523 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			523 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * (C) Copyright 2010
 | |
|  * Vipin Kumar, ST Microelectronics, vipin.kumar@st.com.
 | |
|  *
 | |
|  * (C) Copyright 2012
 | |
|  * Amit Virdi, ST Microelectronics, amit.virdi@st.com.
 | |
|  *
 | |
|  * SPDX-License-Identifier:	GPL-2.0+
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <nand.h>
 | |
| #include <asm/io.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/mtd/nand_ecc.h>
 | |
| #include <linux/mtd/fsmc_nand.h>
 | |
| #include <asm/arch/hardware.h>
 | |
| 
 | |
| static u32 fsmc_version;
 | |
| static struct fsmc_regs *const fsmc_regs_p = (struct fsmc_regs *)
 | |
| 	CONFIG_SYS_FSMC_BASE;
 | |
| 
 | |
| /*
 | |
|  * ECC4 and ECC1 have 13 bytes and 3 bytes of ecc respectively for 512 bytes of
 | |
|  * data. ECC4 can correct up to 8 bits in 512 bytes of data while ECC1 can
 | |
|  * correct 1 bit in 512 bytes
 | |
|  */
 | |
| 
 | |
| static struct nand_ecclayout fsmc_ecc4_lp_layout = {
 | |
| 	.eccbytes = 104,
 | |
| 	.eccpos = {  2,   3,   4,   5,   6,   7,   8,
 | |
| 		9,  10,  11,  12,  13,  14,
 | |
| 		18,  19,  20,  21,  22,  23,  24,
 | |
| 		25,  26,  27,  28,  29,  30,
 | |
| 		34,  35,  36,  37,  38,  39,  40,
 | |
| 		41,  42,  43,  44,  45,  46,
 | |
| 		50,  51,  52,  53,  54,  55,  56,
 | |
| 		57,  58,  59,  60,  61,  62,
 | |
| 		66,  67,  68,  69,  70,  71,  72,
 | |
| 		73,  74,  75,  76,  77,  78,
 | |
| 		82,  83,  84,  85,  86,  87,  88,
 | |
| 		89,  90,  91,  92,  93,  94,
 | |
| 		98,  99, 100, 101, 102, 103, 104,
 | |
| 		105, 106, 107, 108, 109, 110,
 | |
| 		114, 115, 116, 117, 118, 119, 120,
 | |
| 		121, 122, 123, 124, 125, 126
 | |
| 	},
 | |
| 	.oobfree = {
 | |
| 		{.offset = 15, .length = 3},
 | |
| 		{.offset = 31, .length = 3},
 | |
| 		{.offset = 47, .length = 3},
 | |
| 		{.offset = 63, .length = 3},
 | |
| 		{.offset = 79, .length = 3},
 | |
| 		{.offset = 95, .length = 3},
 | |
| 		{.offset = 111, .length = 3},
 | |
| 		{.offset = 127, .length = 1}
 | |
| 	}
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes
 | |
|  * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118
 | |
|  * bytes are free for use.
