2259 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			2259 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
| // SPDX-License-Identifier:    GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2018 Marvell International Ltd.
 | |
|  */
 | |
| 
 | |
| #include <dm.h>
 | |
| #include <dm/device-internal.h>
 | |
| #include <dm/devres.h>
 | |
| #include <dm/of_access.h>
 | |
| #include <malloc.h>
 | |
| #include <memalign.h>
 | |
| #include <nand.h>
 | |
| #include <pci.h>
 | |
| #include <time.h>
 | |
| #include <linux/bitfield.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/libfdt.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/mtd/nand_bch.h>
 | |
| #include <linux/mtd/nand_ecc.h>
 | |
| #include <asm/global_data.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/types.h>
 | |
| #include <asm/dma-mapping.h>
 | |
| #include <asm/arch/clock.h>
 | |
| #include "octeontx_bch.h"
 | |
| 
 | |
| #ifdef DEBUG
 | |
| # undef CONFIG_LOGLEVEL
 | |
| # define CONFIG_LOGLEVEL 8
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * The NDF_CMD queue takes commands between 16 - 128 bit.
 | |
|  * All commands must be 16 bit aligned and are little endian.
 | |
|  * WAIT_STATUS commands must be 64 bit aligned.
 | |
|  * Commands are selected by the 4 bit opcode.
 | |
|  *
 | |
|  * Available Commands:
 | |
|  *
 | |
|  * 16 Bit:
 | |
|  *   NOP
 | |
|  *   WAIT
 | |
|  *   BUS_ACQ, BUS_REL
 | |
|  *   CHIP_EN, CHIP_DIS
 | |
|  *
 | |
|  * 32 Bit:
 | |
|  *   CLE_CMD
 | |
|  *   RD_CMD, RD_EDO_CMD
 | |
|  *   WR_CMD
 | |
|  *
 | |
|  * 64 Bit:
 | |
|  *   SET_TM_PAR
 | |
|  *
 | |
|  * 96 Bit:
 | |
|  *   ALE_CMD
 | |
|  *
 | |
|  * 128 Bit:
 | |
|  *   WAIT_STATUS, WAIT_STATUS_ALE
 | |
|  */
 | |
| 
 | |
| /* NDF Register offsets */
 | |
| #define NDF_CMD			0x0
 | |
| #define NDF_MISC		0x8
 | |
| #define NDF_ECC_CNT		0x10
 | |
| #define NDF_DRBELL		0x30
 | |
| #define NDF_ST_REG		0x38	/* status */
 | |
| #define NDF_INT			0x40
 | |
| #define NDF_INT_W1S		0x48
 | |
| #define NDF_DMA_CFG		0x50
 | |
| #define NDF_DMA_ADR		0x58
 | |
| #define NDF_INT_ENA_W1C		0x60
 | |
| #define NDF_INT_ENA_W1S		0x68
 | |
| 
 | |
| /* NDF command opcodes */
 | |
| #define NDF_OP_NOP		0x0
 | |
| #define NDF_OP_SET_TM_PAR	0x1
 | |
| #define NDF_OP_WAIT		0x2
 | |
| #define NDF_OP_CHIP_EN_DIS	0x3
 | |
| #define NDF_OP_CLE_CMD		0x4
 | |
| #define NDF_OP_ALE_CMD		0x5
 | |
| #define NDF_OP_WR_CMD		0x8
 | |
| #define NDF_OP_RD_CMD		0x9
 | |
| #define NDF_OP_RD_EDO_CMD	0xa
 | |
| #define NDF_OP_WAIT_STATUS	0xb	/* same opcode for WAIT_STATUS_ALE */
 | |
| #define NDF_OP_BUS_ACQ_REL	0xf
 | |
| 
 | |
| #define NDF_BUS_ACQUIRE		1
 | |
| #define NDF_BUS_RELEASE		0
 | |
| 
 | |
| #define DBGX_EDSCR(X)		(0x87A008000088 + (X) * 0x80000)
 | |
| 
 | |
| struct ndf_nop_cmd {
 | |
| 	u16 opcode:	4;
 | |
| 	u16 nop:	12;
 | |
| };
 | |
| 
 | |
| struct ndf_wait_cmd {
 | |
| 	u16 opcode:4;
 | |
| 	u16 r_b:1;		/* wait for one cycle or PBUS_WAIT deassert */
 | |
| 	u16:3;
 | |
| 	u16 wlen:3;		/* timing parameter select */
 | |
| 	u16:5;
 | |
| };
 | |
| 
 | |
| struct ndf_bus_cmd {
 | |
| 	u16 opcode:4;
 | |
| 	u16 direction:4;	/* 1 = acquire, 0 = release */
 | |
| 	u16:8;
 | |
| };
 | |
| 
 | |
| struct ndf_chip_cmd {
 | |
| 	u16 opcode:4;
 | |
| 	u16 chip:3;		/* select chip, 0 = disable */
 | |
| 	u16 enable:1;		/* 1 = enable, 0 = disable */
 | |
| 	u16 bus_width:2;	/* 10 = 16 bit, 01 = 8 bit */
 | |
| 	u16:6;
 | |
| };
 | |
| 
 | |
| struct ndf_cle_cmd {
 | |
| 	u32 opcode:4;
 | |
| 	u32:4;
 | |
| 	u32 cmd_data:8;		/* command sent to the PBUS AD pins */
 | |
| 	u32 clen1:3;		/* time between PBUS CLE and WE asserts */
 | |
| 	u32 clen2:3;		/* time WE remains asserted */
 | |
| 	u32 clen3:3;		/* time between WE deassert and CLE */
 | |
| 	u32:7;
 | |
| };
 | |
| 
 | |
| /* RD_EDO_CMD uses the same layout as RD_CMD */
 | |
| struct ndf_rd_cmd {
 | |
| 	u32 opcode:4;
 | |
| 	u32 data:16;		/* data bytes */
 | |
| 	u32 rlen1:3;
 | |
| 	u32 rlen2:3;
 | |
| 	u32 rlen3:3;
 | |
| 	u32 rlen4:3;
 | |
| };
 | |
| 
 | |
| struct ndf_wr_cmd {
 | |
| 	u32 opcode:4;
 | |
| 	u32 data:16;		/* data bytes */
 | |
| 	u32:4;
 | |
| 	u32 wlen1:3;
 | |
| 	u32 wlen2:3;
 | |
| 	u32:3;
 | |
| };
 | |
| 
 | |
| struct ndf_set_tm_par_cmd {
 | |
| 	u64 opcode:4;
 | |
| 	u64 tim_mult:4;	/* multiplier for the seven parameters */
 | |
| 	u64 tm_par1:8;	/* --> Following are the 7 timing parameters that */
 | |
| 	u64 tm_par2:8;	/*     specify the number of coprocessor cycles.  */
 | |
| 	u64 tm_par3:8;	/*     A value of zero means one cycle.		  */
 | |
| 	u64 tm_par4:8;	/*     All values are scaled by tim_mult	  */
 | |
| 	u64 tm_par5:8;	/*     using tim_par * (2 ^ tim_mult).		  */
 | |
| 	u64 tm_par6:8;
 | |
| 	u64 tm_par7:8;
 | |
| };
 | |
| 
 | |
| struct ndf_ale_cmd {
 | |
| 	u32 opcode:4;
 | |
| 	u32:4;
 | |
| 	u32 adr_byte_num:4;	/* number of address bytes to be sent */
 | |
| 	u32:4;
 | |
| 	u32 alen1:3;
 | |
| 	u32 alen2:3;
 | |
| 	u32 alen3:3;
 | |
| 	u32 alen4:3;
 | |
| 	u32:4;
 | |
| 	u8 adr_byt1;
 | |
| 	u8 adr_byt2;
 | |
| 	u8 adr_byt3;
 | |
| 	u8 adr_byt4;
 | |
| 	u8 adr_byt5;
 | |
| 	u8 adr_byt6;
 | |
| 	u8 adr_byt7;
 | |
