);
 | |
| 			csr = musb_readw(epio, MUSB_TXCSR);
 | |
| 		} else {
 | |
| 			/* endpoint 0: just flush */
 | |
| 			musb_h_ep0_flush_fifo(hw_ep);
 | |
| 		}
 | |
| 
 | |
| 		/* target addr and (for multipoint) hub addr/port */
 | |
| 		if (musb->is_multipoint) {
 | |
| 			musb_write_txfunaddr(mbase, epnum, qh->addr_reg);
 | |
| 			musb_write_txhubaddr(mbase, epnum, qh->h_addr_reg);
 | |
| 			musb_write_txhubport(mbase, epnum, qh->h_port_reg);
 | |
| /* FIXME if !epnum, do the same for RX ... */
 | |
| 		} else
 | |
| 			musb_writeb(mbase, MUSB_FADDR, qh->addr_reg);
 | |
| 
 | |
| 		/* protocol/endpoint/interval/NAKlimit */
 | |
| 		if (epnum) {
 | |
| 			musb_writeb(epio, MUSB_TXTYPE, qh->type_reg);
 | |
| 			if (musb->double_buffer_not_ok)
 | |
| 				musb_writew(epio, MUSB_TXMAXP,
 | |
| 						hw_ep->max_packet_sz_tx);
 | |
| 			else if (can_bulk_split(musb, qh->type))
 | |
| 				musb_writew(epio, MUSB_TXMAXP, packet_sz
 | |
| 					| ((hw_ep->max_packet_sz_tx /
 | |
| 						packet_sz) - 1) << 11);
 | |
| 			else
 | |
| 				musb_writew(epio, MUSB_TXMAXP,
 | |
| 						qh->maxpacket |
 | |
| 						((qh->hb_mult - 1) << 11));
 | |
| 			musb_writeb(epio, MUSB_TXINTERVAL, qh->intv_reg);
 | |
| 		} else {
 | |
| 			musb_writeb(epio, MUSB_NAKLIMIT0, qh->intv_reg);
 | |
| 			if (musb->is_multipoint)
 | |
| 				musb_writeb(epio, MUSB_TYPE0,
 | |
| 						qh->type_reg);
 | |
| 		}
 | |
| 
 | |
| 		if (can_bulk_split(musb, qh->type))
 | |
| 			load_count = min((u32) hw_ep->max_packet_sz_tx,
 | |
| 						len);
 | |
| 		else
 | |
| 			load_count = min((u32) packet_sz, len);
 | |
| 
 | |
| 		if (dma_channel && musb_tx_dma_program(dma_controller,
 | |
| 					hw_ep, qh, urb, offset, len))
 | |
| 			load_count = 0;
 | |
| 
 | |
| 		if (load_count) {
 | |
| 			/* PIO to load FIFO */
 | |
| 			qh->segsize = load_count;
 | |
| 			musb_write_fifo(hw_ep, load_count, buf);
 | |
| 		}
 | |
| 
 | |
| 		/* re-enable interrupt */
 | |
| 		musb_writew(mbase, MUSB_INTRTXE, int_txe);
 | |
| 
 | |
| 	/* IN/receive */
 | |
| 	} else {
 | |
| 		u16	csr;
 | |
| 
 | |
| 		if (hw_ep->rx_reinit) {
 | |
| 			musb_rx_reinit(musb, qh, hw_ep);
 | |
| 
 | |
| 			/* init new state: toggle and NYET, maybe DMA later */
 | |
| 			if (usb_gettoggle(urb->dev, qh->epnum, 0))
 | |
| 				csr = MUSB_RXCSR_H_WR_DATATOGGLE
 | |
| 					| MUSB_RXCSR_H_DATATOGGLE;
 | |
| 			else
 | |
| 				csr = 0;
 | |
| 			if (qh->type == USB_ENDPOINT_XFER_INT)
 | |
| 				csr |= MUSB_RXCSR_DISNYET;
 | |
| 
 | |
| 		} else {
 | |
| 			csr = musb_readw(hw_ep->regs, MUSB_RXCSR);
 | |
| 
 | |
| 			if (csr & (MUSB_RXCSR_RXPKTRDY
 | |
| 					| MUSB_RXCSR_DMAENAB
 | |
| 					| MUSB_RXCSR_H_REQPKT))
 | |
| 				ERR("broken !rx_reinit, ep%d csr %04x\n",
 | |
| 						hw_ep->epnum, csr);
 | |
| 
 | |
| 			/* scrub any stale state, leaving toggle alone */
 | |
| 			csr &= MUSB_RXCSR_DISNYET;
 | |
| 		}
 | |
| 
 | |
| 		/* kick things off */
 | |
| 
 | |
| 		if ((is_cppi_enabled() || tusb_dma_omap()) && dma_channel) {
 | |
| 			/* Candidate for DMA */
 | |
| 			dma_channel->actual_len = 0L;
 | |
| 			qh->segsize = len;
 | |
| 
 | |
| 			/* AUTOREQ is in a DMA register */
 | |
| 			musb_writew(hw_ep->regs, MUSB_RXCSR, csr);
 | |
| 			csr = musb_readw(hw_ep->regs, MUSB_RXCSR);
 | |
| 
 | |
| 			/*
 | |
| 			 * Unless caller treats short RX transfers as
 | |
| 			 * errors, we dare not queue multiple transfers.
 | |
| 			 */
 | |
| 			dma_ok = dma_controller->channel_program(dma_channel,
 | |
| 					packet_sz, !(urb->transfer_flags &
 | |
| 						     URB_SHORT_NOT_OK),
 | |
| 					urb->transfer_dma + offset,
 | |
| 					qh->segsize);
 | |
| 			if (!dma_ok) {
 | |
| 				dma_controller->channel_release(dma_channel);
 | |
| 				hw_ep->rx_channel = dma_channel = NULL;
 | |
| 			} else
 | |
| 				csr |= MUSB_RXCSR_DMAENAB;
 | |
| 		}
 | |
| 
 | |
| 		csr |= MUSB_RXCSR_H_REQPKT;
 | |
| 		dev_dbg(musb->controller, "RXCSR%d := %04x\n", epnum, csr);
 | |
| 		musb_writew(hw_ep->regs, MUSB_RXCSR, csr);
 | |
| 		csr = musb_readw(hw_ep->regs, MUSB_RXCSR);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Service the default endpoint (ep0) as host.
 | |
|  * Return true until it's time to start the status stage.
 | |
|  */
 | |
| static bool musb_h_ep0_continue(struct musb *musb, u16 len, struct urb *urb)
 | |
| {
 | |
| 	bool			 more = false;
 | |
| 	u8			*fifo_dest = NULL;
 | |
| 	u16			fifo_count = 0;
 | |
| 	struct musb_hw_ep	*hw_ep = musb->control_ep;
 | |
| 	struct musb_qh		*qh = hw_ep->in_qh;
 | |
| 	struct usb_ctrlrequest	*request;
 | |
| 
 | |
| 	switch (musb->ep0_stage) {
 | |
| 	case MUSB_EP0_IN:
 | |
| 		fifo_dest = urb->transfer_buffer + urb->actual_length;
 | |
| 		fifo_count = min_t(size_t, len, urb->transfer_buffer_length -
 | |
| 				   urb->actual_length);
 | |
| 		if (fifo_count < len)
 | |
| 			urb->status = -EOVERFLOW;
 | |
| 
 | |
| 		musb_read_fifo(hw_ep, fifo_count, fifo_dest);
 | |
| 
 | |
| 		urb->actual_length += fifo_count;
 | |
| 		if (len < qh->maxpacket) {
 | |
| 			/* always terminate on short read; it's
 | |
| 			 * rarely reported as an error.
 | |
| 			 */
 | |
| 		} else if (urb->actual_length <
 | |
| 				urb->transfer_buffer_length)
 | |
| 			more = true;
 | |
| 		break;
 | |
| 	case MUSB_EP0_START:
 | |
| 		request = (struct usb_ctrlrequest *) urb->setup_packet;
 | |
| 
 | |
| 		if (!request->wLength) {
 | |
| 			dev_dbg(musb->controller, "start no-DATA\n");
 | |
| 			break;
 | |
| 		} else if (request->bRequestType & USB_DIR_IN) {
 | |
| 			dev_dbg(musb->controller, "start IN-DATA\n");
 | |
| 			musb->ep0_stage = MUSB_EP0_IN;
 | |
| 			more = true;
 | |
| 			break;
 | |
| 		} else {
 | |
| 			dev_dbg(musb->controller, "start OUT-DATA\n");
 | |
| 			musb->ep0_stage = MUSB_EP0_OUT;
 | |
| 			more = true;
 | |
| 		}
 | |
| 		/* FALLTHROUGH */
 | |
| 	case MUSB_EP0_OUT:
 | |
| 		fifo_count = min_t(size_t, qh->maxpacket,
 | |
| 				   urb->transfer_buffer_length -
 | |
| 				   urb->actual_length);
 | |
| 		if (fifo_count) {
 | |
| 			fifo_dest = (u8 *) (urb->transfer_buffer
 | |
| 					+ urb->actual_length);
 | |
| 			dev_dbg(musb->controller, "Sending %d byte%s to ep0 fifo %p\n",
 | |
| 					fifo_count,
 | |
| 					(fifo_count == 1) ? "" : "s",
 | |
| 					fifo_dest);
 | |
| 			musb_write_fifo(hw_ep, fifo_count, fifo_dest);
 | |
| 
 | |
| 			urb->actual_length += fifo_count;
 | |
| 			more = true;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		ERR("bogus ep0 stage %d\n", musb->ep0_stage);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return more;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle default endpoint interrupt as host. Only called in IRQ time
 | |
|  * from musb_interrupt().