 | |
|  */
 | |
| static struct nand_ecclayout fsmc_ecc4_224_layout = {
 | |
| 	.eccbytes = 104,
 | |
| 	.eccpos = {  2,   3,   4,   5,   6,   7,   8,
 | |
| 		9,  10,  11,  12,  13,  14,
 | |
| 		18,  19,  20,  21,  22,  23,  24,
 | |
| 		25,  26,  27,  28,  29,  30,
 | |
| 		34,  35,  36,  37,  38,  39,  40,
 | |
| 		41,  42,  43,  44,  45,  46,
 | |
| 		50,  51,  52,  53,  54,  55,  56,
 | |
| 		57,  58,  59,  60,  61,  62,
 | |
| 		66,  67,  68,  69,  70,  71,  72,
 | |
| 		73,  74,  75,  76,  77,  78,
 | |
| 		82,  83,  84,  85,  86,  87,  88,
 | |
| 		89,  90,  91,  92,  93,  94,
 | |
| 		98,  99, 100, 101, 102, 103, 104,
 | |
| 		105, 106, 107, 108, 109, 110,
 | |
| 		114, 115, 116, 117, 118, 119, 120,
 | |
| 		121, 122, 123, 124, 125, 126
 | |
| 	},
 | |
| 	.oobfree = {
 | |
| 		{.offset = 15, .length = 3},
 | |
| 		{.offset = 31, .length = 3},
 | |
| 		{.offset = 47, .length = 3},
 | |
| 		{.offset = 63, .length = 3},
 | |
| 		{.offset = 79, .length = 3},
 | |
| 		{.offset = 95, .length = 3},
 | |
| 		{.offset = 111, .length = 3},
 | |
| 		{.offset = 127, .length = 97}
 | |
| 	}
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * ECC placement definitions in oobfree type format
 | |
|  * There are 13 bytes of ecc for every 512 byte block and it has to be read
 | |
|  * consecutively and immediately after the 512 byte data block for hardware to
 | |
|  * generate the error bit offsets in 512 byte data
 | |
|  * Managing the ecc bytes in the following way makes it easier for software to
 | |
|  * read ecc bytes consecutive to data bytes. This way is similar to
 | |
|  * oobfree structure maintained already in u-boot nand driver
 | |
|  */
 | |
| static struct fsmc_eccplace fsmc_eccpl_lp = {
 | |
| 	.eccplace = {
 | |
| 		{.offset = 2, .length = 13},
 | |
| 		{.offset = 18, .length = 13},
 | |
| 		{.offset = 34, .length = 13},
 | |
| 		{.offset = 50, .length = 13},
 | |
| 		{.offset = 66, .length = 13},
 | |
| 		{.offset = 82, .length = 13},
 | |
| 		{.offset = 98, .length = 13},
 | |
| 		{.offset = 114, .length = 13}
 | |
| 	}
 | |
| };
 | |
| 
 | |
| static struct nand_ecclayout fsmc_ecc4_sp_layout = {
 | |
| 	.eccbytes = 13,
 | |
| 	.eccpos = { 0,  1,  2,  3,  6,  7, 8,
 | |
| 		9, 10, 11, 12, 13, 14
 | |
| 	},
 | |
| 	.oobfree = {
 | |
| 		{.offset = 15, .length = 1},
 | |
| 	}
 | |
| };
 | |
| 
 | |
| static struct fsmc_eccplace fsmc_eccpl_sp = {
 | |
| 	.eccplace = {
 | |
| 		{.offset = 0, .length = 4},
 | |
| 		{.offset = 6, .length = 9}
 | |
| 	}
 | |
| };
 | |
| 
 | |
| static struct nand_ecclayout fsmc_ecc1_layout = {
 | |
| 	.eccbytes = 24,
 | |
| 	.eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
 | |
| 		66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
 | |
| 	.oobfree = {
 | |
| 		{.offset = 8, .length = 8},
 | |
| 		{.offset = 24, .length = 8},
 | |
| 		{.offset = 40, .length = 8},
 | |
| 		{.offset = 56, .length = 8},
 | |
| 		{.offset = 72, .length = 8},
