259 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			259 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Platform independend driver for JZ4740.
 | |
|  *
 | |
|  * Copyright (c) 2007 Ingenic Semiconductor Inc.
 | |
|  * Author: <jlwei@ingenic.cn>
 | |
|  *
 | |
|  * SPDX-License-Identifier:	GPL-2.0+
 | |
|  */
 | |
| #include <common.h>
 | |
| 
 | |
| #include <nand.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/jz4740.h>
 | |
| 
 | |
| #define JZ_NAND_DATA_ADDR ((void __iomem *)0xB8000000)
 | |
| #define JZ_NAND_CMD_ADDR (JZ_NAND_DATA_ADDR + 0x8000)
 | |
| #define JZ_NAND_ADDR_ADDR (JZ_NAND_DATA_ADDR + 0x10000)
 | |
| 
 | |
| #define JZ_NAND_ECC_CTRL_ENCODING	BIT(3)
 | |
| #define JZ_NAND_ECC_CTRL_RS		BIT(2)
 | |
| #define JZ_NAND_ECC_CTRL_RESET		BIT(1)
 | |
| #define JZ_NAND_ECC_CTRL_ENABLE		BIT(0)
 | |
| 
 | |
| #define EMC_SMCR1_OPT_NAND	0x094c4400
 | |
| /* Optimize the timing of nand */
 | |
| 
 | |
| static struct jz4740_emc * emc = (struct jz4740_emc *)JZ4740_EMC_BASE;
 | |
| 
 | |
| static struct nand_ecclayout qi_lb60_ecclayout_2gb = {
 | |
| 	.eccbytes = 72,
 | |
| 	.eccpos = {
 | |
| 		12, 13, 14, 15, 16, 17, 18, 19,
 | |
| 		20, 21, 22, 23, 24, 25, 26, 27,
 | |
| 		28, 29, 30, 31, 32, 33, 34, 35,
 | |
| 		36, 37, 38, 39, 40, 41, 42, 43,
 | |
| 		44, 45, 46, 47, 48, 49, 50, 51,
 | |
| 		52, 53, 54, 55, 56, 57, 58, 59,
 | |
| 		60, 61, 62, 63, 64, 65, 66, 67,
 | |
| 		68, 69, 70, 71, 72, 73, 74, 75,
 | |
| 		76, 77, 78, 79, 80, 81, 82, 83 },
 | |
| 	.oobfree = {
 | |
| 		{.offset = 2,
 | |
| 		 .length = 10 },
 | |
| 		{.offset = 84,
 | |
| 		 .length = 44 } }
 | |
| };
 | |
| 
 | |
| static int is_reading;
 | |
| 
 | |
| static void jz_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
 | |
| {
 | |
| 	struct nand_chip *this = mtd->priv;
 | |
| 	uint32_t reg;
 | |
| 
 | |
| 	if (ctrl & NAND_CTRL_CHANGE) {
 | |
| 		if (ctrl & NAND_ALE)
 | |
| 			this->IO_ADDR_W = JZ_NAND_ADDR_ADDR;
 | |
| 		else if (ctrl & NAND_CLE)
 | |
| 			this->IO_ADDR_W = JZ_NAND_CMD_ADDR;
 | |
| 		else
 | |
| 			this->IO_ADDR_W = JZ_NAND_DATA_ADDR;
 | |
| 
 | |
| 		reg = readl(&emc->nfcsr);
 | |
| 		if (ctrl & NAND_NCE)
 | |
| 			reg |= EMC_NFCSR_NFCE1;
 | |
| 		else
 | |
| 			reg &= ~EMC_NFCSR_NFCE1;
 | |
| 		writel(reg, &emc->nfcsr);
 | |
| 	}
 | |
| 
 | |
| 	if (cmd != NAND_CMD_NONE)
 | |
| 		writeb(cmd, this->IO_ADDR_W);
 | |
| }
 | |
| 
 | |
| static int jz_nand_device_ready(struct mtd_info *mtd)
 | |
| {
 | |
| 	return (readl(GPIO_PXPIN(2)) & 0x40000000) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| void board_nand_select_device(struct nand_chip *nand, int chip)
 | |
| {
 | |
| 	/*
 | |