 | |
|  *
 | |
|  * called with controller irqlocked
 | |
|  */
 | |
| irqreturn_t musb_h_ep0_irq(struct musb *musb)
 | |
| {
 | |
| 	struct urb		*urb;
 | |
| 	u16			csr, len;
 | |
| 	int			status = 0;
 | |
| 	void __iomem		*mbase = musb->mregs;
 | |
| 	struct musb_hw_ep	*hw_ep = musb->control_ep;
 | |
| 	void __iomem		*epio = hw_ep->regs;
 | |
| 	struct musb_qh		*qh = hw_ep->in_qh;
 | |
| 	bool			complete = false;
 | |
| 	irqreturn_t		retval = IRQ_NONE;
 | |
| 
 | |
| 	/* ep0 only has one queue, "in" */
 | |
| 	urb = next_urb(qh);
 | |
| 
 | |
| 	musb_ep_select(mbase, 0);
 | |
| 	csr = musb_readw(epio, MUSB_CSR0);
 | |
| 	len = (csr & MUSB_CSR0_RXPKTRDY)
 | |
| 			? musb_readb(epio, MUSB_COUNT0)
 | |
| 			: 0;
 | |
| 
 | |
| 	dev_dbg(musb->controller, "<== csr0 %04x, qh %p, count %d, urb %p, stage %d\n",
 | |
| 		csr, qh, len, urb, musb->ep0_stage);
 | |
| 
 | |
| 	/* if we just did status stage, we are done */
 | |
| 	if (MUSB_EP0_STATUS == musb->ep0_stage) {
 | |
| 		retval = IRQ_HANDLED;
 | |
| 		complete = true;
 | |
| 	}
 | |
| 
 | |
| 	/* prepare status */
 | |
| 	if (csr & MUSB_CSR0_H_RXSTALL) {
 | |
| 		dev_dbg(musb->controller, "STALLING ENDPOINT\n");
 | |
| 		status = -EPIPE;
 | |
| 
 | |
| 	} else if (csr & MUSB_CSR0_H_ERROR) {
 | |
| 		dev_dbg(musb->controller, "no response, csr0 %04x\n", csr);
 | |
| 		status = -EPROTO;
 | |
| 
 | |
| 	} else if (csr & MUSB_CSR0_H_NAKTIMEOUT) {
 | |
| 		dev_dbg(musb->controller, "control NAK timeout\n");
 | |
| 
 | |
| 		/* NOTE:  this code path would be a good place to PAUSE a
 | |
| 		 * control transfer, if another one is queued, so that
 | |
| 		 * ep0 is more likely to stay busy.  That's already done
 | |
| 		 * for bulk RX transfers.
 | |
| 		 *
 | |
| 		 * if (qh->ring.next != &musb->control), then
 | |
| 		 * we have a candidate... NAKing is *NOT* an error
 | |
| 		 */
 | |
| 		musb_writew(epio, MUSB_CSR0, 0);
 | |
| 		retval = IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	if (status) {
 | |
| 		dev_dbg(musb->controller, "aborting\n");
 | |
| 		retval = IRQ_HANDLED;
 | |
| 		if (urb)
 | |
| 			urb->status = status;
 | |
| 		complete = true;
 | |
| 
 | |
| 		/* use the proper sequence to abort the transfer */
 | |
| 		if (csr & MUSB_CSR0_H_REQPKT) {
 | |
| 			csr &= ~MUSB_CSR0_H_REQPKT;
 | |
| 			musb_writew(epio, MUSB_CSR0, csr);
 | |
| 			csr &= ~MUSB_CSR0_H_NAKTIMEOUT;
 | |
| 			musb_writew(epio, MUSB_CSR0, csr);
 | |
| 		} else {
 | |
| 			musb_h_ep0_flush_fifo(hw_ep);
 | |
| 		}
 | |
| 
 | |
| 		musb_writeb(epio, MUSB_NAKLIMIT0, 0);
 | |
| 
 | |
| 		/* clear it */
 | |
| 		musb_writew(epio, MUSB_CSR0, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!urb)) {
 | |
| 		/* stop endpoint since we have no place for its data, this
 | |
| 		 * SHOULD NEVER HAPPEN! */
 | |
| 		ERR("no URB for end 0\n");
 | |
| 
 | |
| 		musb_h_ep0_flush_fifo(hw_ep);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	if (!complete) {
 | |
| 		/* call common logic and prepare response */
 | |
| 		if (musb_h_ep0_continue(musb, len, urb)) {
 | |
| 			/* more packets required */
 | |
| 			csr = (MUSB_EP0_IN == musb->ep0_stage)
 | |
| 				?  MUSB_CSR0_H_REQPKT : MUSB_CSR0_TXPKTRDY;
 | |
| 		} else {
 | |
| 			/* data transfer complete; perform status phase */
 | |
| 			if (usb_pipeout(urb->pipe)
 | |
| 					|| !urb->transfer_buffer_length)
 | |
| 				csr = MUSB_CSR0_H_STATUSPKT
 | |
| 					| MUSB_CSR0_H_REQPKT;
 | |
| 			else
 | |
| 				csr = MUSB_CSR0_H_STATUSPKT
 | |
| 					| MUSB_CSR0_TXPKTRDY;
 | |
| 
 | |
| 			/* flag status stage */
 | |
| 			musb->ep0_stage = MUSB_EP0_STATUS;
 | |
| 
 | |
| 			dev_dbg(musb->controller, "ep0 STATUS, csr %04x\n", csr);
 | |
| 
 | |
| 		}
 | |
| 		musb_writew(epio, MUSB_CSR0, csr);
 | |
| 		retval = IRQ_HANDLED;
 | |
| 	} else
 | |
| 		musb->ep0_stage = MUSB_EP0_IDLE;
 | |
| 
 | |
| 	/* call completion handler if done */
 | |
| 	if (complete)
 | |
| 		musb_advance_schedule(musb, urb, hw_ep, 1);
 | |
| done:
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_USB_INVENTRA_DMA
 | |
| 
 | |
| /* Host side TX (OUT) using Mentor DMA works as follows:
 | |
| 	submit_urb ->
 | |
| 		- if queue was empty, Program Endpoint
 | |
| 		- ... which starts DMA to fifo in mode 1 or 0
 | |
| 
 | |
| 	DMA Isr (transfer complete) -> TxAvail()
 | |
| 		- Stop DMA (~DmaEnab)	(<--- Alert ... currently happens
 | |
| 					only in musb_cleanup_urb)
 | |
| 		- TxPktRdy has to be set in mode 0 or for
 | |
| 			short packets in mode 1.
 | |
| */
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* Service a Tx-Available or dma completion irq for the endpoint */
 | |
| void musb_host_tx(struct musb *musb, u8 epnum)
 | |
| {
 | |
| 	int			pipe;
 | |
| 	bool			done = false;
 | |
| 	u16			tx_csr;
 | |
| 	size_t			length = 0;
 | |
| 	size_t			offset = 0;
 | |
| 	struct musb_hw_ep	*hw_ep = musb->endpoints + epnum;
 | |
| 	void __iomem		*epio = hw_ep->regs;
 | |
| 	struct musb_qh		*qh = hw_ep->out_qh;
 | |
| 	struct urb		*urb = next_urb(qh);
 | |
| 	u32			status = 0;
 | |
| 	void __iomem		*mbase = musb->mregs;
 | |
| 	struct dma_channel	*dma;
 | |
| 	bool			transfer_pending = false;
 | |
| 
 | |
| 	musb_ep_select(mbase, epnum);
 | |
| 	tx_csr = musb_readw(epio, MUSB_TXCSR);
 | |
| 
 | |
| 	/* with CPPI, DMA sometimes triggers "extra" irqs */
 | |
| 	if (!urb) {
 | |
| 		dev_dbg(musb->controller, "extra TX%d ready, csr %04x\n", epnum, tx_csr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pipe = urb->pipe;
 | |
| 	dma = is_dma_capable() ? hw_ep->tx_channel : NULL;
 | |
| 	dev_dbg(musb->controller, "OUT/TX%d end, csr %04x%s\n", epnum, tx_csr,
 | |
| 			dma ? ", dma" : "");
 | |
| 
 | |
| 	/* check for errors */
 | |
| 	if (tx_csr & MUSB_TXCSR_H_RXSTALL) {
 | |
| 		/* dma was disabled, fifo flushed */
 | |
| 		dev_dbg(musb->controller, "TX end %d stall\n", epnum);
 | |
| 
 | |
| 		/* stall; record URB status */
 | |
| 		status = -EPIPE;
 | |
| 
 | |
| 	} else if (tx_csr & MUSB_TXCSR_H_ERROR) {
 | |
| 		/* (NON-ISO) dma was disabled, fifo flushed */
 | |
| 		dev_dbg(musb->controller, "TX 3strikes on ep=%d\n", epnum);
 | |
| 
 | |
| 		status = -ETIMEDOUT;
 | |
| 
 | |
| 	} else if (tx_csr & MUSB_TXCSR_H_NAKTIMEOUT) {
 | |
| 		dev_dbg(musb->controller, "TX end=%d device not responding\n", epnum);
 | |
| 
 | |
| 		/* NOTE:  this code path would be a good place to PAUSE a
 | |
| 		 * transfer, if there's some other (nonperiodic) tx urb
 | |
| 		 * that could use this fifo.  (dma complicates it...)
 | |
| 		 * That's already done for bulk RX transfers.
 | |
| 		 *
 | |
| 		 * if (bulk && qh->ring.next != &musb->out_bulk), then
 | |
| 		 * we have a candidate... NAKing is *NOT* an error
 | |
| 		 */
 | |
| 		musb_ep_select(mbase, epnum);
 | |
| 		musb_writew(epio, MUSB_TXCSR,
 | |
| 				MUSB_TXCSR_H_WZC_BITS
 | |
| 				| MUSB_TXCSR_TXPKTRDY);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (status) {
 | |
| 		if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
 | |
| 			dma->status = MUSB_DMA_STATUS_CORE_ABORT;
 | |
| 			(void) musb->dma_controller->channel_abort(dma);
 | |
| 		}
 | |
| 
 | |
| 		/* do the proper sequence to abort the transfer in the
 | |
| 		 * usb core; the dma engine should already be stopped.