| 	u8 adr_byt8;
 | |
| };
 | |
| 
 | |
| struct ndf_wait_status_cmd {
 | |
| 	u32 opcode:4;
 | |
| 	u32:4;
 | |
| 	u32 data:8;		/** data */
 | |
| 	u32 clen1:3;
 | |
| 	u32 clen2:3;
 | |
| 	u32 clen3:3;
 | |
| 	u32:8;
 | |
| 	/** set to 5 to select WAIT_STATUS_ALE command */
 | |
| 	u32 ale_ind:8;
 | |
| 	/** ALE only: number of address bytes to be sent */
 | |
| 	u32 adr_byte_num:4;
 | |
| 	u32:4;
 | |
| 	u32 alen1:3;	/* ALE only */
 | |
| 	u32 alen2:3;	/* ALE only */
 | |
| 	u32 alen3:3;	/* ALE only */
 | |
| 	u32 alen4:3;	/* ALE only */
 | |
| 	u32:4;
 | |
| 	u8 adr_byt[4];		/* ALE only */
 | |
| 	u32 nine:4;	/* set to 9 */
 | |
| 	u32 and_mask:8;
 | |
| 	u32 comp_byte:8;
 | |
| 	u32 rlen1:3;
 | |
| 	u32 rlen2:3;
 | |
| 	u32 rlen3:3;
 | |
| 	u32 rlen4:3;
 | |
| };
 | |
| 
 | |
| union ndf_cmd {
 | |
| 	u64 val[2];
 | |
| 	union {
 | |
| 		struct ndf_nop_cmd		nop;
 | |
| 		struct ndf_wait_cmd		wait;
 | |
| 		struct ndf_bus_cmd		bus_acq_rel;
 | |
| 		struct ndf_chip_cmd		chip_en_dis;
 | |
| 		struct ndf_cle_cmd		cle_cmd;
 | |
| 		struct ndf_rd_cmd		rd_cmd;
 | |
| 		struct ndf_wr_cmd		wr_cmd;
 | |
| 		struct ndf_set_tm_par_cmd	set_tm_par;
 | |
| 		struct ndf_ale_cmd		ale_cmd;
 | |
| 		struct ndf_wait_status_cmd	wait_status;
 | |
| 	} u;
 | |
| };
 | |
| 
 | |
| /** Disable multi-bit error hangs */
 | |
| #define NDF_MISC_MB_DIS		BIT_ULL(27)
 | |
| /** High watermark for NBR FIFO or load/store operations */
 | |
| #define NDF_MISC_NBR_HWM	GENMASK_ULL(26, 24)
 | |
| /** Wait input filter count */
 | |
| #define NDF_MISC_WAIT_CNT	GENMASK_ULL(23, 18)
 | |
| /** Unfilled NFD_CMD queue bytes */
 | |
| #define NDF_MISC_FR_BYTE	GENMASK_ULL(17, 7)
 | |
| /** Set by HW when it reads the last 8 bytes of NDF_CMD */
 | |
| #define NDF_MISC_RD_DONE	BIT_ULL(6)
 | |
| /** Set by HW when it reads. SW read of NDF_CMD clears it */
 | |
| #define NDF_MISC_RD_VAL		BIT_ULL(5)
 | |
| /** Let HW read NDF_CMD queue. Cleared on SW NDF_CMD write */
 | |
| #define NDF_MISC_RD_CMD		BIT_ULL(4)
 | |
| /** Boot disable */
 | |
| #define NDF_MISC_BT_DIS		BIT_ULL(2)
 | |
| /** Stop command execution after completing command queue */
 | |
| #define NDF_MISC_EX_DIS		BIT_ULL(1)
 | |
| /** Reset fifo */
 | |
| #define NDF_MISC_RST_FF		BIT_ULL(0)
 | |
| 
 | |
| /** DMA engine enable */
 | |
| #define NDF_DMA_CFG_EN		BIT_ULL(63)
 | |
| /** Read or write */
 | |
| #define NDF_DMA_CFG_RW		BIT_ULL(62)
 | |
| /** Terminates DMA and clears enable bit */
 | |
| #define NDF_DMA_CFG_CLR		BIT_ULL(61)
 | |
| /** 32-bit swap enable */
 | |
| #define NDF_DMA_CFG_SWAP32	BIT_ULL(59)
 | |
| /** 16-bit swap enable */
 | |
| #define NDF_DMA_CFG_SWAP16	BIT_ULL(58)
 | |
| /** 8-bit swap enable */
 | |
| #define NDF_DMA_CFG_SWAP8	BIT_ULL(57)
 | |
| /** Endian mode */
 | |
| #define NDF_DMA_CFG_CMD_BE	BIT_ULL(56)
 | |
| /** Number of 64 bit transfers */
 | |
| #define NDF_DMA_CFG_SIZE	GENMASK_ULL(55, 36)
 | |
| 
 | |
| /** Command execution status idle */
 | |
| #define NDF_ST_REG_EXE_IDLE	BIT_ULL(15)
 | |
| /** Command execution SM states */
 | |
| #define NDF_ST_REG_EXE_SM	GENMASK_ULL(14, 11)
 | |
| /** DMA and load SM states */
 | |
| #define NDF_ST_REG_BT_SM	GENMASK_ULL(10, 7)
 | |
| /** Queue read-back SM bad state */
 | |
| #define NDF_ST_REG_RD_FF_BAD	BIT_ULL(6)
 | |
| /** Queue read-back SM states */
 | |
| #define NDF_ST_REG_RD_FF	GENMASK_ULL(5, 4)
 | |
| /** Main SM is in a bad state */
 | |
| #define NDF_ST_REG_MAIN_BAD	BIT_ULL(3)
 | |
| /** Main SM states */
 | |
| #define NDF_ST_REG_MAIN_SM	GENMASK_ULL(2, 0)
 | |
| 
 | |
| #define MAX_NAND_NAME_LEN	64
 | |
| #if (defined(NAND_MAX_PAGESIZE) && (NAND_MAX_PAGESIZE > 4096)) ||	\
 | |
| 	!defined(NAND_MAX_PAGESIZE)
 | |
| # undef NAND_MAX_PAGESIZE
 | |
| # define NAND_MAX_PAGESIZE	4096
 | |
| #endif
 | |
| #if (defined(NAND_MAX_OOBSIZE) && (NAND_MAX_OOBSIZE > 256)) ||		\
 | |
| 	!defined(NAND_MAX_OOBSIZE)
 | |
| # undef NAND_MAX_OOBSIZE
 | |
| # define NAND_MAX_OOBSIZE	256
 | |
| #endif
 | |
| 
 | |
| #define OCTEONTX_NAND_DRIVER_NAME	"octeontx_nand"
 | |
| 
 | |
| #define NDF_TIMEOUT		1000	/** Timeout in ms */
 | |
| #define USEC_PER_SEC		1000000	/** Linux compatibility */
 | |
| #ifndef NAND_MAX_CHIPS
 | |
| # define NAND_MAX_CHIPS		8	/** Linux compatibility */
 | |
| #endif
 | |
| 
 | |
| struct octeontx_nand_chip {
 | |
| 	struct list_head node;
 | |
| 	struct nand_chip nand;
 | |
| 	struct ndf_set_tm_par_cmd timings;
 | |
| 	int cs;
 | |
| 	int selected_page;
 | |
| 	int iface_mode;
 | |
| 	int row_bytes;
 | |
| 	int col_bytes;
 | |
| 	bool oob_only;
 | |
| 	bool iface_set;
 | |
| };
 | |
| 
 | |
| struct octeontx_nand_buf {
 | |
| 	u8 *dmabuf;
 | |
| 	dma_addr_t dmaaddr;
 | |
| 	int dmabuflen;
 | |
| 	int data_len;
 | |
| 	int data_index;
 | |
| };
 | |
| 
 | |
| /** NAND flash controller (NDF) related information */
 | |
| struct octeontx_nfc {
 | |
| 	struct nand_hw_control controller;
 | |
| 	struct udevice *dev;
 | |
| 	void __iomem *base;
 | |
| 	struct list_head chips;
 | |
| 	int selected_chip;      /* Currently selected NAND chip number */
 | |
| 
 | |
| 	/*
 | |
| 	 * Status is separate from octeontx_nand_buf because
 | |
| 	 * it can be used in parallel and during init.