| 	 * Don't use "chip" to address the NAND device,
 | |
| 	 * generate the cs from the address where it is encoded.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| static int jz_nand_rs_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 | |
| 				u_char *ecc_code)
 | |
| {
 | |
| 	uint32_t status;
 | |
| 	int i;
 | |
| 
 | |
| 	if (is_reading)
 | |
| 		return 0;
 | |
| 
 | |
| 	do {
 | |
| 		status = readl(&emc->nfints);
 | |
| 	} while (!(status & EMC_NFINTS_ENCF));
 | |
| 
 | |
| 	/* disable ecc */
 | |
| 	writel(readl(&emc->nfecr) & ~EMC_NFECR_ECCE, &emc->nfecr);
 | |
| 
 | |
| 	for (i = 0; i < 9; i++)
 | |
| 		ecc_code[i] = readb(&emc->nfpar[i]);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void jz_nand_hwctl(struct mtd_info *mtd, int mode)
 | |
| {
 | |
| 	uint32_t reg;
 | |
| 
 | |
| 	writel(0, &emc->nfints);
 | |
| 	reg = readl(&emc->nfecr);
 | |
| 	reg |= JZ_NAND_ECC_CTRL_RESET;
 | |
| 	reg |= JZ_NAND_ECC_CTRL_ENABLE;
 | |
| 	reg |= JZ_NAND_ECC_CTRL_RS;
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case NAND_ECC_READ:
 | |
| 		reg &= ~JZ_NAND_ECC_CTRL_ENCODING;
 | |
| 		is_reading = 1;
 | |
| 		break;
 | |
| 	case NAND_ECC_WRITE:
 | |
| 		reg |= JZ_NAND_ECC_CTRL_ENCODING;
 | |
| 		is_reading = 0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	writel(reg, &emc->nfecr);
 | |
| }
 | |
| 
 | |
| /* Correct 1~9-bit errors in 512-bytes data */
 | |
| static void jz_rs_correct(unsigned char *dat, int idx, int mask)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	idx--;
 | |
| 
 | |
| 	i = idx + (idx >> 3);
 | |
| 	if (i >= 512)
 | |
| 		return;
 | |
| 
 | |
| 	mask <<= (idx & 0x7);
 | |
| 
 | |
| 	dat[i] ^= mask & 0xff;
 | |
| 	if (i < 511)
 | |
| 		dat[i + 1] ^= (mask >> 8) & 0xff;
 | |
| }
 | |
| 
 | |
| static int jz_nand_rs_correct_data(struct mtd_info *mtd, u_char *dat,
 | |
| 				   u_char *read_ecc, u_char *calc_ecc)
 | |
| {
 | |
| 	int k;
 | |
| 	uint32_t errcnt, index, mask, status;
 | |
| 
 | |
| 	/* Set PAR values */
 | |
| 	const uint8_t all_ff_ecc[] = {
 | |
| 		0xcd, 0x9d, 0x90, 0x58, 0xf4, 0x8b, 0xff, 0xb7, 0x6f };
 | |
| 
 | |
| 	if (read_ecc[0] == 0xff && read_ecc[1] == 0xff &&
 | |
| 	    read_ecc[2] == 0xff && read_ecc[3] == 0xff &&
 | |
| 	    read_ecc[4] == 0xff && read_ecc[5] == 0xff &&
 | |
| 	    read_ecc[6] == 0xff && read_ecc[7] == 0xff &&
 | |
| 	    read_ecc[8] == 0xff) {
 | |
| 		for (k = 0; k < 9; k++)
 | |
| 			writeb(all_ff_ecc[k], &emc->nfpar[k]);
 | |
| 	} else {
 | |
| 		for (k = 0; k < 9; k++)
 | |
| 			writeb(read_ecc[k], &emc->nfpar[k]);
 | |
| 	}
 | |
| 	/* Set PRDY */
 | |
| 	writel(readl(&emc->nfecr) | EMC_NFECR_PRDY, &emc->nfecr);
 | |
| 
 | |
| 	/* Wait for completion */
 | |