 | |
| 		 */
 | |
| 		musb_h_tx_flush_fifo(hw_ep);
 | |
| 		tx_csr &= ~(MUSB_TXCSR_AUTOSET
 | |
| 				| MUSB_TXCSR_DMAENAB
 | |
| 				| MUSB_TXCSR_H_ERROR
 | |
| 				| MUSB_TXCSR_H_RXSTALL
 | |
| 				| MUSB_TXCSR_H_NAKTIMEOUT
 | |
| 				);
 | |
| 
 | |
| 		musb_ep_select(mbase, epnum);
 | |
| 		musb_writew(epio, MUSB_TXCSR, tx_csr);
 | |
| 		/* REVISIT may need to clear FLUSHFIFO ... */
 | |
| 		musb_writew(epio, MUSB_TXCSR, tx_csr);
 | |
| 		musb_writeb(epio, MUSB_TXINTERVAL, 0);
 | |
| 
 | |
| 		done = true;
 | |
| 	}
 | |
| 
 | |
| 	/* second cppi case */
 | |
| 	if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
 | |
| 		dev_dbg(musb->controller, "extra TX%d ready, csr %04x\n", epnum, tx_csr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (is_dma_capable() && dma && !status) {
 | |
| 		/*
 | |
| 		 * DMA has completed.  But if we're using DMA mode 1 (multi
 | |
| 		 * packet DMA), we need a terminal TXPKTRDY interrupt before
 | |
| 		 * we can consider this transfer completed, lest we trash
 | |
| 		 * its last packet when writing the next URB's data.  So we
 | |
| 		 * switch back to mode 0 to get that interrupt; we'll come
 | |
| 		 * back here once it happens.
 | |
| 		 */
 | |
| 		if (tx_csr & MUSB_TXCSR_DMAMODE) {
 | |
| 			/*
 | |
| 			 * We shouldn't clear DMAMODE with DMAENAB set; so
 | |
| 			 * clear them in a safe order.  That should be OK
 | |
| 			 * once TXPKTRDY has been set (and I've never seen
 | |
| 			 * it being 0 at this moment -- DMA interrupt latency
 | |
| 			 * is significant) but if it hasn't been then we have
 | |
| 			 * no choice but to stop being polite and ignore the
 | |
| 			 * programmer's guide... :-)
 | |
| 			 *
 | |
| 			 * Note that we must write TXCSR with TXPKTRDY cleared
 | |
| 			 * in order not to re-trigger the packet send (this bit
 | |
| 			 * can't be cleared by CPU), and there's another caveat:
 | |
| 			 * TXPKTRDY may be set shortly and then cleared in the
 | |
| 			 * double-buffered FIFO mode, so we do an extra TXCSR
 | |
| 			 * read for debouncing...
 | |
| 			 */
 | |
| 			tx_csr &= musb_readw(epio, MUSB_TXCSR);
 | |
| 			if (tx_csr & MUSB_TXCSR_TXPKTRDY) {
 | |
| 				tx_csr &= ~(MUSB_TXCSR_DMAENAB |
 | |
| 					    MUSB_TXCSR_TXPKTRDY);
 | |
| 				musb_writew(epio, MUSB_TXCSR,
 | |
| 					    tx_csr | MUSB_TXCSR_H_WZC_BITS);
 | |
| 			}
 | |
| 			tx_csr &= ~(MUSB_TXCSR_DMAMODE |
 | |
| 				    MUSB_TXCSR_TXPKTRDY);
 | |
| 			musb_writew(epio, MUSB_TXCSR,
 | |
| 				    tx_csr | MUSB_TXCSR_H_WZC_BITS);
 | |
| 
 | |
| 			/*
 | |
| 			 * There is no guarantee that we'll get an interrupt
 | |
| 			 * after clearing DMAMODE as we might have done this
 | |
| 			 * too late (after TXPKTRDY was cleared by controller).
 | |
| 			 * Re-read TXCSR as we have spoiled its previous value.
 | |
| 			 */
 | |
| 			tx_csr = musb_readw(epio, MUSB_TXCSR);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We may get here from a DMA completion or TXPKTRDY interrupt.
 | |
| 		 * In any case, we must check the FIFO status here and bail out
 | |
| 		 * only if the FIFO still has data -- that should prevent the
 | |
| 		 * "missed" TXPKTRDY interrupts and deal with double-buffered
 | |
| 		 * FIFO mode too...
 | |
| 		 */
 | |
| 		if (tx_csr & (MUSB_TXCSR_FIFONOTEMPTY | MUSB_TXCSR_TXPKTRDY)) {
 | |
| 			dev_dbg(musb->controller, "DMA complete but packet still in FIFO, "
 | |
| 			    "CSR %04x\n", tx_csr);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!status || dma || usb_pipeisoc(pipe)) {
 | |
| 		if (dma)
 | |
| 			length = dma->actual_len;
 | |
| 		else
 | |
| 			length = qh->segsize;
 | |
| 		qh->offset += length;
 | |
| 
 | |
| 		if (usb_pipeisoc(pipe)) {
 | |
| #ifndef __UBOOT__
 | |
| 			struct usb_iso_packet_descriptor	*d;
 | |
| 
 | |
| 			d = urb->iso_frame_desc + qh->iso_idx;
 | |
| 			d->actual_length = length;
 | |
| 			d->status = status;
 | |
| 			if (++qh->iso_idx >= urb->number_of_packets) {
 | |
| 				done = true;
 | |
| 			} else {
 | |
| 				d++;
 | |
| 				offset = d->offset;
 | |
| 				length = d->length;
 | |
| 			}
 | |
| #endif
 | |
| 		} else if (dma && urb->transfer_buffer_length == qh->offset) {
 | |
| 			done = true;
 | |
| 		} else {
 | |
| 			/* see if we need to send more data, or ZLP */
 | |
| 			if (qh->segsize < qh->maxpacket)
 | |
| 				done = true;
 | |
| 			else if (qh->offset == urb->transfer_buffer_length
 | |
| 					&& !(urb->transfer_flags
 | |
| 						& URB_ZERO_PACKET))
 | |
| 				done = true;
 | |
| 			if (!done) {
 | |
| 				offset = qh->offset;
 | |
| 				length = urb->transfer_buffer_length - offset;
 | |
| 				transfer_pending = true;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* urb->status != -EINPROGRESS means request has been faulted,
 | |
| 	 * so we must abort this transfer after cleanup
 | |
| 	 */
 | |
| 	if (urb->status != -EINPROGRESS) {
 | |
| 		done = true;
 | |
| 		if (status == 0)
 | |
| 			status = urb->status;
 | |
| 	}
 | |
| 
 | |
| 	if (done) {
 | |
| 		/* set status */
 | |
| 		urb->status = status;
 | |
| 		urb->actual_length = qh->offset;
 | |
| 		musb_advance_schedule(musb, urb, hw_ep, USB_DIR_OUT);
 | |
| 		return;
 | |
| 	} else if ((usb_pipeisoc(pipe) || transfer_pending) && dma) {
 | |
| 		if (musb_tx_dma_program(musb->dma_controller, hw_ep, qh, urb,
 | |
| 				offset, length)) {
 | |
| 			if (is_cppi_enabled() || tusb_dma_omap())
 | |
| 				musb_h_tx_dma_start(hw_ep);
 | |
| 			return;
 | |
| 		}
 | |
| 	} else	if (tx_csr & MUSB_TXCSR_DMAENAB) {
 | |
| 		dev_dbg(musb->controller, "not complete, but DMA enabled?\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * PIO: start next packet in this URB.
 | |
| 	 *
 | |
| 	 * REVISIT: some docs say that when hw_ep->tx_double_buffered,
 | |
| 	 * (and presumably, FIFO is not half-full) we should write *two*
 | |
| 	 * packets before updating TXCSR; other docs disagree...
 | |
| 	 */
 | |
| 	if (length > qh->maxpacket)
 | |
| 		length = qh->maxpacket;
 | |
| 	/* Unmap the buffer so that CPU can use it */
 | |
| 	usb_hcd_unmap_urb_for_dma(musb_to_hcd(musb), urb);
 | |
| 	musb_write_fifo(hw_ep, length, urb->transfer_buffer + offset);
 | |
| 	qh->segsize = length;
 | |
| 
 | |
| 	musb_ep_select(mbase, epnum);
 | |
| 	musb_writew(epio, MUSB_TXCSR,
 | |
| 			MUSB_TXCSR_H_WZC_BITS | MUSB_TXCSR_TXPKTRDY);
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_USB_INVENTRA_DMA
 | |
| 
 | |
| /* Host side RX (IN) using Mentor DMA works as follows:
 | |
| 	submit_urb ->
 | |
| 		- if queue was empty, ProgramEndpoint
 | |
| 		- first IN token is sent out (by setting ReqPkt)
 | |
| 	LinuxIsr -> RxReady()
 | |
| 	/\	=> first packet is received
 | |
| 	|	- Set in mode 0 (DmaEnab, ~ReqPkt)
 | |
| 	|		-> DMA Isr (transfer complete) -> RxReady()
 | |
| 	|		    - Ack receive (~RxPktRdy), turn off DMA (~DmaEnab)
 | |
| 	|		    - if urb not complete, send next IN token (ReqPkt)
 | |
| 	|			   |		else complete urb.