 | |
| 		{.offset = 88, .length = 8},
 | |
| 		{.offset = 104, .length = 8},
 | |
| 		{.offset = 120, .length = 8}
 | |
| 	}
 | |
| };
 | |
| 
 | |
| /* Count the number of 0's in buff upto a max of max_bits */
 | |
| static int count_written_bits(uint8_t *buff, int size, int max_bits)
 | |
| {
 | |
| 	int k, written_bits = 0;
 | |
| 
 | |
| 	for (k = 0; k < size; k++) {
 | |
| 		written_bits += hweight8(~buff[k]);
 | |
| 		if (written_bits > max_bits)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return written_bits;
 | |
| }
 | |
| 
 | |
| static void fsmc_nand_hwcontrol(struct mtd_info *mtd, int cmd, uint ctrl)
 | |
| {
 | |
| 	struct nand_chip *this = mtd->priv;
 | |
| 	ulong IO_ADDR_W;
 | |
| 
 | |
| 	if (ctrl & NAND_CTRL_CHANGE) {
 | |
| 		IO_ADDR_W = (ulong)this->IO_ADDR_W;
 | |
| 
 | |
| 		IO_ADDR_W &= ~(CONFIG_SYS_NAND_CLE | CONFIG_SYS_NAND_ALE);
 | |
| 		if (ctrl & NAND_CLE)
 | |
| 			IO_ADDR_W |= CONFIG_SYS_NAND_CLE;
 | |
| 		if (ctrl & NAND_ALE)
 | |
| 			IO_ADDR_W |= CONFIG_SYS_NAND_ALE;
 | |
| 
 | |
| 		if (ctrl & NAND_NCE) {
 | |
| 			writel(readl(&fsmc_regs_p->pc) |
 | |
| 					FSMC_ENABLE, &fsmc_regs_p->pc);
 | |
| 		} else {
 | |
| 			writel(readl(&fsmc_regs_p->pc) &
 | |
| 					~FSMC_ENABLE, &fsmc_regs_p->pc);
 | |
| 		}
 | |
| 		this->IO_ADDR_W = (void *)IO_ADDR_W;
 | |
| 	}
 | |
| 
 | |
| 	if (cmd != NAND_CMD_NONE)
 | |
| 		writeb(cmd, this->IO_ADDR_W);
 | |
| }
 | |
| 
 | |
| static int fsmc_bch8_correct_data(struct mtd_info *mtd, u_char *dat,
 | |
| 		u_char *read_ecc, u_char *calc_ecc)
 | |
| {
 | |
| 	/* The calculated ecc is actually the correction index in data */
 | |
| 	u32 err_idx[8];
 | |
| 	u32 num_err, i;
 | |
| 	u32 ecc1, ecc2, ecc3, ecc4;
 | |
| 
 | |
| 	num_err = (readl(&fsmc_regs_p->sts) >> 10) & 0xF;
 | |
| 
 | |
| 	if (likely(num_err == 0))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(num_err > 8)) {
 | |
| 		/*
 | |
| 		 * This is a temporary erase check. A newly erased page read
 | |
| 		 * would result in an ecc error because the oob data is also
 | |
| 		 * erased to FF and the calculated ecc for an FF data is not
 | |
| 		 * FF..FF.
 | |
| 		 * This is a workaround to skip performing correction in case
 | |
| 		 * data is FF..FF
 | |
| 		 *
 | |
| 		 * Logic:
 | |
| 		 * For every page, each bit written as 0 is counted until these
 | |
| 		 * number of bits are greater than 8 (the maximum correction
 | |
| 		 * capability of FSMC for each 512 + 13 bytes)
 | |
| 		 */
 | |
| 
 | |
| 		int bits_ecc = count_written_bits(read_ecc, 13, 8);
 | |
| 		int bits_data = count_written_bits(dat, 512, 8);
 | |
| 
 | |
| 		if ((bits_ecc + bits_data) <= 8) {
 | |
| 			if (bits_data)
 | |
| 				memset(dat, 0xff, 512);
 | |
| 			return bits_data + bits_ecc;
 | |
| 		}
 | |
| 
 | |
| 		return -EBADMSG;
 | |
| 	}
 | |
| 
 | |
| 	ecc1 = readl(&fsmc_regs_p->ecc1);
 | |
| 	ecc2 = readl(&fsmc_regs_p->ecc2);
 | |
| 	ecc3 = readl(&fsmc_regs_p->ecc3);