| 	do {
 | |
| 		status = readl(&emc->nfints);
 | |
| 	} while (!(status & EMC_NFINTS_DECF));
 | |
| 
 | |
| 	/* disable ecc */
 | |
| 	writel(readl(&emc->nfecr) & ~EMC_NFECR_ECCE, &emc->nfecr);
 | |
| 
 | |
| 	/* Check decoding */
 | |
| 	if (!(status & EMC_NFINTS_ERR))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (status & EMC_NFINTS_UNCOR) {
 | |
| 		printf("uncorrectable ecc\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	errcnt = (status & EMC_NFINTS_ERRCNT_MASK) >> EMC_NFINTS_ERRCNT_BIT;
 | |
| 
 | |
| 	switch (errcnt) {
 | |
| 	case 4:
 | |
| 		index = (readl(&emc->nferr[3]) & EMC_NFERR_INDEX_MASK) >>
 | |
| 			EMC_NFERR_INDEX_BIT;
 | |
| 		mask = (readl(&emc->nferr[3]) & EMC_NFERR_MASK_MASK) >>
 | |
| 			EMC_NFERR_MASK_BIT;
 | |
| 		jz_rs_correct(dat, index, mask);
 | |
| 	case 3:
 | |
| 		index = (readl(&emc->nferr[2]) & EMC_NFERR_INDEX_MASK) >>
 | |
| 			EMC_NFERR_INDEX_BIT;
 | |
| 		mask = (readl(&emc->nferr[2]) & EMC_NFERR_MASK_MASK) >>
 | |
| 			EMC_NFERR_MASK_BIT;
 | |
| 		jz_rs_correct(dat, index, mask);
 | |
| 	case 2:
 | |
| 		index = (readl(&emc->nferr[1]) & EMC_NFERR_INDEX_MASK) >>
 | |
| 			EMC_NFERR_INDEX_BIT;
 | |
| 		mask = (readl(&emc->nferr[1]) & EMC_NFERR_MASK_MASK) >>
 | |
| 			EMC_NFERR_MASK_BIT;
 | |
| 		jz_rs_correct(dat, index, mask);
 | |
| 	case 1:
 | |
| 		index = (readl(&emc->nferr[0]) & EMC_NFERR_INDEX_MASK) >>
 | |
| 			EMC_NFERR_INDEX_BIT;
 | |
| 		mask = (readl(&emc->nferr[0]) & EMC_NFERR_MASK_MASK) >>
 | |
| 			EMC_NFERR_MASK_BIT;
 | |
| 		jz_rs_correct(dat, index, mask);
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return errcnt;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Main initialization routine
 | |
|  */
 | |
| int board_nand_init(struct nand_chip *nand)
 | |
| {
 | |
| 	uint32_t reg;
 | |
| 
 | |
| 	reg = readl(&emc->nfcsr);
 | |
| 	reg |= EMC_NFCSR_NFE1;	/* EMC setup, Set NFE bit */
 | |
| 	writel(reg, &emc->nfcsr);
 | |
| 
 | |
| 	writel(EMC_SMCR1_OPT_NAND, &emc->smcr[1]);
 | |
| 
 | |
| 	nand->IO_ADDR_R		= JZ_NAND_DATA_ADDR;
 | |
| 	nand->IO_ADDR_W		= JZ_NAND_DATA_ADDR;
 | |
| 	nand->cmd_ctrl		= jz_nand_cmd_ctrl;
 | |
| 	nand->dev_ready		= jz_nand_device_ready;
 | |
| 	nand->ecc.hwctl		= jz_nand_hwctl;
 | |
| 	nand->ecc.correct	= jz_nand_rs_correct_data;
 | |
| 	nand->ecc.calculate	= jz_nand_rs_calculate_ecc;
 | |
| 	nand->ecc.mode		= NAND_ECC_HW_OOB_FIRST;
 | |
| 	nand->ecc.size		= CONFIG_SYS_NAND_ECCSIZE;
 | |
| 	nand->ecc.bytes		= CONFIG_SYS_NAND_ECCBYTES;
 | |
| 	nand->ecc.strength	= 4;
 | |
| 	nand->ecc.layout	= &qi_lb60_ecclayout_2gb;
 | |
| 	nand->chip_delay	= 50;
 | |
| 	nand->bbt_options	|= NAND_BBT_USE_FLASH;
 | |
| 
 | |
| 	return 0;
 | |
| }
 |