 | |
| 	|			   |
 | |
| 	---------------------------
 | |
|  *
 | |
|  * Nuances of mode 1:
 | |
|  *	For short packets, no ack (+RxPktRdy) is sent automatically
 | |
|  *	(even if AutoClear is ON)
 | |
|  *	For full packets, ack (~RxPktRdy) and next IN token (+ReqPkt) is sent
 | |
|  *	automatically => major problem, as collecting the next packet becomes
 | |
|  *	difficult. Hence mode 1 is not used.
 | |
|  *
 | |
|  * REVISIT
 | |
|  *	All we care about at this driver level is that
 | |
|  *       (a) all URBs terminate with REQPKT cleared and fifo(s) empty;
 | |
|  *       (b) termination conditions are: short RX, or buffer full;
 | |
|  *       (c) fault modes include
 | |
|  *           - iff URB_SHORT_NOT_OK, short RX status is -EREMOTEIO.
 | |
|  *             (and that endpoint's dma queue stops immediately)
 | |
|  *           - overflow (full, PLUS more bytes in the terminal packet)
 | |
|  *
 | |
|  *	So for example, usb-storage sets URB_SHORT_NOT_OK, and would
 | |
|  *	thus be a great candidate for using mode 1 ... for all but the
 | |
|  *	last packet of one URB's transfer.
 | |
|  */
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* Schedule next QH from musb->in_bulk and move the current qh to
 | |
|  * the end; avoids starvation for other endpoints.
 | |
|  */
 | |
| static void musb_bulk_rx_nak_timeout(struct musb *musb, struct musb_hw_ep *ep)
 | |
| {
 | |
| 	struct dma_channel	*dma;
 | |
| 	struct urb		*urb;
 | |
| 	void __iomem		*mbase = musb->mregs;
 | |
| 	void __iomem		*epio = ep->regs;
 | |
| 	struct musb_qh		*cur_qh, *next_qh;
 | |
| 	u16			rx_csr;
 | |
| 
 | |
| 	musb_ep_select(mbase, ep->epnum);
 | |
| 	dma = is_dma_capable() ? ep->rx_channel : NULL;
 | |
| 
 | |
| 	/* clear nak timeout bit */
 | |
| 	rx_csr = musb_readw(epio, MUSB_RXCSR);
 | |
| 	rx_csr |= MUSB_RXCSR_H_WZC_BITS;
 | |
| 	rx_csr &= ~MUSB_RXCSR_DATAERROR;
 | |
| 	musb_writew(epio, MUSB_RXCSR, rx_csr);
 | |
| 
 | |
| 	cur_qh = first_qh(&musb->in_bulk);
 | |
| 	if (cur_qh) {
 | |
| 		urb = next_urb(cur_qh);
 | |
| 		if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
 | |
| 			dma->status = MUSB_DMA_STATUS_CORE_ABORT;
 | |
| 			musb->dma_controller->channel_abort(dma);
 | |
| 			urb->actual_length += dma->actual_len;
 | |
| 			dma->actual_len = 0L;
 | |
| 		}
 | |
| 		musb_save_toggle(cur_qh, 1, urb);
 | |
| 
 | |
| 		/* move cur_qh to end of queue */
 | |
| 		list_move_tail(&cur_qh->ring, &musb->in_bulk);
 | |
| 
 | |
| 		/* get the next qh from musb->in_bulk */
 | |
| 		next_qh = first_qh(&musb->in_bulk);
 | |
| 
 | |
| 		/* set rx_reinit and schedule the next qh */
 | |
| 		ep->rx_reinit = 1;
 | |
| 		musb_start_urb(musb, 1, next_qh);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Service an RX interrupt for the given IN endpoint; docs cover bulk, iso,
 | |
|  * and high-bandwidth IN transfer cases.
 | |
|  */
 | |
| void musb_host_rx(struct musb *musb, u8 epnum)
 | |
| {
 | |
| 	struct urb		*urb;
 | |
| 	struct musb_hw_ep	*hw_ep = musb->endpoints + epnum;
 | |
| 	void __iomem		*epio = hw_ep->regs;
 | |
| 	struct musb_qh		*qh = hw_ep->in_qh;
 | |
| 	size_t			xfer_len;
 | |
| 	void __iomem		*mbase = musb->mregs;
 | |
| 	int			pipe;
 | |
| 	u16			rx_csr, val;
 | |
| 	bool			iso_err = false;
 | |
| 	bool			done = false;
 | |
| 	u32			status;
 | |
| 	struct dma_channel	*dma;
 | |
| 
 | |
| 	musb_ep_select(mbase, epnum);
 | |
| 
 | |
| 	urb = next_urb(qh);
 | |
| 	dma = is_dma_capable() ? hw_ep->rx_channel : NULL;
 | |
| 	status = 0;
 | |
| 	xfer_len = 0;
 | |
| 
 | |
| 	rx_csr = musb_readw(epio, MUSB_RXCSR);
 | |
| 	val = rx_csr;
 | |
| 
 | |
| 	if (unlikely(!urb)) {
 | |
| 		/* REVISIT -- THIS SHOULD NEVER HAPPEN ... but, at least
 | |
| 		 * usbtest #11 (unlinks) triggers it regularly, sometimes
 | |
| 		 * with fifo full.  (Only with DMA??)
 | |
| 		 */
 | |
| 		dev_dbg(musb->controller, "BOGUS RX%d ready, csr %04x, count %d\n", epnum, val,
 | |
| 			musb_readw(epio, MUSB_RXCOUNT));
 | |
| 		musb_h_flush_rxfifo(hw_ep, MUSB_RXCSR_CLRDATATOG);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pipe = urb->pipe;
 | |
| 
 | |
| 	dev_dbg(musb->controller, "<== hw %d rxcsr %04x, urb actual %d (+dma %zu)\n",
 | |
| 		epnum, rx_csr, urb->actual_length,
 | |
| 		dma ? dma->actual_len : 0);
 | |
| 
 | |
| 	/* check for errors, concurrent stall & unlink is not really
 | |
| 	 * handled yet! */
 | |
| 	if (rx_csr & MUSB_RXCSR_H_RXSTALL) {
 | |
| 		dev_dbg(musb->controller, "RX end %d STALL\n", epnum);
 | |
| 
 | |
| 		/* stall; record URB status */
 | |
| 		status = -EPIPE;
 | |
| 
 | |
| 	} else if (rx_csr & MUSB_RXCSR_H_ERROR) {
 | |
| 		dev_dbg(musb->controller, "end %d RX proto error\n", epnum);
 | |
| 
 | |
| 		status = -EPROTO;
 | |
| 		musb_writeb(epio, MUSB_RXINTERVAL, 0);
 | |
| 
 | |
| 	} else if (rx_csr & MUSB_RXCSR_DATAERROR) {
 | |
| 
 | |
| 		if (USB_ENDPOINT_XFER_ISOC != qh->type) {
 | |
| 			dev_dbg(musb->controller, "RX end %d NAK timeout\n", epnum);
 | |
| 
 | |
| 			/* NOTE: NAKing is *NOT* an error, so we want to
 | |
| 			 * continue.  Except ... if there's a request for
 | |
| 			 * another QH, use that instead of starving it.
 | |
| 			 *
 | |
| 			 * Devices like Ethernet and serial adapters keep
 | |
| 			 * reads posted at all times, which will starve
 | |
| 			 * other devices without this logic.
 | |
| 			 */
 | |
| 			if (usb_pipebulk(urb->pipe)
 | |
| 					&& qh->mux == 1
 | |
| 					&& !list_is_singular(&musb->in_bulk)) {
 | |
| 				musb_bulk_rx_nak_timeout(musb, hw_ep);
 | |
| 				return;
 | |
| 			}
 | |
| 			musb_ep_select(mbase, epnum);
 | |
| 			rx_csr |= MUSB_RXCSR_H_WZC_BITS;
 | |
| 			rx_csr &= ~MUSB_RXCSR_DATAERROR;
 | |
| 			musb_writew(epio, MUSB_RXCSR, rx_csr);
 | |
| 
 | |
| 			goto finish;
 | |
| 		} else {
 | |
| 			dev_dbg(musb->controller, "RX end %d ISO data error\n", epnum);
 | |
| 			/* packet error reported later */
 | |
| 			iso_err = true;
 | |
| 		}
 | |
| 	} else if (rx_csr & MUSB_RXCSR_INCOMPRX) {
 | |
| 		dev_dbg(musb->controller, "end %d high bandwidth incomplete ISO packet RX\n",
 | |
| 				epnum);
 | |
| 		status = -EPROTO;
 | |
| 	}
 | |
| 
 | |
| 	/* faults abort the transfer */
 | |
| 	if (status) {
 | |
| 		/* clean up dma and collect transfer count */
 | |
| 		if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
 | |
| 			dma->status = MUSB_DMA_STATUS_CORE_ABORT;
 | |
| 			(void) musb->dma_controller->channel_abort(dma);
 | |
| 			xfer_len = dma->actual_len;
 | |
| 		}
 | |
| 		musb_h_flush_rxfifo(hw_ep, MUSB_RXCSR_CLRDATATOG);
 | |
| 		musb_writeb(epio, MUSB_RXINTERVAL, 0);
 | |
| 		done = true;
 | |
| 		goto finish;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY)) {
 | |
| 		/* SHOULD NEVER HAPPEN ... but at least DaVinci has done it */
 | |
| 		ERR("RX%d dma busy, csr %04x\n", epnum, rx_csr);
 | |
| 		goto finish;
 | |
| 	}
 | |
| 
 | |
| 	/* thorough shutdown for now ... given more precise fault handling
 | |
| 	 * and better queueing support, we might keep a DMA pipeline going
 | |
| 	 * while processing this irq for earlier completions.
 | |
| 	 */
 | |
| 
 | |
| 	/* FIXME this is _way_ too much in-line logic for Mentor DMA */
 | |
| 
 | |
| #ifndef CONFIG_USB_INVENTRA_DMA
 | |
| 	if (rx_csr & MUSB_RXCSR_H_REQPKT)  {
 | |
| 		/* REVISIT this happened for a while on some short reads...