 | |
| 	 */
 | |
| 	u8 *stat;
 | |
| 	dma_addr_t stat_addr;
 | |
| 	bool use_status;
 | |
| 
 | |
| 	struct octeontx_nand_buf buf;
 | |
| 	union bch_resp *bch_resp;
 | |
| 	dma_addr_t bch_rhandle;
 | |
| 
 | |
| 	/* BCH of all-0xff, so erased pages read as error-free */
 | |
| 	unsigned char *eccmask;
 | |
| };
 | |
| 
 | |
| /* settable timings - 0..7 select timing of alen1..4/clen1..3/etc */
 | |
| enum tm_idx {
 | |
| 	t0, /* fixed at 4<<mult cycles */
 | |
| 	t1, t2, t3, t4, t5, t6, t7, /* settable per ONFI-timing mode */
 | |
| };
 | |
| 
 | |
| struct octeontx_probe_device {
 | |
| 	struct list_head list;
 | |
| 	struct udevice *dev;
 | |
| };
 | |
| 
 | |
| static struct bch_vf *bch_vf;
 | |
| /** Deferred devices due to BCH not being ready */
 | |
| LIST_HEAD(octeontx_pci_nand_deferred_devices);
 | |
| 
 | |
| /** default parameters used for probing chips */
 | |
| #define MAX_ONFI_MODE	5
 | |
| 
 | |
| static int default_onfi_timing;
 | |
| static int slew_ns = 2; /* default timing padding */
 | |
| static int def_ecc_size = 512; /* 1024 best for sw_bch, <= 4095 for hw_bch */
 | |
| static int default_width = 1; /* 8 bit */
 | |
| static int default_page_size = 2048;
 | |
| static struct ndf_set_tm_par_cmd default_timing_parms;
 | |
| 
 | |
| /** Port from Linux */
 | |
| #define readq_poll_timeout(addr, val, cond, delay_us, timeout_us)	\
 | |
| ({									\
 | |
| 	ulong __start = get_timer(0);					\
 | |
| 	void *__addr = (addr);						\
 | |
| 	const ulong __timeout_ms = timeout_us / 1000;			\
 | |
| 	do {								\
 | |
| 		(val) = readq(__addr);					\
 | |
| 		if (cond)						\
 | |
| 			break;						\
 | |
| 		if (timeout_us && get_timer(__start) > __timeout_ms) {	\
 | |
| 			(val) = readq(__addr);				\
 | |
| 			break;						\
 | |
| 		}							\
 | |
| 		if (delay_us)						\
 | |
| 			udelay(delay_us);				\
 | |
| 	} while (1);							\
 | |
| 	(cond) ? 0 : -ETIMEDOUT;					\
 | |
| })
 | |
| 
 | |
| /** Ported from Linux 4.9.0 include/linux/of.h for compatibility */
 | |
| static inline int of_get_child_count(const ofnode node)
 | |
| {
 | |
| 	return fdtdec_get_child_count(gd->fdt_blob, ofnode_to_offset(node));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Linux compatibility from Linux 4.9.0 drivers/mtd/nand/nand_base.c
 | |
|  */
 | |
| static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
 | |
| 				 struct mtd_oob_region *oobregion)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct nand_ecc_ctrl *ecc = &chip->ecc;
 | |
| 
 | |
| 	if (section || !ecc->total)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	oobregion->length = ecc->total;
 | |
| 	oobregion->offset = mtd->oobsize - oobregion->length;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Linux compatibility from Linux 4.9.0 drivers/mtd/nand/nand_base.c
 | |
|  */
 | |
| static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
 | |
| 				  struct mtd_oob_region *oobregion)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct nand_ecc_ctrl *ecc = &chip->ecc;
 | |
| 
 | |
| 	if (section)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	oobregion->length = mtd->oobsize - ecc->total - 2;
 | |
| 	oobregion->offset = 2;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
 | |
| 	.ecc = nand_ooblayout_ecc_lp,
 | |
| 	.rfree = nand_ooblayout_free_lp,
 | |
| };
 | |
| 
 | |
| static inline struct octeontx_nand_chip *to_otx_nand(struct nand_chip *nand)
 | |
| {
 | |
| 	return container_of(nand, struct octeontx_nand_chip, nand);
 | |
| }
 | |
| 
 | |
| static inline struct octeontx_nfc *to_otx_nfc(struct nand_hw_control *ctrl)
 | |
| {
 | |
| 	return container_of(ctrl, struct octeontx_nfc, controller);
 | |
| }
 | |
| 
 | |
| static int octeontx_nand_calc_ecc_layout(struct nand_chip *nand)
 | |
| {
 | |
| 	struct nand_ecclayout *layout = nand->ecc.layout;
 | |
| 	struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
 | |
| 	struct mtd_info *mtd = &nand->mtd;
 | |
| 	int oobsize = mtd->oobsize;
 | |
| 	int i;
 | |
| 	bool layout_alloc = false;
 | |
| 
 | |
| 	if (!layout) {
 | |
| 		layout = devm_kzalloc(tn->dev, sizeof(*layout), GFP_KERNEL);
 | |
| 		if (!layout)
 | |
| 			return -ENOMEM;
 | |
| 		nand->ecc.layout = layout;
 | |
| 		layout_alloc = true;
 | |
| 	}
 | |
| 	layout->eccbytes = nand->ecc.steps * nand->ecc.bytes;
 | |
| 	/* Reserve 2 bytes for bad block marker */
 | |
| 	if (layout->eccbytes + 2 > oobsize) {
 | |
| 		pr_err("No suitable oob scheme available for oobsize %d eccbytes %u\n",
 | |
| 		       oobsize, layout->eccbytes);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	/* put ecc bytes at oob tail */
 | |
| 	for (i = 0; i < layout->eccbytes; i++)
 | |
| 		layout->eccpos[i] = oobsize - layout->eccbytes + i;
 | |
| 	layout->oobfree[0].offset = 2;
 | |
| 	layout->oobfree[0].length = oobsize - 2 - layout->eccbytes;
 | |
| 	nand->ecc.layout = layout;
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	if (layout_alloc)
 | |
| 		kfree(layout);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read a single byte from the temporary buffer. Used after READID
 | |
|  * to get the NAND information and for STATUS.