 | |
| 	ecc4 = readl(&fsmc_regs_p->sts);
 | |
| 
 | |
| 	err_idx[0] = (ecc1 >> 0) & 0x1FFF;
 | |
| 	err_idx[1] = (ecc1 >> 13) & 0x1FFF;
 | |
| 	err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
 | |
| 	err_idx[3] = (ecc2 >> 7) & 0x1FFF;
 | |
| 	err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
 | |
| 	err_idx[5] = (ecc3 >> 1) & 0x1FFF;
 | |
| 	err_idx[6] = (ecc3 >> 14) & 0x1FFF;
 | |
| 	err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
 | |
| 
 | |
| 	i = 0;
 | |
| 	while (i < num_err) {
 | |
| 		err_idx[i] ^= 3;
 | |
| 
 | |
| 		if (err_idx[i] < 512 * 8)
 | |
| 			__change_bit(err_idx[i], dat);
 | |
| 
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	return num_err;
 | |
| }
 | |
| 
 | |
| static int fsmc_read_hwecc(struct mtd_info *mtd,
 | |
| 			const u_char *data, u_char *ecc)
 | |
| {
 | |
| 	u_int ecc_tmp;
 | |
| 	int timeout = CONFIG_SYS_HZ;
 | |
| 	ulong start;
 | |
| 
 | |
| 	switch (fsmc_version) {
 | |
| 	case FSMC_VER8:
 | |
| 		start = get_timer(0);
 | |
| 		while (get_timer(start) < timeout) {
 | |
| 			/*
 | |
| 			 * Busy waiting for ecc computation
 | |
| 			 * to finish for 512 bytes
 | |
| 			 */
 | |
| 			if (readl(&fsmc_regs_p->sts) & FSMC_CODE_RDY)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		ecc_tmp = readl(&fsmc_regs_p->ecc1);
 | |
| 		ecc[0] = (u_char) (ecc_tmp >> 0);
 | |
| 		ecc[1] = (u_char) (ecc_tmp >> 8);
 | |
| 		ecc[2] = (u_char) (ecc_tmp >> 16);
 | |
| 		ecc[3] = (u_char) (ecc_tmp >> 24);
 | |
| 
 | |
| 		ecc_tmp = readl(&fsmc_regs_p->ecc2);
 | |
| 		ecc[4] = (u_char) (ecc_tmp >> 0);
 | |
| 		ecc[5] = (u_char) (ecc_tmp >> 8);
 | |
| 		ecc[6] = (u_char) (ecc_tmp >> 16);
 | |
| 		ecc[7] = (u_char) (ecc_tmp >> 24);
 | |
| 
 | |
| 		ecc_tmp = readl(&fsmc_regs_p->ecc3);
 | |
| 		ecc[8] = (u_char) (ecc_tmp >> 0);
 | |
| 		ecc[9] = (u_char) (ecc_tmp >> 8);
 | |
| 		ecc[10] = (u_char) (ecc_tmp >> 16);
 | |
| 		ecc[11] = (u_char) (ecc_tmp >> 24);
 | |
| 
 | |
| 		ecc_tmp = readl(&fsmc_regs_p->sts);
 | |
| 		ecc[12] = (u_char) (ecc_tmp >> 16);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		ecc_tmp = readl(&fsmc_regs_p->ecc1);
 | |
| 		ecc[0] = (u_char) (ecc_tmp >> 0);
 | |
| 		ecc[1] = (u_char) (ecc_tmp >> 8);
 | |
| 		ecc[2] = (u_char) (ecc_tmp >> 16);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
 | |
| {
 | |
| 	writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCPLEN_256,
 | |
| 			&fsmc_regs_p->pc);
 | |
| 	writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCEN,
 | |
| 			&fsmc_regs_p->pc);
 | |
| 	writel(readl(&fsmc_regs_p->pc) | FSMC_ECCEN,
 | |
| 			&fsmc_regs_p->pc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * fsmc_read_page_hwecc
 | |
|  * @mtd:	mtd info structure
 | |
|  * @chip:	nand chip info structure
 | |
|  * @buf:	buffer to store read data
 | |
|  * @oob_required:	caller expects OOB data read to chip->oob_poi
 | |
|  * @page:	page number to read
 | |
|  *