 | |
| 		 * the cleanup still needs investigation... looks bad...
 | |
| 		 * and also duplicates dma cleanup code above ... plus,
 | |
| 		 * shouldn't this be the "half full" double buffer case?
 | |
| 		 */
 | |
| 		if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
 | |
| 			dma->status = MUSB_DMA_STATUS_CORE_ABORT;
 | |
| 			(void) musb->dma_controller->channel_abort(dma);
 | |
| 			xfer_len = dma->actual_len;
 | |
| 			done = true;
 | |
| 		}
 | |
| 
 | |
| 		dev_dbg(musb->controller, "RXCSR%d %04x, reqpkt, len %zu%s\n", epnum, rx_csr,
 | |
| 				xfer_len, dma ? ", dma" : "");
 | |
| 		rx_csr &= ~MUSB_RXCSR_H_REQPKT;
 | |
| 
 | |
| 		musb_ep_select(mbase, epnum);
 | |
| 		musb_writew(epio, MUSB_RXCSR,
 | |
| 				MUSB_RXCSR_H_WZC_BITS | rx_csr);
 | |
| 	}
 | |
| #endif
 | |
| 	if (dma && (rx_csr & MUSB_RXCSR_DMAENAB)) {
 | |
| 		xfer_len = dma->actual_len;
 | |
| 
 | |
| 		val &= ~(MUSB_RXCSR_DMAENAB
 | |
| 			| MUSB_RXCSR_H_AUTOREQ
 | |
| 			| MUSB_RXCSR_AUTOCLEAR
 | |
| 			| MUSB_RXCSR_RXPKTRDY);
 | |
| 		musb_writew(hw_ep->regs, MUSB_RXCSR, val);
 | |
| 
 | |
| #ifdef CONFIG_USB_INVENTRA_DMA
 | |
| 		if (usb_pipeisoc(pipe)) {
 | |
| 			struct usb_iso_packet_descriptor *d;
 | |
| 
 | |
| 			d = urb->iso_frame_desc + qh->iso_idx;
 | |
| 			d->actual_length = xfer_len;
 | |
| 
 | |
| 			/* even if there was an error, we did the dma
 | |
| 			 * for iso_frame_desc->length
 | |
| 			 */
 | |
| 			if (d->status != -EILSEQ && d->status != -EOVERFLOW)
 | |
| 				d->status = 0;
 | |
| 
 | |
| 			if (++qh->iso_idx >= urb->number_of_packets)
 | |
| 				done = true;
 | |
| 			else
 | |
| 				done = false;
 | |
| 
 | |
| 		} else  {
 | |
| 		/* done if urb buffer is full or short packet is recd */
 | |
| 		done = (urb->actual_length + xfer_len >=
 | |
| 				urb->transfer_buffer_length
 | |
| 			|| dma->actual_len < qh->maxpacket);
 | |
| 		}
 | |
| 
 | |
| 		/* send IN token for next packet, without AUTOREQ */
 | |
| 		if (!done) {
 | |
| 			val |= MUSB_RXCSR_H_REQPKT;
 | |
| 			musb_writew(epio, MUSB_RXCSR,
 | |
| 				MUSB_RXCSR_H_WZC_BITS | val);
 | |
| 		}
 | |
| 
 | |
| 		dev_dbg(musb->controller, "ep %d dma %s, rxcsr %04x, rxcount %d\n", epnum,
 | |
| 			done ? "off" : "reset",
 | |
| 			musb_readw(epio, MUSB_RXCSR),
 | |
| 			musb_readw(epio, MUSB_RXCOUNT));
 | |
| #else
 | |
| 		done = true;
 | |
| #endif
 | |
| 	} else if (urb->status == -EINPROGRESS) {
 | |
| 		/* if no errors, be sure a packet is ready for unloading */
 | |
| 		if (unlikely(!(rx_csr & MUSB_RXCSR_RXPKTRDY))) {
 | |
| 			status = -EPROTO;
 | |
| 			ERR("Rx interrupt with no errors or packet!\n");
 | |
| 
 | |
| 			/* FIXME this is another "SHOULD NEVER HAPPEN" */
 | |
| 
 | |
| /* SCRUB (RX) */
 | |
| 			/* do the proper sequence to abort the transfer */
 | |
| 			musb_ep_select(mbase, epnum);
 | |
| 			val &= ~MUSB_RXCSR_H_REQPKT;
 | |
| 			musb_writew(epio, MUSB_RXCSR, val);
 | |
| 			goto finish;
 | |
| 		}
 | |
| 
 | |
| 		/* we are expecting IN packets */
 | |
| #ifdef CONFIG_USB_INVENTRA_DMA
 | |
| 		if (dma) {
 | |
| 			struct dma_controller	*c;
 | |
| 			u16			rx_count;
 | |
| 			int			ret, length;
 | |
| 			dma_addr_t		buf;
 | |
| 
 | |
| 			rx_count = musb_readw(epio, MUSB_RXCOUNT);
 | |
| 
 | |
| 			dev_dbg(musb->controller, "RX%d count %d, buffer 0x%x len %d/%d\n",
 | |
| 					epnum, rx_count,
 | |
| 					urb->transfer_dma
 | |
| 						+ urb->actual_length,
 | |
| 					qh->offset,
 | |
| 					urb->transfer_buffer_length);
 | |
| 
 | |
| 			c = musb->dma_controller;
 | |
| 
 | |
| 			if (usb_pipeisoc(pipe)) {
 | |
| 				int d_status = 0;
 | |
| 				struct usb_iso_packet_descriptor *d;
 | |
| 
 | |
| 				d = urb->iso_frame_desc + qh->iso_idx;
 | |
| 
 | |
| 				if (iso_err) {
 | |
| 					d_status = -EILSEQ;
 | |
| 					urb->error_count++;
 | |
| 				}
 | |
| 				if (rx_count > d->length) {
 | |
| 					if (d_status == 0) {
 | |
| 						d_status = -EOVERFLOW;
 | |
| 						urb->error_count++;
 | |
| 					}
 | |
| 					dev_dbg(musb->controller, "** OVERFLOW %d into %d\n",\
 | |
| 					    rx_count, d->length);
 | |
| 
 | |
| 					length = d->length;
 | |
| 				} else
 | |
| 					length = rx_count;
 | |
| 				d->status = d_status;
 | |
| 				buf = urb->transfer_dma + d->offset;
 | |
| 			} else {
 | |
| 				length = rx_count;
 | |
| 				buf = urb->transfer_dma +
 | |
| 						urb->actual_length;
 | |
| 			}
 | |
| 
 | |
| 			dma->desired_mode = 0;
 | |
| #ifdef USE_MODE1
 | |
| 			/* because of the issue below, mode 1 will
 | |
| 			 * only rarely behave with correct semantics.
 | |
| 			 */
 | |
| 			if ((urb->transfer_flags &
 | |
| 						URB_SHORT_NOT_OK)
 | |
| 				&& (urb->transfer_buffer_length -
 | |
| 						urb->actual_length)
 | |
| 					> qh->maxpacket)
 | |
| 				dma->desired_mode = 1;
 | |
| 			if (rx_count < hw_ep->max_packet_sz_rx) {
 | |
| 				length = rx_count;
 | |
| 				dma->desired_mode = 0;
 | |
| 			} else {
 | |
| 				length = urb->transfer_buffer_length;
 | |
| 			}
 | |
| #endif
 | |
| 
 | |
| /* Disadvantage of using mode 1:
 | |
|  *	It's basically usable only for mass storage class; essentially all
 | |
|  *	other protocols also terminate transfers on short packets.
 | |
|  *
 | |
|  * Details:
 | |
|  *	An extra IN token is sent at the end of the transfer (due to AUTOREQ)
 | |
|  *	If you try to use mode 1 for (transfer_buffer_length - 512), and try
 | |
|  *	to use the extra IN token to grab the last packet using mode 0, then
 | |
|  *	the problem is that you cannot be sure when the device will send the
 | |
|  *	last packet and RxPktRdy set. Sometimes the packet is recd too soon
 | |
|  *	such that it gets lost when RxCSR is re-set at the end of the mode 1
 | |
|  *	transfer, while sometimes it is recd just a little late so that if you
 | |
|  *	try to configure for mode 0 soon after the mode 1 transfer is
 | |
|  *	completed, you will find rxcount 0. Okay, so you might think why not
 | |
|  *	wait for an interrupt when the pkt is recd. Well, you won't get any!
 | |
|  */
 | |
| 
 | |
| 			val = musb_readw(epio, MUSB_RXCSR);
 | |
| 			val &= ~MUSB_RXCSR_H_REQPKT;
 | |
| 
 | |
| 			if (dma->desired_mode == 0)
 | |
| 				val &= ~MUSB_RXCSR_H_AUTOREQ;
 | |
| 			else
 | |
| 				val |= MUSB_RXCSR_H_AUTOREQ;
 | |
| 			val |= MUSB_RXCSR_DMAENAB;
 | |
| 
 | |
| 			/* autoclear shouldn't be set in high bandwidth */
 | |
| 			if (qh->hb_mult == 1)
 | |
| 				val |= MUSB_RXCSR_AUTOCLEAR;
 | |
| 
 | |
| 			musb_writew(epio, MUSB_RXCSR,
 | |
| 				MUSB_RXCSR_H_WZC_BITS | val);
 | |
| 
 | |
| 			/* REVISIT if when actual_length != 0,
 | |
| 			 * transfer_buffer_length needs to be
 | |
| 			 * adjusted first...