 | |
|  */
 | |
| static u8 octeontx_nand_read_byte(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
 | |
| 
 | |
| 	if (tn->use_status) {
 | |
| 		tn->use_status = false;
 | |
| 		return *tn->stat;
 | |
| 	}
 | |
| 
 | |
| 	if (tn->buf.data_index < tn->buf.data_len)
 | |
| 		return tn->buf.dmabuf[tn->buf.data_index++];
 | |
| 
 | |
| 	dev_err(tn->dev, "No data to read, idx: 0x%x, len: 0x%x\n",
 | |
| 		tn->buf.data_index, tn->buf.data_len);
 | |
| 
 | |
| 	return 0xff;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read a number of pending bytes from the temporary buffer. Used
 | |
|  * to get page and OOB data.
 | |
|  */
 | |
| static void octeontx_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
 | |
| 
 | |
| 	if (len > tn->buf.data_len - tn->buf.data_index) {
 | |
| 		dev_err(tn->dev, "Not enough data for read of %d bytes\n", len);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(buf, tn->buf.dmabuf + tn->buf.data_index, len);
 | |
| 	tn->buf.data_index += len;
 | |
| }
 | |
| 
 | |
| static void octeontx_nand_write_buf(struct mtd_info *mtd,
 | |
| 				    const u8 *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
 | |
| 
 | |
| 	memcpy(tn->buf.dmabuf + tn->buf.data_len, buf, len);
 | |
| 	tn->buf.data_len += len;
 | |
| }
 | |
| 
 | |
| /* Overwrite default function to avoid sync abort on chip = -1. */
 | |
| static void octeontx_nand_select_chip(struct mtd_info *mtd, int chip)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline int timing_to_cycle(u32 psec, unsigned long clock)
 | |
| {
 | |
| 	unsigned int ns;
 | |
| 	int ticks;
 | |
| 
 | |
| 	ns = DIV_ROUND_UP(psec, 1000);
 | |
| 	ns += slew_ns;
 | |
| 
 | |
| 	/* no rounding needed since clock is multiple of 1MHz */
 | |
| 	clock /= 1000000;
 | |
| 	ns *= clock;
 | |
| 
 | |
| 	ticks = DIV_ROUND_UP(ns, 1000);
 | |
| 
 | |
| 	/* actual delay is (tm_parX+1)<<tim_mult */
 | |
| 	if (ticks)
 | |
| 		ticks--;
 | |
| 
 | |
| 	return ticks;
 | |
| }
 | |
| 
 | |
| static void set_timings(struct octeontx_nand_chip *chip,
 | |
| 			struct ndf_set_tm_par_cmd *tp,
 | |
| 			const struct nand_sdr_timings *timings,
 | |
| 			unsigned long sclk)
 | |
| {
 | |
| 	/* scaled coprocessor-cycle values */
 | |
| 	u32 s_wh, s_cls, s_clh, s_rp, s_wb, s_wc;
 | |
| 
 | |
| 	tp->tim_mult = 0;
 | |
| 	s_wh = timing_to_cycle(timings->tWH_min, sclk);
 | |
| 	s_cls = timing_to_cycle(timings->tCLS_min, sclk);
 | |
| 	s_clh = timing_to_cycle(timings->tCLH_min, sclk);
 | |
| 	s_rp = timing_to_cycle(timings->tRP_min, sclk);
 | |
| 	s_wb = timing_to_cycle(timings->tWB_max, sclk);
 | |
| 	s_wc = timing_to_cycle(timings->tWC_min, sclk);
 | |
| 
 | |
| 	tp->tm_par1 = s_wh;
 | |
| 	tp->tm_par2 = s_clh;
 | |
| 	tp->tm_par3 = s_rp + 1;
 | |
| 	tp->tm_par4 = s_cls - s_wh;
 | |
| 	tp->tm_par5 = s_wc - s_wh + 1;
 | |
| 	tp->tm_par6 = s_wb;
 | |
| 	tp->tm_par7 = 0;
 | |
| 	tp->tim_mult++; /* overcompensate for bad math */
 | |
| 
 | |
| 	/* TODO: comment parameter re-use */
 | |
| 
 | |
| 	pr_debug("%s: tim_par: mult: %d  p1: %d  p2: %d  p3: %d\n",
 | |
| 		 __func__, tp->tim_mult, tp->tm_par1, tp->tm_par2, tp->tm_par3);
 | |
| 	pr_debug("                 p4: %d  p5: %d  p6: %d  p7: %d\n",
 | |
| 		 tp->tm_par4, tp->tm_par5, tp->tm_par6, tp->tm_par7);
 | |
| }
 | |
| 
 | |
| static int set_default_timings(struct octeontx_nfc *tn,
 | |
| 			       const struct nand_sdr_timings *timings)
 | |
| {
 | |
| 	unsigned long sclk = octeontx_get_io_clock();
 | |
| 
 | |
| 	set_timings(NULL, &default_timing_parms, timings, sclk);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int octeontx_nfc_chip_set_timings(struct octeontx_nand_chip *chip,
 | |
| 					 const struct nand_sdr_timings *timings)
 | |
| {
 | |
| 	/*struct octeontx_nfc *tn = to_otx_nfc(chip->nand.controller);*/
 | |
| 	unsigned long sclk = octeontx_get_io_clock();
 | |
| 
 | |
| 	set_timings(chip, &chip->timings, timings, sclk);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* How many bytes are free in the NFD_CMD queue? */
 | |
| static int ndf_cmd_queue_free(struct octeontx_nfc *tn)
 | |
| {
 | |
| 	u64 ndf_misc;
 | |
| 
 | |
| 	ndf_misc = readq(tn->base + NDF_MISC);
 | |
| 	return FIELD_GET(NDF_MISC_FR_BYTE, ndf_misc);
 | |
| }
 | |
| 
 | |
| /* Submit a command to the NAND command queue. */
 | |
| static int ndf_submit(struct octeontx_nfc *tn, union ndf_cmd *cmd)
 | |
| {
 | |
| 	int opcode = cmd->val[0] & 0xf;
 | |
| 
 | |
| 	switch (opcode) {
 | |
| 	/* All these commands fit in one 64bit word */
 | |
| 	case NDF_OP_NOP:
 | |
| 	case NDF_OP_SET_TM_PAR:
 | |
| 	case NDF_OP_WAIT:
 | |
| 	case NDF_OP_CHIP_EN_DIS:
 | |
| 	case NDF_OP_CLE_CMD:
 | |
| 	case NDF_OP_WR_CMD:
 | |
| 	case NDF_OP_RD_CMD:
 | |
| 	case NDF_OP_RD_EDO_CMD:
 | |
| 	case NDF_OP_BUS_ACQ_REL:
 | |
| 		if (ndf_cmd_queue_free(tn) < 8)
 | |
| 			goto full;
 | |
| 		writeq(cmd->val[0], tn->base + NDF_CMD);
 | |
| 		break;
 | |
| 	case NDF_OP_ALE_CMD:
 | |
| 		/* ALE commands take either one or two 64bit words */
 | |