 | |
|  * This routine is needed for fsmc verison 8 as reading from NAND chip has to be
 | |
|  * performed in a strict sequence as follows:
 | |
|  * data(512 byte) -> ecc(13 byte)
 | |
|  * After this read, fsmc hardware generates and reports error data bits(upto a
 | |
|  * max of 8 bits)
 | |
|  */
 | |
| static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
 | |
| 				 uint8_t *buf, int oob_required, int page)
 | |
| {
 | |
| 	struct fsmc_eccplace *fsmc_eccpl;
 | |
| 	int i, j, s, stat, eccsize = chip->ecc.size;
 | |
| 	int eccbytes = chip->ecc.bytes;
 | |
| 	int eccsteps = chip->ecc.steps;
 | |
| 	uint8_t *p = buf;
 | |
| 	uint8_t *ecc_calc = chip->buffers->ecccalc;
 | |
| 	uint8_t *ecc_code = chip->buffers->ecccode;
 | |
| 	int off, len, group = 0;
 | |
| 	uint8_t oob[13] __attribute__ ((aligned (2)));
 | |
| 
 | |
| 	/* Differentiate between small and large page ecc place definitions */
 | |
| 	if (mtd->writesize == 512)
 | |
| 		fsmc_eccpl = &fsmc_eccpl_sp;
 | |
| 	else
 | |
| 		fsmc_eccpl = &fsmc_eccpl_lp;
 | |
| 
 | |
| 	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
 | |
| 
 | |
| 		chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
 | |
| 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
 | |
| 		chip->read_buf(mtd, p, eccsize);
 | |
| 
 | |
| 		for (j = 0; j < eccbytes;) {
 | |
| 			off = fsmc_eccpl->eccplace[group].offset;
 | |
| 			len = fsmc_eccpl->eccplace[group].length;
 | |
| 			group++;
 | |
| 
 | |
| 			/*
 | |
| 			 * length is intentionally kept a higher multiple of 2
 | |
| 			 * to read at least 13 bytes even in case of 16 bit NAND
 | |
| 			 * devices
 | |
| 			 */
 | |
| 			if (chip->options & NAND_BUSWIDTH_16)
 | |
| 				len = roundup(len, 2);
 | |
| 			chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
 | |
| 			chip->read_buf(mtd, oob + j, len);
 | |
| 			j += len;
 | |
| 		}
 | |
| 
 | |
| 		memcpy(&ecc_code[i], oob, 13);
 | |
| 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
 | |
| 
 | |
| 		stat = chip->ecc.correct(mtd, p, &ecc_code[i],
 | |
| 				&ecc_calc[i]);
 | |
| 		if (stat < 0)
 | |
| 			mtd->ecc_stats.failed++;
 | |
| 		else
 | |
| 			mtd->ecc_stats.corrected += stat;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SPL_BUILD
 | |
| /*
 | |
|  * fsmc_nand_switch_ecc - switch the ECC operation between different engines
 | |
|  *
 | |
|  * @eccstrength		- the number of bits that could be corrected
 | |
|  *			  (1 - HW, 4 - SW BCH4)
 | |
|  */
 | |
| int fsmc_nand_switch_ecc(uint32_t eccstrength)
 | |
| {
 | |
| 	struct nand_chip *nand;
 | |
| 	struct mtd_info *mtd;
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * This functions is only called on SPEAr600 platforms, supporting
 | |
| 	 * 1 bit HW ECC. The BCH8 HW ECC (FSMC_VER8) from the ST-Ericsson
 | |
| 	 * Nomadik SoC is currently supporting this fsmc_nand_switch_ecc()
 | |
| 	 * function, as it doesn't need to switch to a different ECC layout.