 | |
| 			 */
 | |
| 			ret = c->channel_program(
 | |
| 				dma, qh->maxpacket,
 | |
| 				dma->desired_mode, buf, length);
 | |
| 
 | |
| 			if (!ret) {
 | |
| 				c->channel_release(dma);
 | |
| 				hw_ep->rx_channel = NULL;
 | |
| 				dma = NULL;
 | |
| 				val = musb_readw(epio, MUSB_RXCSR);
 | |
| 				val &= ~(MUSB_RXCSR_DMAENAB
 | |
| 					| MUSB_RXCSR_H_AUTOREQ
 | |
| 					| MUSB_RXCSR_AUTOCLEAR);
 | |
| 				musb_writew(epio, MUSB_RXCSR, val);
 | |
| 			}
 | |
| 		}
 | |
| #endif	/* Mentor DMA */
 | |
| 
 | |
| 		if (!dma) {
 | |
| 			/* Unmap the buffer so that CPU can use it */
 | |
| 			usb_hcd_unmap_urb_for_dma(musb_to_hcd(musb), urb);
 | |
| 			done = musb_host_packet_rx(musb, urb,
 | |
| 					epnum, iso_err);
 | |
| 			dev_dbg(musb->controller, "read %spacket\n", done ? "last " : "");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| finish:
 | |
| 	urb->actual_length += xfer_len;
 | |
| 	qh->offset += xfer_len;
 | |
| 	if (done) {
 | |
| 		if (urb->status == -EINPROGRESS)
 | |
| 			urb->status = status;
 | |
| 		musb_advance_schedule(musb, urb, hw_ep, USB_DIR_IN);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* schedule nodes correspond to peripheral endpoints, like an OHCI QH.
 | |
|  * the software schedule associates multiple such nodes with a given
 | |
|  * host side hardware endpoint + direction; scheduling may activate
 | |
|  * that hardware endpoint.
 | |
|  */
 | |
| static int musb_schedule(
 | |
| 	struct musb		*musb,
 | |
| 	struct musb_qh		*qh,
 | |
| 	int			is_in)
 | |
| {
 | |
| 	int			idle;
 | |
| 	int			best_diff;
 | |
| 	int			best_end, epnum;
 | |
| 	struct musb_hw_ep	*hw_ep = NULL;
 | |
| 	struct list_head	*head = NULL;
 | |
| 	u8			toggle;
 | |
| 	u8			txtype;
 | |
| 	struct urb		*urb = next_urb(qh);
 | |
| 
 | |
| 	/* use fixed hardware for control and bulk */
 | |
| 	if (qh->type == USB_ENDPOINT_XFER_CONTROL) {
 | |
| 		head = &musb->control;
 | |
| 		hw_ep = musb->control_ep;
 | |
| 		goto success;
 | |
| 	}
 | |
| 
 | |
| 	/* else, periodic transfers get muxed to other endpoints */
 | |
| 
 | |
| 	/*
 | |
| 	 * We know this qh hasn't been scheduled, so all we need to do
 | |
| 	 * is choose which hardware endpoint to put it on ...
 | |
| 	 *
 | |
| 	 * REVISIT what we really want here is a regular schedule tree
 | |
| 	 * like e.g. OHCI uses.
 | |
| 	 */
 | |
| 	best_diff = 4096;
 | |
| 	best_end = -1;
 | |
| 
 | |
| 	for (epnum = 1, hw_ep = musb->endpoints + 1;
 | |
| 			epnum < musb->nr_endpoints;
 | |
| 			epnum++, hw_ep++) {
 | |
| 		int	diff;
 | |
| 
 | |
| 		if (musb_ep_get_qh(hw_ep, is_in) != NULL)
 | |
| 			continue;
 | |
| 
 | |
| 		if (hw_ep == musb->bulk_ep)
 | |
| 			continue;
 | |
| 
 | |
| 		if (is_in)
 | |
| 			diff = hw_ep->max_packet_sz_rx;
 | |
| 		else
 | |
| 			diff = hw_ep->max_packet_sz_tx;
 | |
| 		diff -= (qh->maxpacket * qh->hb_mult);
 | |
| 
 | |
| 		if (diff >= 0 && best_diff > diff) {
 | |
| 
 | |
| 			/*
 | |
| 			 * Mentor controller has a bug in that if we schedule
 | |
| 			 * a BULK Tx transfer on an endpoint that had earlier
 | |
| 			 * handled ISOC then the BULK transfer has to start on
 | |
| 			 * a zero toggle.  If the BULK transfer starts on a 1
 | |
| 			 * toggle then this transfer will fail as the mentor
 | |
| 			 * controller starts the Bulk transfer on a 0 toggle
 | |
| 			 * irrespective of the programming of the toggle bits
 | |
| 			 * in the TXCSR register.  Check for this condition
 | |
| 			 * while allocating the EP for a Tx Bulk transfer.  If
 | |
| 			 * so skip this EP.
 | |
| 			 */
 | |
| 			hw_ep = musb->endpoints + epnum;
 | |
| 			toggle = usb_gettoggle(urb->dev, qh->epnum, !is_in);
 | |
| 			txtype = (musb_readb(hw_ep->regs, MUSB_TXTYPE)
 | |
| 					>> 4) & 0x3;
 | |
| 			if (!is_in && (qh->type == USB_ENDPOINT_XFER_BULK) &&
 | |
| 				toggle && (txtype == USB_ENDPOINT_XFER_ISOC))
 | |
| 				continue;
 | |
| 
 | |
| 			best_diff = diff;
 | |
| 			best_end = epnum;
 | |
| 		}
 | |
| 	}
 | |
| 	/* use bulk reserved ep1 if no other ep is free */
 | |
| 	if (best_end < 0 && qh->type == USB_ENDPOINT_XFER_BULK) {
 | |
| 		hw_ep = musb->bulk_ep;
 | |
| 		if (is_in)
 | |
| 			head = &musb->in_bulk;
 | |
| 		else
 | |
| 			head = &musb->out_bulk;
 | |
| 
 | |
| 		/* Enable bulk RX NAK timeout scheme when bulk requests are
 | |
| 		 * multiplexed.  This scheme doen't work in high speed to full
 | |
| 		 * speed scenario as NAK interrupts are not coming from a
 | |
| 		 * full speed device connected to a high speed device.
 | |
| 		 * NAK timeout interval is 8 (128 uframe or 16ms) for HS and
 | |
| 		 * 4 (8 frame or 8ms) for FS device.
 | |
| 		 */
 | |
| 		if (is_in && qh->dev)
 | |
| 			qh->intv_reg =
 | |
| 				(USB_SPEED_HIGH == qh->dev->speed) ? 8 : 4;
 | |
| 		goto success;
 | |
| 	} else if (best_end < 0) {
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	idle = 1;
 | |
| 	qh->mux = 0;
 | |
| 	hw_ep = musb->endpoints + best_end;
 | |
| 	dev_dbg(musb->controller, "qh %p periodic slot %d\n", qh, best_end);
 | |
| success:
 | |
| 	if (head) {
 | |
| 		idle = list_empty(head);
 | |
| 		list_add_tail(&qh->ring, head);
 | |
| 		qh->mux = 1;
 | |
| 	}
 | |
| 	qh->hw_ep = hw_ep;
 | |
| 	qh->hep->hcpriv = qh;
 | |
| 	if (idle)
 | |
| 		musb_start_urb(musb, is_in, qh);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef __UBOOT__
 | |
| /* check if transaction translator is needed for device */
 | |
| static int tt_needed(struct musb *musb, struct usb_device *dev)
 | |
| {
 | |
| 	if ((musb_readb(musb->mregs, MUSB_POWER) & MUSB_POWER_HSMODE) &&
 | |
| 			(dev->speed < USB_SPEED_HIGH))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| static int musb_urb_enqueue(
 | |
| #else
 | |
| int musb_urb_enqueue(
 | |
| #endif
 | |
| 	struct usb_hcd			*hcd,
 | |
| 	struct urb			*urb,
 | |
| 	gfp_t				mem_flags)
 | |
| {
 | |
| 	unsigned long			flags;
 | |
| 	struct musb			*musb = hcd_to_musb(hcd);
 | |
| 	struct usb_host_endpoint	*hep = urb->ep;
 | |
| 	struct musb_qh			*qh;
 | |
| 	struct usb_endpoint_descriptor	*epd = &hep->desc;
 | |
| 	int				ret;
 | |
| 	unsigned			type_reg;
 | |
| 	unsigned			interval;
 | |
| 
 | |
| 	/* host role must be active */
 | |
| 	if (!is_host_active(musb) || !musb->is_active)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	spin_lock_irqsave(&musb->lock, flags);
 | |
| 	ret = usb_hcd_link_urb_to_ep(hcd, urb);
 | |
| 	qh = ret ? NULL : hep->hcpriv;
 | |
| 	if (qh)
 | |
| 		urb->hcpriv = qh;
 | |
| 	spin_unlock_irqrestore(&musb->lock, flags);
 | |
| 
 | |
| 	/* DMA mapping was already done, if needed, and this urb is on
 | |
| 	 * hep->urb_list now ... so we're done, unless hep wasn't yet
 | |
| 	 * scheduled onto a live qh.
 | |
| 	 *
 | |
| 	 * REVISIT best to keep hep->hcpriv valid until the endpoint gets
 | |
| 	 * disabled, testing for empty qh->ring and avoiding qh setup costs
 | |
| 	 * except for the first urb queued after a config change.
 | |
| 	 */
 | |
| 	if (qh || ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Allocate and initialize qh, minimizing the work done each time
 | |
| 	 * hw_ep gets reprogrammed, or with irqs blocked.  Then schedule it.
 | |
| 	 *
 | |
| 	 * REVISIT consider a dedicated qh kmem_cache, so it's harder
 | |
| 	 * for bugs in other kernel code to break this driver...