| 		if (cmd->u.ale_cmd.adr_byte_num < 5) {
 | |
| 			if (ndf_cmd_queue_free(tn) < 8)
 | |
| 				goto full;
 | |
| 			writeq(cmd->val[0], tn->base + NDF_CMD);
 | |
| 		} else {
 | |
| 			if (ndf_cmd_queue_free(tn) < 16)
 | |
| 				goto full;
 | |
| 			writeq(cmd->val[0], tn->base + NDF_CMD);
 | |
| 			writeq(cmd->val[1], tn->base + NDF_CMD);
 | |
| 		}
 | |
| 		break;
 | |
| 	case NDF_OP_WAIT_STATUS: /* Wait status commands take two 64bit words */
 | |
| 		if (ndf_cmd_queue_free(tn) < 16)
 | |
| 			goto full;
 | |
| 		writeq(cmd->val[0], tn->base + NDF_CMD);
 | |
| 		writeq(cmd->val[1], tn->base + NDF_CMD);
 | |
| 		break;
 | |
| 	default:
 | |
| 		dev_err(tn->dev, "%s: unknown command: %u\n", __func__, opcode);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| full:
 | |
| 	dev_err(tn->dev, "%s: no space left in command queue\n", __func__);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Wait for the ready/busy signal. First wait for busy to be valid,
 | |
|  * then wait for busy to de-assert.
 | |
|  */
 | |
| static int ndf_build_wait_busy(struct octeontx_nfc *tn)
 | |
| {
 | |
| 	union ndf_cmd cmd;
 | |
| 
 | |
| 	memset(&cmd, 0, sizeof(cmd));
 | |
| 	cmd.u.wait.opcode = NDF_OP_WAIT;
 | |
| 	cmd.u.wait.r_b = 1;
 | |
| 	cmd.u.wait.wlen = t6;
 | |
| 
 | |
| 	if (ndf_submit(tn, &cmd))
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool ndf_dma_done(struct octeontx_nfc *tn)
 | |
| {
 | |
| 	u64 dma_cfg;
 | |
| 
 | |
| 	/* Enable bit should be clear after a transfer */
 | |
| 	dma_cfg = readq(tn->base + NDF_DMA_CFG);
 | |
| 	if (!(dma_cfg & NDF_DMA_CFG_EN))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int ndf_wait(struct octeontx_nfc *tn)
 | |
| {
 | |
| 	ulong start = get_timer(0);
 | |
| 	bool done;
 | |
| 
 | |
| 	while (!(done = ndf_dma_done(tn)) && get_timer(start) < NDF_TIMEOUT)
 | |
| 		;
 | |
| 
 | |
| 	if (!done) {
 | |
| 		dev_err(tn->dev, "%s: timeout error\n", __func__);
 | |
| 		return -ETIMEDOUT;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ndf_wait_idle(struct octeontx_nfc *tn)
 | |
| {
 | |
| 	u64 val;
 | |
| 	u64 dval = 0;
 | |
| 	int rc;
 | |
| 	int pause = 100;
 | |
| 	u64 tot_us = USEC_PER_SEC / 10;
 | |
| 
 | |
| 	rc = readq_poll_timeout(tn->base + NDF_ST_REG,
 | |
| 				val, val & NDF_ST_REG_EXE_IDLE, pause, tot_us);
 | |
| 	if (!rc)
 | |
| 		rc = readq_poll_timeout(tn->base + NDF_DMA_CFG,
 | |
| 					dval, !(dval & NDF_DMA_CFG_EN),
 | |
| 					pause, tot_us);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /** Issue set timing parameters */
 | |
| static int ndf_queue_cmd_timing(struct octeontx_nfc *tn,
 | |
| 				struct ndf_set_tm_par_cmd *timings)
 | |
| {
 | |
| 	union ndf_cmd cmd;
 | |
| 
 | |
| 	memset(&cmd, 0, sizeof(cmd));
 | |
| 	cmd.u.set_tm_par.opcode = NDF_OP_SET_TM_PAR;
 | |
| 	cmd.u.set_tm_par.tim_mult = timings->tim_mult;
 | |
| 	cmd.u.set_tm_par.tm_par1 = timings->tm_par1;
 | |
| 	cmd.u.set_tm_par.tm_par2 = timings->tm_par2;
 | |
| 	cmd.u.set_tm_par.tm_par3 = timings->tm_par3;
 | |
| 	cmd.u.set_tm_par.tm_par4 = timings->tm_par4;
 | |
| 	cmd.u.set_tm_par.tm_par5 = timings->tm_par5;
 | |
| 	cmd.u.set_tm_par.tm_par6 = timings->tm_par6;
 | |
| 	cmd.u.set_tm_par.tm_par7 = timings->tm_par7;
 | |
| 	return ndf_submit(tn, &cmd);
 | |
| }
 | |
| 
 | |
| /** Issue bus acquire or release */
 | |
| static int ndf_queue_cmd_bus(struct octeontx_nfc *tn, int direction)
 | |
| {
 | |
| 	union ndf_cmd cmd;
 | |
| 
 | |
| 	memset(&cmd, 0, sizeof(cmd));
 | |
| 	cmd.u.bus_acq_rel.opcode = NDF_OP_BUS_ACQ_REL;
 | |
| 	cmd.u.bus_acq_rel.direction = direction;
 | |
| 	return ndf_submit(tn, &cmd);
 | |
| }
 | |
| 
 | |
| /* Issue chip select or deselect */
 | |
| static int ndf_queue_cmd_chip(struct octeontx_nfc *tn, int enable, int chip,
 | |
| 			      int width)
 | |
| {
 | |
| 	union ndf_cmd cmd;
 | |
| 
 | |
| 	memset(&cmd, 0, sizeof(cmd));
 | |
| 	cmd.u.chip_en_dis.opcode = NDF_OP_CHIP_EN_DIS;
 | |
| 	cmd.u.chip_en_dis.chip = chip;
 | |
| 	cmd.u.chip_en_dis.enable = enable;
 | |
| 	cmd.u.chip_en_dis.bus_width = width;
 | |
| 	return ndf_submit(tn, &cmd);
 | |
| }
 | |
| 
 | |
| static int ndf_queue_cmd_wait(struct octeontx_nfc *tn, int t_delay)
 | |
| {
 | |
| 	union ndf_cmd cmd;
 | |
| 
 | |
| 	memset(&cmd, 0, sizeof(cmd));
 | |
| 	cmd.u.wait.opcode = NDF_OP_WAIT;
 | |
| 	cmd.u.wait.wlen = t_delay;
 | |
| 	return ndf_submit(tn, &cmd);
 | |
| }
 | |
| 
 | |
| static int ndf_queue_cmd_cle(struct octeontx_nfc *tn, int command)
 | |
| {
 | |
| 	union ndf_cmd cmd;
 | |
| 
 | |
| 	memset(&cmd, 0, sizeof(cmd));
 | |
| 	cmd.u.cle_cmd.opcode = NDF_OP_CLE_CMD;
 | |
| 	cmd.u.cle_cmd.cmd_data = command;
 | |
| 	cmd.u.cle_cmd.clen1 = t4;
 | |
| 	cmd.u.cle_cmd.clen2 = t1;
 | |
| 	cmd.u.cle_cmd.clen3 = t2;
 | |
| 	return ndf_submit(tn, &cmd);
 | |
| }
 | |
| 
 | |
| static int ndf_queue_cmd_ale(struct octeontx_nfc *tn, int addr_bytes,
 | |
| 			     struct nand_chip *nand, u64 page,
 | |
| 			     u32 col, int page_size)
 | |
| {
 | |
| 	struct octeontx_nand_chip *octeontx_nand = (nand) ?