 | |
| 	 */
 | |
| 	mtd = &nand_info[nand_curr_device];
 | |
| 	nand = mtd->priv;
 | |
| 
 | |
| 	/* Setup the ecc configurations again */
 | |
| 	if (eccstrength == 1) {
 | |
| 		nand->ecc.mode = NAND_ECC_HW;
 | |
| 		nand->ecc.bytes = 3;
 | |
| 		nand->ecc.strength = 1;
 | |
| 		nand->ecc.layout = &fsmc_ecc1_layout;
 | |
| 		nand->ecc.calculate = fsmc_read_hwecc;
 | |
| 		nand->ecc.correct = nand_correct_data;
 | |
| 	} else if (eccstrength == 4) {
 | |
| 		/*
 | |
| 		 * .calculate .correct and .bytes will be set in
 | |
| 		 * nand_scan_tail()
 | |
| 		 */
 | |
| 		nand->ecc.mode = NAND_ECC_SOFT_BCH;
 | |
| 		nand->ecc.strength = 4;
 | |
| 		nand->ecc.layout = NULL;
 | |
| 	} else {
 | |
| 		printf("Error: ECC strength %d not supported!\n", eccstrength);
 | |
| 	}
 | |
| 
 | |
| 	/* Update NAND handling after ECC mode switch */
 | |
| 	err = nand_scan_tail(mtd);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| #endif /* CONFIG_SPL_BUILD */
 | |
| 
 | |
| int fsmc_nand_init(struct nand_chip *nand)
 | |
| {
 | |
| 	static int chip_nr;
 | |
| 	struct mtd_info *mtd;
 | |
| 	int i;
 | |
| 	u32 peripid2 = readl(&fsmc_regs_p->peripid2);
 | |
| 
 | |
| 	fsmc_version = (peripid2 >> FSMC_REVISION_SHFT) &
 | |
| 		FSMC_REVISION_MSK;
 | |
| 
 | |
| 	writel(readl(&fsmc_regs_p->ctrl) | FSMC_WP, &fsmc_regs_p->ctrl);
 | |
| 
 | |
| #if defined(CONFIG_SYS_FSMC_NAND_16BIT)
 | |
| 	writel(FSMC_DEVWID_16 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON,
 | |
| 			&fsmc_regs_p->pc);
 | |
| #elif defined(CONFIG_SYS_FSMC_NAND_8BIT)
 | |
| 	writel(FSMC_DEVWID_8 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON,
 | |
| 			&fsmc_regs_p->pc);
 | |
| #else
 | |
| #error Please define CONFIG_SYS_FSMC_NAND_16BIT or CONFIG_SYS_FSMC_NAND_8BIT
 | |
| #endif
 | |
| 	writel(readl(&fsmc_regs_p->pc) | FSMC_TCLR_1 | FSMC_TAR_1,
 | |
| 			&fsmc_regs_p->pc);
 | |
| 	writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
 | |
| 			&fsmc_regs_p->comm);
 | |
| 	writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
 | |
| 			&fsmc_regs_p->attrib);
 | |
| 
 | |
| 	nand->options = 0;
 | |
| #if defined(CONFIG_SYS_FSMC_NAND_16BIT)
 | |
| 	nand->options |= NAND_BUSWIDTH_16;
 | |
| #endif
 | |
| 	nand->ecc.mode = NAND_ECC_HW;
 | |
| 	nand->ecc.size = 512;
 | |
| 	nand->ecc.calculate = fsmc_read_hwecc;
 | |
| 	nand->ecc.hwctl = fsmc_enable_hwecc;
 | |
| 	nand->cmd_ctrl = fsmc_nand_hwcontrol;
 | |
| 	nand->IO_ADDR_R = nand->IO_ADDR_W =
 | |
| 		(void  __iomem *)CONFIG_SYS_NAND_BASE;
 | |
| 	nand->badblockbits = 7;
 | |
| 
 | |
| 	mtd = &nand_info[chip_nr++];
 | |
| 	mtd->priv = nand;
 | |
| 
 | |
| 	switch (fsmc_version) {
 | |
| 	case FSMC_VER8:
 | |
| 		nand->ecc.bytes = 13;
 | |
| 		nand->ecc.strength = 8;
 | |
| 		nand->ecc.correct = fsmc_bch8_correct_data;
 | |
| 		nand->ecc.read_page = fsmc_read_page_hwecc;
 | |
| 		if (mtd->writesize == 512)
 | |
| 			nand->ecc.layout = &fsmc_ecc4_sp_layout;
 | |
| 		else {
 | |
| 			if (mtd->oobsize == 224)
 | |
| 				nand->ecc.layout = &fsmc_ecc4_224_layout;
 | |
| 			else
 | |
| 				nand->ecc.layout = &fsmc_ecc4_lp_layout;
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 	default:
 | |
| 		nand->ecc.bytes = 3;
 | |
| 		nand->ecc.strength = 1;
 | |
| 		nand->ecc.layout = &fsmc_ecc1_layout;
 | |
| 		nand->ecc.correct = nand_correct_data;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Detect NAND chips */
 | |
| 	if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL))
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	if (nand_scan_tail(mtd))
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
 | |
| 		if (nand_register(i))
 | |
| 			return -ENXIO;
 | |
| 
 | |
| 	return 0;
 | |
| }
 |