 | |
| 	 */
 | |
| 	qh = kzalloc(sizeof *qh, mem_flags);
 | |
| 	if (!qh) {
 | |
| 		spin_lock_irqsave(&musb->lock, flags);
 | |
| 		usb_hcd_unlink_urb_from_ep(hcd, urb);
 | |
| 		spin_unlock_irqrestore(&musb->lock, flags);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	qh->hep = hep;
 | |
| 	qh->dev = urb->dev;
 | |
| 	INIT_LIST_HEAD(&qh->ring);
 | |
| 	qh->is_ready = 1;
 | |
| 
 | |
| 	qh->maxpacket = usb_endpoint_maxp(epd);
 | |
| 	qh->type = usb_endpoint_type(epd);
 | |
| 
 | |
| 	/* Bits 11 & 12 of wMaxPacketSize encode high bandwidth multiplier.
 | |
| 	 * Some musb cores don't support high bandwidth ISO transfers; and
 | |
| 	 * we don't (yet!) support high bandwidth interrupt transfers.
 | |
| 	 */
 | |
| 	qh->hb_mult = 1 + ((qh->maxpacket >> 11) & 0x03);
 | |
| 	if (qh->hb_mult > 1) {
 | |
| 		int ok = (qh->type == USB_ENDPOINT_XFER_ISOC);
 | |
| 
 | |
| 		if (ok)
 | |
| 			ok = (usb_pipein(urb->pipe) && musb->hb_iso_rx)
 | |
| 				|| (usb_pipeout(urb->pipe) && musb->hb_iso_tx);
 | |
| 		if (!ok) {
 | |
| 			ret = -EMSGSIZE;
 | |
| 			goto done;
 | |
| 		}
 | |
| 		qh->maxpacket &= 0x7ff;
 | |
| 	}
 | |
| 
 | |
| 	qh->epnum = usb_endpoint_num(epd);
 | |
| 
 | |
| 	/* NOTE: urb->dev->devnum is wrong during SET_ADDRESS */
 | |
| 	qh->addr_reg = (u8) usb_pipedevice(urb->pipe);
 | |
| 
 | |
| 	/* precompute rxtype/txtype/type0 register */
 | |
| 	type_reg = (qh->type << 4) | qh->epnum;
 | |
| 	switch (urb->dev->speed) {
 | |
| 	case USB_SPEED_LOW:
 | |
| 		type_reg |= 0xc0;
 | |
| 		break;
 | |
| 	case USB_SPEED_FULL:
 | |
| 		type_reg |= 0x80;
 | |
| 		break;
 | |
| 	default:
 | |
| 		type_reg |= 0x40;
 | |
| 	}
 | |
| 	qh->type_reg = type_reg;
 | |
| 
 | |
| 	/* Precompute RXINTERVAL/TXINTERVAL register */
 | |
| 	switch (qh->type) {
 | |
| 	case USB_ENDPOINT_XFER_INT:
 | |
| 		/*
 | |
| 		 * Full/low speeds use the  linear encoding,
 | |
| 		 * high speed uses the logarithmic encoding.
 | |
| 		 */
 | |
| 		if (urb->dev->speed <= USB_SPEED_FULL) {
 | |
| 			interval = max_t(u8, epd->bInterval, 1);
 | |
| 			break;
 | |
| 		}
 | |
| 		/* FALLTHROUGH */
 | |
| 	case USB_ENDPOINT_XFER_ISOC:
 | |
| 		/* ISO always uses logarithmic encoding */
 | |
| 		interval = min_t(u8, epd->bInterval, 16);
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* REVISIT we actually want to use NAK limits, hinting to the
 | |
| 		 * transfer scheduling logic to try some other qh, e.g. try
 | |
| 		 * for 2 msec first:
 | |
| 		 *
 | |
| 		 * interval = (USB_SPEED_HIGH == urb->dev->speed) ? 16 : 2;
 | |
| 		 *
 | |
| 		 * The downside of disabling this is that transfer scheduling
 | |
| 		 * gets VERY unfair for nonperiodic transfers; a misbehaving
 | |
| 		 * peripheral could make that hurt.  That's perfectly normal
 | |
| 		 * for reads from network or serial adapters ... so we have
 | |
| 		 * partial NAKlimit support for bulk RX.
 | |
| 		 *
 | |
| 		 * The upside of disabling it is simpler transfer scheduling.
 | |
| 		 */
 | |
| 		interval = 0;
 | |
| 	}
 | |
| 	qh->intv_reg = interval;
 | |
| 
 | |
| 	/* precompute addressing for external hub/tt ports */
 | |
| 	if (musb->is_multipoint) {
 | |
| #ifndef __UBOOT__
 | |
| 		struct usb_device	*parent = urb->dev->parent;
 | |
| #else
 | |
| 		struct usb_device	*parent = usb_dev_get_parent(urb->dev);
 | |
| #endif
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| 		if (parent != hcd->self.root_hub) {
 | |
| #else
 | |
| 		if (parent) {
 | |
| #endif
 | |
| 			qh->h_addr_reg = (u8) parent->devnum;
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| 			/* set up tt info if needed */
 | |
| 			if (urb->dev->tt) {
 | |
| 				qh->h_port_reg = (u8) urb->dev->ttport;
 | |
| 				if (urb->dev->tt->hub)
 | |
| 					qh->h_addr_reg =
 | |
| 						(u8) urb->dev->tt->hub->devnum;
 | |
| 				if (urb->dev->tt->multi)
 | |
| 					qh->h_addr_reg |= 0x80;
 | |
| 			}
 | |
| #else
 | |
| 			if (tt_needed(musb, urb->dev)) {
 | |
| 				uint8_t portnr = 0;
 | |
| 				uint8_t hubaddr = 0;
 | |
| 				usb_find_usb2_hub_address_port(urb->dev,
 | |
| 							       &hubaddr,
 | |
| 							       &portnr);
 | |
| 				qh->h_addr_reg = hubaddr;
 | |
| 				qh->h_port_reg = portnr;
 | |
| 			}
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* invariant: hep->hcpriv is null OR the qh that's already scheduled.
 | |
| 	 * until we get real dma queues (with an entry for each urb/buffer),
 | |
| 	 * we only have work to do in the former case.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&musb->lock, flags);
 | |
| 	if (hep->hcpriv) {
 | |
| 		/* some concurrent activity submitted another urb to hep...
 | |
| 		 * odd, rare, error prone, but legal.
 | |
| 		 */
 | |
| 		kfree(qh);
 | |
| 		qh = NULL;
 | |
| 		ret = 0;
 | |
| 	} else
 | |
| 		ret = musb_schedule(musb, qh,
 | |
| 				epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK);
 | |
| 
 | |
| 	if (ret == 0) {
 | |
| 		urb->hcpriv = qh;
 | |
| 		/* FIXME set urb->start_frame for iso/intr, it's tested in
 | |
| 		 * musb_start_urb(), but otherwise only konicawc cares ...
 | |
| 		 */
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&musb->lock, flags);
 | |
| 
 | |
| done:
 | |
| 	if (ret != 0) {
 | |
| 		spin_lock_irqsave(&musb->lock, flags);
 | |
| 		usb_hcd_unlink_urb_from_ep(hcd, urb);
 | |
| 		spin_unlock_irqrestore(&musb->lock, flags);
 | |
| 		kfree(qh);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * abort a transfer that's at the head of a hardware queue.
 | |
|  * called with controller locked, irqs blocked
 | |
|  * that hardware queue advances to the next transfer, unless prevented
 | |
|  */
 | |
| static int musb_cleanup_urb(struct urb *urb, struct musb_qh *qh)
 | |
| {
 | |
| 	struct musb_hw_ep	*ep = qh->hw_ep;
 | |
| 	struct musb		*musb = ep->musb;
 | |
| 	void __iomem		*epio = ep->regs;
 | |
| 	unsigned		hw_end = ep->epnum;
 | |
| 	void __iomem		*regs = ep->musb->mregs;
 | |
| 	int			is_in = usb_pipein(urb->pipe);
 | |
| 	int			status = 0;
 | |
| 	u16			csr;
 | |
| 
 | |
| 	musb_ep_select(regs, hw_end);
 | |
| 
 | |
| 	if (is_dma_capable()) {
 | |
| 		struct dma_channel	*dma;
 | |
| 
 | |
| 		dma = is_in ? ep->rx_channel : ep->tx_channel;
 | |
| 		if (dma) {
 | |
| 			status = ep->musb->dma_controller->channel_abort(dma);
 | |
| 			dev_dbg(musb->controller,
 | |
| 				"abort %cX%d DMA for urb %p --> %d\n",
 | |
| 				is_in ? 'R' : 'T', ep->epnum,
 | |
| 				urb, status);
 | |
| 			urb->actual_length += dma->actual_len;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* turn off DMA requests, discard state, stop polling ... */
 | |
| 	if (ep->epnum && is_in) {
 | |
| 		/* giveback saves bulk toggle */
 | |
| 		csr = musb_h_flush_rxfifo(ep, 0);
 | |
| 
 | |
| 		/* REVISIT we still get an irq; should likely clear the
 | |
| 		 * endpoint's irq status here to avoid bogus irqs.
 | |
| 		 * clearing that status is platform-specific...