 | |
| 						to_otx_nand(nand) : NULL;
 | |
| 	union ndf_cmd cmd;
 | |
| 
 | |
| 	memset(&cmd, 0, sizeof(cmd));
 | |
| 	cmd.u.ale_cmd.opcode = NDF_OP_ALE_CMD;
 | |
| 	cmd.u.ale_cmd.adr_byte_num = addr_bytes;
 | |
| 
 | |
| 	/* set column bit for OOB area, assume OOB follows page */
 | |
| 	if (octeontx_nand && octeontx_nand->oob_only)
 | |
| 		col += page_size;
 | |
| 
 | |
| 	/* page is u64 for this generality, even if cmdfunc() passes int */
 | |
| 	switch (addr_bytes) {
 | |
| 	/* 4-8 bytes: page, then 2-byte col */
 | |
| 	case 8:
 | |
| 		cmd.u.ale_cmd.adr_byt8 = (page >> 40) & 0xff;
 | |
| 		fallthrough;
 | |
| 	case 7:
 | |
| 		cmd.u.ale_cmd.adr_byt7 = (page >> 32) & 0xff;
 | |
| 		fallthrough;
 | |
| 	case 6:
 | |
| 		cmd.u.ale_cmd.adr_byt6 = (page >> 24) & 0xff;
 | |
| 		fallthrough;
 | |
| 	case 5:
 | |
| 		cmd.u.ale_cmd.adr_byt5 = (page >> 16) & 0xff;
 | |
| 		fallthrough;
 | |
| 	case 4:
 | |
| 		cmd.u.ale_cmd.adr_byt4 = (page >> 8) & 0xff;
 | |
| 		cmd.u.ale_cmd.adr_byt3 = page & 0xff;
 | |
| 		cmd.u.ale_cmd.adr_byt2 = (col >> 8) & 0xff;
 | |
| 		cmd.u.ale_cmd.adr_byt1 =  col & 0xff;
 | |
| 		break;
 | |
| 	/* 1-3 bytes: just the page address */
 | |
| 	case 3:
 | |
| 		cmd.u.ale_cmd.adr_byt3 = (page >> 16) & 0xff;
 | |
| 		fallthrough;
 | |
| 	case 2:
 | |
| 		cmd.u.ale_cmd.adr_byt2 = (page >> 8) & 0xff;
 | |
| 		fallthrough;
 | |
| 	case 1:
 | |
| 		cmd.u.ale_cmd.adr_byt1 = page & 0xff;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	cmd.u.ale_cmd.alen1 = t3;
 | |
| 	cmd.u.ale_cmd.alen2 = t1;
 | |
| 	cmd.u.ale_cmd.alen3 = t5;
 | |
| 	cmd.u.ale_cmd.alen4 = t2;
 | |
| 	return ndf_submit(tn, &cmd);
 | |
| }
 | |
| 
 | |
| static int ndf_queue_cmd_write(struct octeontx_nfc *tn, int len)
 | |
| {
 | |
| 	union ndf_cmd cmd;
 | |
| 
 | |
| 	memset(&cmd, 0, sizeof(cmd));
 | |
| 	cmd.u.wr_cmd.opcode = NDF_OP_WR_CMD;
 | |
| 	cmd.u.wr_cmd.data = len;
 | |
| 	cmd.u.wr_cmd.wlen1 = t3;
 | |
| 	cmd.u.wr_cmd.wlen2 = t1;
 | |
| 	return ndf_submit(tn, &cmd);
 | |
| }
 | |
| 
 | |
| static int ndf_build_pre_cmd(struct octeontx_nfc *tn, int cmd1,
 | |
| 			     int addr_bytes, u64 page, u32 col, int cmd2)
 | |
| {
 | |
| 	struct nand_chip *nand = tn->controller.active;
 | |
| 	struct octeontx_nand_chip *octeontx_nand;
 | |
| 	struct ndf_set_tm_par_cmd *timings;
 | |
| 	int width, page_size, rc;
 | |
| 
 | |
| 	/* Also called before chip probing is finished */
 | |
| 	if (!nand) {
 | |
| 		timings = &default_timing_parms;
 | |
| 		page_size = default_page_size;
 | |
| 		width = default_width;
 | |
| 	} else {
 | |
| 		octeontx_nand = to_otx_nand(nand);
 | |
| 		timings = &octeontx_nand->timings;
 | |
| 		page_size = nand->mtd.writesize;
 | |
| 		if (nand->options & NAND_BUSWIDTH_16)
 | |
| 			width = 2;
 | |
| 		else
 | |
| 			width = 1;
 | |
| 	}
 | |
| 	rc = ndf_queue_cmd_timing(tn, timings);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = ndf_queue_cmd_bus(tn, NDF_BUS_ACQUIRE);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = ndf_queue_cmd_chip(tn, 1, tn->selected_chip, width);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = ndf_queue_cmd_wait(tn, t1);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = ndf_queue_cmd_cle(tn, cmd1);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	if (addr_bytes) {
 | |
| 		rc = ndf_build_wait_busy(tn);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 
 | |
| 		rc = ndf_queue_cmd_ale(tn, addr_bytes, nand,
 | |
| 				       page, col, page_size);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 	}
 | |
| 
 | |
| 	/* CLE 2 */
 | |
| 	if (cmd2) {
 | |
| 		rc = ndf_build_wait_busy(tn);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 
 | |
| 		rc = ndf_queue_cmd_cle(tn, cmd2);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ndf_build_post_cmd(struct octeontx_nfc *tn, int hold_time)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Deselect chip */
 | |
| 	rc = ndf_queue_cmd_chip(tn, 0, 0, 0);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = ndf_queue_cmd_wait(tn, t2);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* Release bus */
 | |
| 	rc = ndf_queue_cmd_bus(tn, 0);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = ndf_queue_cmd_wait(tn, hold_time);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/*
 | |
| 	 * Last action is ringing the doorbell with number of bus
 | |
| 	 * acquire-releases cycles (currently 1).
 | |
| 	 */
 | |
| 	writeq(1, tn->base + NDF_DRBELL);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Setup the NAND DMA engine for a transfer. */
 | |
| static void ndf_setup_dma(struct octeontx_nfc *tn, int is_write,
 | |
| 			  dma_addr_t bus_addr, int len)
 | |
| {
 | |
| 	u64 dma_cfg;
 | |
| 
 | |
| 	dma_cfg = FIELD_PREP(NDF_DMA_CFG_RW, is_write) |
 | |
| 		  FIELD_PREP(NDF_DMA_CFG_SIZE, (len >> 3) - 1);
 | |
| 	dma_cfg |= NDF_DMA_CFG_EN;
 | |
| 	writeq(bus_addr, tn->base + NDF_DMA_ADR);
 | |
| 	writeq(dma_cfg, tn->base + NDF_DMA_CFG);
 | |
| }
 | |
| 
 | |
| static int octeontx_nand_reset(struct octeontx_nfc *tn)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = ndf_build_pre_cmd(tn, NAND_CMD_RESET, 0, 0, 0, 0);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = ndf_build_wait_busy(tn);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = ndf_build_post_cmd(tn, t2);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ndf_read(struct octeontx_nfc *tn, int cmd1, int addr_bytes,
 | |
| 		    u64 page, u32 col, int cmd2, int len)
 | |
| {
 | |
| 	dma_addr_t bus_addr = tn->use_status ? tn->stat_addr : tn->buf.dmaaddr;
 | |
| 	struct nand_chip *nand = tn->controller.active;
 | |
| 	int timing_mode, bytes, rc;
 | |
| 	union ndf_cmd cmd;
 | |
| 	u64 start, end;
 | |
| 
 | |
| 	pr_debug("%s(%p, 0x%x, 0x%x, 0x%llx, 0x%x, 0x%x, 0x%x)\n", __func__,
 | |
| 		 tn, cmd1, addr_bytes, page, col, cmd2, len);
 | |
| 	if (!nand)
 | |
| 		timing_mode = default_onfi_timing;
 | |
| 	else
 | |
| 		timing_mode = nand->onfi_timing_mode_default;
 | |
| 
 | |
| 	/* Build the command and address cycles */
 | |
| 	rc = ndf_build_pre_cmd(tn, cmd1, addr_bytes, page, col, cmd2);
 | |
| 	if (rc) {
 | |
| 		dev_err(tn->dev, "Build pre command failed\n");
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	/* This waits for some time, then waits for busy to be de-asserted. */
 | |
| 	rc = ndf_build_wait_busy(tn);
 | |
| 	if (rc) {
 | |
| 		dev_err(tn->dev, "Wait timeout\n");
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	memset(&cmd, 0, sizeof(cmd));
 | |
| 
 | |
| 	if (timing_mode < 4)
 | |
| 		cmd.u.rd_cmd.opcode = NDF_OP_RD_CMD;
 | |
| 	else
 | |
| 		cmd.u.rd_cmd.opcode = NDF_OP_RD_EDO_CMD;
 | |
| 
 | |
| 	cmd.u.rd_cmd.data = len;
 | |
| 	cmd.u.rd_cmd.rlen1 = t7;
 | |
| 	cmd.u.rd_cmd.rlen2 = t3;
 | |
| 	cmd.u.rd_cmd.rlen3 = t1;
 | |
| 	cmd.u.rd_cmd.rlen4 = t7;
 | |
| 	rc = ndf_submit(tn, &cmd);
 | |
| 	if (rc) {
 | |
| 		dev_err(tn->dev, "Error submitting command\n");
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	start = (u64)bus_addr;
 | |
| 	ndf_setup_dma(tn, 0, bus_addr, len);
 | |
| 
 | |
| 	rc = ndf_build_post_cmd(tn, t2);
 | |
| 	if (rc) {
 | |
| 		dev_err(tn->dev, "Build post command failed\n");
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	/* Wait for the DMA to complete */
 | |
| 	rc = ndf_wait(tn);
 | |
| 	if (rc) {
 | |
| 		dev_err(tn->dev, "DMA timed out\n");
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	end = readq(tn->base + NDF_DMA_ADR);
 | |
| 	bytes = end - start;
 | |
| 
 | |
| 	/* Make sure NDF is really done */
 | |
| 	rc = ndf_wait_idle(tn);
 | |
| 	if (rc) {
 | |
| 		dev_err(tn->dev, "poll idle failed\n");
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	pr_debug("%s: Read %d bytes\n", __func__, bytes);
 | |
| 	return bytes;
 | |
| }
 | |
| 
 | |
| static int octeontx_nand_get_features(struct mtd_info *mtd,
 | |
| 				      struct nand_chip *chip, int feature_addr,
 | |
| 				      u8 *subfeature_para)
 | |
| {
 | |
| 	struct nand_chip *nand = chip;
 | |
| 	struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
 | |
| 	int len = 8;
 | |
| 	int rc;
 | |
| 
 | |
| 	pr_debug("%s: feature addr: 0x%x\n", __func__, feature_addr);
 | |
| 	memset(tn->buf.dmabuf, 0xff, len);
 | |
| 	tn->buf.data_index = 0;
 | |
| 	tn->buf.data_len = 0;
 | |
| 	rc = ndf_read(tn, NAND_CMD_GET_FEATURES, 1, feature_addr, 0, 0, len);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	memcpy(subfeature_para, tn->buf.dmabuf, ONFI_SUBFEATURE_PARAM_LEN);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int octeontx_nand_set_features(struct mtd_info *mtd,
 | |
| 				      struct nand_chip *chip, int feature_addr,
 | |
| 				      u8 *subfeature_para)
 | |
| {
 | |
| 	struct nand_chip *nand = chip;
 | |
| 	struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
 | |
| 	const int len = ONFI_SUBFEATURE_PARAM_LEN;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = ndf_build_pre_cmd(tn, NAND_CMD_SET_FEATURES,
 | |
| 			       1, feature_addr, 0, 0);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	memcpy(tn->buf.dmabuf, subfeature_para, len);
 | |
| 	memset(tn->buf.dmabuf + len, 0, 8 - len);
 | |
| 
 | |
| 	ndf_setup_dma(tn, 1, tn->buf.dmaaddr, 8);
 | |
| 
 | |
| 	rc = ndf_queue_cmd_write(tn, 8);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = ndf_build_wait_busy(tn);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = ndf_build_post_cmd(tn, t2);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read a page from NAND. If the buffer has room, the out of band
 | |
|  * data will be included.