 | |
| 		 */
 | |
| 	} else if (ep->epnum) {
 | |
| 		musb_h_tx_flush_fifo(ep);
 | |
| 		csr = musb_readw(epio, MUSB_TXCSR);
 | |
| 		csr &= ~(MUSB_TXCSR_AUTOSET
 | |
| 			| MUSB_TXCSR_DMAENAB
 | |
| 			| MUSB_TXCSR_H_RXSTALL
 | |
| 			| MUSB_TXCSR_H_NAKTIMEOUT
 | |
| 			| MUSB_TXCSR_H_ERROR
 | |
| 			| MUSB_TXCSR_TXPKTRDY);
 | |
| 		musb_writew(epio, MUSB_TXCSR, csr);
 | |
| 		/* REVISIT may need to clear FLUSHFIFO ... */
 | |
| 		musb_writew(epio, MUSB_TXCSR, csr);
 | |
| 		/* flush cpu writebuffer */
 | |
| 		csr = musb_readw(epio, MUSB_TXCSR);
 | |
| 	} else  {
 | |
| 		musb_h_ep0_flush_fifo(ep);
 | |
| 	}
 | |
| 	if (status == 0)
 | |
| 		musb_advance_schedule(ep->musb, urb, ep, is_in);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| static int musb_urb_dequeue(
 | |
| #else
 | |
| int musb_urb_dequeue(
 | |
| #endif
 | |
| 	struct usb_hcd *hcd,
 | |
| 	struct urb *urb,
 | |
| 	int status)
 | |
| {
 | |
| 	struct musb		*musb = hcd_to_musb(hcd);
 | |
| 	struct musb_qh		*qh;
 | |
| 	unsigned long		flags;
 | |
| 	int			is_in  = usb_pipein(urb->pipe);
 | |
| 	int			ret;
 | |
| 
 | |
| 	dev_dbg(musb->controller, "urb=%p, dev%d ep%d%s\n", urb,
 | |
| 			usb_pipedevice(urb->pipe),
 | |
| 			usb_pipeendpoint(urb->pipe),
 | |
| 			is_in ? "in" : "out");
 | |
| 
 | |
| 	spin_lock_irqsave(&musb->lock, flags);
 | |
| 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
 | |
| 	if (ret)
 | |
| 		goto done;
 | |
| 
 | |
| 	qh = urb->hcpriv;
 | |
| 	if (!qh)
 | |
| 		goto done;
 | |
| 
 | |
| 	/*
 | |
| 	 * Any URB not actively programmed into endpoint hardware can be
 | |
| 	 * immediately given back; that's any URB not at the head of an
 | |
| 	 * endpoint queue, unless someday we get real DMA queues.  And even
 | |
| 	 * if it's at the head, it might not be known to the hardware...
 | |
| 	 *
 | |
| 	 * Otherwise abort current transfer, pending DMA, etc.; urb->status
 | |
| 	 * has already been updated.  This is a synchronous abort; it'd be
 | |
| 	 * OK to hold off until after some IRQ, though.
 | |
| 	 *
 | |
| 	 * NOTE: qh is invalid unless !list_empty(&hep->urb_list)
 | |
| 	 */
 | |
| 	if (!qh->is_ready
 | |
| 			|| urb->urb_list.prev != &qh->hep->urb_list
 | |
| 			|| musb_ep_get_qh(qh->hw_ep, is_in) != qh) {
 | |
| 		int	ready = qh->is_ready;
 | |
| 
 | |
| 		qh->is_ready = 0;
 | |
| 		musb_giveback(musb, urb, 0);
 | |
| 		qh->is_ready = ready;
 | |
| 
 | |
| 		/* If nothing else (usually musb_giveback) is using it
 | |
| 		 * and its URB list has emptied, recycle this qh.
 | |
| 		 */
 | |
| 		if (ready && list_empty(&qh->hep->urb_list)) {
 | |
| 			qh->hep->hcpriv = NULL;
 | |
| 			list_del(&qh->ring);
 | |
| 			kfree(qh);
 | |
| 		}
 | |
| 	} else
 | |
| 		ret = musb_cleanup_urb(urb, qh);
 | |
| done:
 | |
| 	spin_unlock_irqrestore(&musb->lock, flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| /* disable an endpoint */
 | |
| static void
 | |
| musb_h_disable(struct usb_hcd *hcd, struct usb_host_endpoint *hep)
 | |
| {
 | |
| 	u8			is_in = hep->desc.bEndpointAddress & USB_DIR_IN;
 | |
| 	unsigned long		flags;
 | |
| 	struct musb		*musb = hcd_to_musb(hcd);
 | |
| 	struct musb_qh		*qh;
 | |
| 	struct urb		*urb;
 | |
| 
 | |
| 	spin_lock_irqsave(&musb->lock, flags);
 | |
| 
 | |
| 	qh = hep->hcpriv;
 | |
| 	if (qh == NULL)
 | |
| 		goto exit;
 | |
| 
 | |
| 	/* NOTE: qh is invalid unless !list_empty(&hep->urb_list) */
 | |
| 
 | |
| 	/* Kick the first URB off the hardware, if needed */
 | |
| 	qh->is_ready = 0;
 | |
| 	if (musb_ep_get_qh(qh->hw_ep, is_in) == qh) {
 | |
| 		urb = next_urb(qh);
 | |
| 
 | |
| 		/* make software (then hardware) stop ASAP */
 | |
| 		if (!urb->unlinked)
 | |
| 			urb->status = -ESHUTDOWN;
 | |
| 
 | |
| 		/* cleanup */
 | |
| 		musb_cleanup_urb(urb, qh);
 | |
| 
 | |
| 		/* Then nuke all the others ... and advance the
 | |
| 		 * queue on hw_ep (e.g. bulk ring) when we're done.
 | |
| 		 */
 | |
| 		while (!list_empty(&hep->urb_list)) {
 | |
| 			urb = next_urb(qh);
 | |
| 			urb->status = -ESHUTDOWN;
 | |
| 			musb_advance_schedule(musb, urb, qh->hw_ep, is_in);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Just empty the queue; the hardware is busy with
 | |
| 		 * other transfers, and since !qh->is_ready nothing
 | |
| 		 * will activate any of these as it advances.
 | |
| 		 */
 | |
| 		while (!list_empty(&hep->urb_list))
 | |
| 			musb_giveback(musb, next_urb(qh), -ESHUTDOWN);
 | |
| 
 | |
| 		hep->hcpriv = NULL;
 | |
| 		list_del(&qh->ring);
 | |
| 		kfree(qh);
 | |
| 	}
 | |
| exit:
 | |
| 	spin_unlock_irqrestore(&musb->lock, flags);
 | |
| }
 | |
| 
 | |
| static int musb_h_get_frame_number(struct usb_hcd *hcd)
 | |
| {
 | |
| 	struct musb	*musb = hcd_to_musb(hcd);
 | |
| 
 | |
| 	return musb_readw(musb->mregs, MUSB_FRAME);
 | |
| }
 | |
| 
 | |
| static int musb_h_start(struct usb_hcd *hcd)
 | |
| {
 | |
| 	struct musb	*musb = hcd_to_musb(hcd);
 | |
| 
 | |
| 	/* NOTE: musb_start() is called when the hub driver turns
 | |
| 	 * on port power, or when (OTG) peripheral starts.
 | |
| 	 */
 | |
| 	hcd->state = HC_STATE_RUNNING;
 | |
| 	musb->port1_status = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void musb_h_stop(struct usb_hcd *hcd)
 | |
| {
 | |
| 	musb_stop(hcd_to_musb(hcd));
 | |
| 	hcd->state = HC_STATE_HALT;
 | |
| }
 | |
| 
 | |
| static int musb_bus_suspend(struct usb_hcd *hcd)
 | |
| {
 | |
| 	struct musb	*musb = hcd_to_musb(hcd);
 | |
| 	u8		devctl;
 | |
| 
 | |
| 	if (!is_host_active(musb))
 | |
| 		return 0;
 | |
| 
 | |
| 	switch (musb->xceiv->state) {
 | |
| 	case OTG_STATE_A_SUSPEND:
 | |
| 		return 0;
 | |
| 	case OTG_STATE_A_WAIT_VRISE:
 | |
| 		/* ID could be grounded even if there's no device
 | |
| 		 * on the other end of the cable.  NOTE that the
 | |
| 		 * A_WAIT_VRISE timers are messy with MUSB...
 | |
| 		 */
 | |
| 		devctl = musb_readb(musb->mregs, MUSB_DEVCTL);
 | |
| 		if ((devctl & MUSB_DEVCTL_VBUS) == MUSB_DEVCTL_VBUS)
 | |
| 			musb->xceiv->state = OTG_STATE_A_WAIT_BCON;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (musb->is_active) {
 | |
| 		WARNING("trying to suspend as %s while active\n",
 | |
| 				otg_state_string(musb->xceiv->state));
 | |
| 		return -EBUSY;
 | |
| 	} else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| static int musb_bus_resume(struct usb_hcd *hcd)
 | |
| {
 | |
| 	/* resuming child port does the work */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| const struct hc_driver musb_hc_driver = {
 | |
| 	.description		= "musb-hcd",
 | |
| 	.product_desc		= "MUSB HDRC host driver",
 | |
| 	.hcd_priv_size		= sizeof(struct musb),
 | |
| 	.flags			= HCD_USB2 | HCD_MEMORY,
 | |
| 
 | |
| 	/* not using irq handler or reset hooks from usbcore, since
 | |
| 	 * those must be shared with peripheral code for OTG configs
 | |
| 	 */
 | |
| 
 | |
| 	.start			= musb_h_start,
 | |
| 	.stop			= musb_h_stop,
 | |
| 
 | |
| 	.get_frame_number	= musb_h_get_frame_number,
 | |
| 
 | |
| 	.urb_enqueue		= musb_urb_enqueue,
 | |
| 	.urb_dequeue		= musb_urb_dequeue,
 | |
| 	.endpoint_disable	= musb_h_disable,
 | |
| 
 | |
| 	.hub_status_data	= musb_hub_status_data,
 | |
| 	.hub_control		= musb_hub_control,
 | |
| 	.bus_suspend		= musb_bus_suspend,
 | |
| 	.bus_resume		= musb_bus_resume,
 | |
| 	/* .start_port_reset	= NULL, */
 | |
| 	/* .hub_irq_enable	= NULL, */
 | |
| };
 | |
| #endif
 |