 | |
|  */
 | |
| static int ndf_page_read(struct octeontx_nfc *tn, u64 page, int col, int len)
 | |
| {
 | |
| 	debug("%s(%p, 0x%llx, 0x%x, 0x%x) active: %p\n", __func__,
 | |
| 	      tn, page, col, len, tn->controller.active);
 | |
| 	struct nand_chip *nand = tn->controller.active;
 | |
| 	struct octeontx_nand_chip *chip = to_otx_nand(nand);
 | |
| 	int addr_bytes = chip->row_bytes + chip->col_bytes;
 | |
| 
 | |
| 	memset(tn->buf.dmabuf, 0xff, len);
 | |
| 	return ndf_read(tn, NAND_CMD_READ0, addr_bytes,
 | |
| 		    page, col, NAND_CMD_READSTART, len);
 | |
| }
 | |
| 
 | |
| /* Erase a NAND block */
 | |
| static int ndf_block_erase(struct octeontx_nfc *tn, u64 page_addr)
 | |
| {
 | |
| 	struct nand_chip *nand = tn->controller.active;
 | |
| 	struct octeontx_nand_chip *chip = to_otx_nand(nand);
 | |
| 	int addr_bytes = chip->row_bytes;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = ndf_build_pre_cmd(tn, NAND_CMD_ERASE1, addr_bytes,
 | |
| 			       page_addr, 0, NAND_CMD_ERASE2);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* Wait for R_B to signal erase is complete  */
 | |
| 	rc = ndf_build_wait_busy(tn);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = ndf_build_post_cmd(tn, t2);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* Wait until the command queue is idle */
 | |
| 	return ndf_wait_idle(tn);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write a page (or less) to NAND.
 | |
|  */
 | |
| static int ndf_page_write(struct octeontx_nfc *tn, int page)
 | |
| {
 | |
| 	int len, rc;
 | |
| 	struct nand_chip *nand = tn->controller.active;
 | |
| 	struct octeontx_nand_chip *chip = to_otx_nand(nand);
 | |
| 	int addr_bytes = chip->row_bytes + chip->col_bytes;
 | |
| 
 | |
| 	len = tn->buf.data_len - tn->buf.data_index;
 | |
| 	chip->oob_only = (tn->buf.data_index >= nand->mtd.writesize);
 | |
| 	WARN_ON_ONCE(len & 0x7);
 | |
| 
 | |
| 	ndf_setup_dma(tn, 1, tn->buf.dmaaddr + tn->buf.data_index, len);
 | |
| 	rc = ndf_build_pre_cmd(tn, NAND_CMD_SEQIN, addr_bytes, page, 0, 0);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = ndf_queue_cmd_write(tn, len);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = ndf_queue_cmd_cle(tn, NAND_CMD_PAGEPROG);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* Wait for R_B to signal program is complete  */
 | |
| 	rc = ndf_build_wait_busy(tn);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = ndf_build_post_cmd(tn, t2);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* Wait for the DMA to complete */
 | |
| 	rc = ndf_wait(tn);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* Data transfer is done but NDF is not, it is waiting for R/B# */
 | |
| 	return ndf_wait_idle(tn);
 | |
| }
 | |
| 
 | |
| static void octeontx_nand_cmdfunc(struct mtd_info *mtd, unsigned int command,
 | |
| 				  int column, int page_addr)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct octeontx_nand_chip *octeontx_nand = to_otx_nand(nand);
 | |
| 	struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
 | |
| 	int rc;
 | |
| 
 | |
| 	tn->selected_chip = octeontx_nand->cs;
 | |
| 	if (tn->selected_chip < 0 || tn->selected_chip >= NAND_MAX_CHIPS) {
 | |
| 		dev_err(tn->dev, "invalid chip select\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	tn->use_status = false;
 | |
| 
 | |
| 	pr_debug("%s(%p, 0x%x, 0x%x, 0x%x) cs: %d\n", __func__, mtd, command,
 | |
| 		 column, page_addr, tn->selected_chip);
 | |
| 	switch (command) {
 | |
| 	case NAND_CMD_READID:
 | |
| 		tn->buf.data_index = 0;
 | |
| 		octeontx_nand->oob_only = false;
 | |
| 		rc = ndf_read(tn, command, 1, column, 0, 0, 8);
 | |
| 		if (rc < 0)
 | |
| 			dev_err(tn->dev, "READID failed with %d\n", rc);
 | |
| 		else
 | |
| 			tn->buf.data_len = rc;
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_READOOB:
 | |
| 		octeontx_nand->oob_only = true;
 | |
| 		tn->buf.data_index = 0;
 | |
| 		tn->buf.data_len = 0;
 | |
| 		rc = ndf_page_read(tn, page_addr, column, mtd->oobsize);
 | |
| 		if (rc < mtd->oobsize)
 | |
| 			dev_err(tn->dev, "READOOB failed with %d\n",
 | |
| 				tn->buf.data_len);
 | |
| 		else
 | |
| 			tn->buf.data_len = rc;
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_READ0:
 | |
| 		octeontx_nand->oob_only = false;
 | |
| 		tn->buf.data_index = 0;
 | |
| 		tn->buf.data_len = 0;
 | |
| 		rc = ndf_page_read(tn, page_addr, column,
 | |
| 				   mtd->writesize + mtd->oobsize);
 | |
| 
 | |
| 		if (rc < mtd->writesize + mtd->oobsize)
 | |
| 			dev_err(tn->dev, "READ0 failed with %d\n", rc);
 | |
| 		else
 | |
| 			tn->buf.data_len = rc;
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_STATUS:
 | |
| 		/* used in oob/not states */
 | |
| 		tn->use_status = true;
 | |
| 		rc = ndf_read(tn, command, 0, 0, 0, 0, 8);
 | |
| 		if (rc < 0)
 | |
| 			dev_err(tn->dev, "STATUS failed with %d\n", rc);
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_RESET:
 | |
| 		/* used in oob/not states */
 | |
| 		rc = octeontx_nand_reset(tn);
 | |
| 		if (rc < 0)
 | |
| 			dev_err(tn->dev, "RESET failed with %d\n", rc);
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_PARAM:
 | |
| 		octeontx_nand->oob_only = false;
 | |
| 		tn->buf.data_index = 0;
 | |
| 		rc = ndf_read(tn, command, 1, 0, 0, 0,
 | |
| 			      min(tn->buf.dmabuflen, 3 * 512));
 | |
| 		if (rc < 0)
 | |
| 			dev_err(tn->dev, "PARAM failed with %d\n", rc);
 | |
| 		else
 | |
| 			tn->buf.data_len = rc;
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_RNDOUT:
 | |
| 		tn->buf.data_index = column;
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_ERASE1:
 | |
| 		if (ndf_block_erase(tn, page_addr))
 | |
| 			dev_err(tn->dev, "ERASE1 failed\n");
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_ERASE2:
 | |
| 		/* We do all erase processing in the first command, so ignore
 | |
| 		 * this one.
 | |
| 		 */
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_SEQIN:
 | |
| 		octeontx_nand->oob_only = (column >= mtd->writesize);
 | |
| 		tn->buf.data_index = column;
 | |
| 		tn->buf.data_len = column;
 | |
| 
 | |
| 		octeontx_nand->selected_page = page_addr;
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_PAGEPROG:
 | |
| 		rc = ndf_page_write(tn, octeontx_nand->selected_page);
 | |
| 		if (rc)
 | |
| 			dev_err(tn->dev, "PAGEPROG failed with %d\n", rc);
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_SET_FEATURES:
 | |
| 		octeontx_nand->oob_only = false;
 | |
| 		/* assume tn->buf.data_len == 4 of data has been set there */
 | |
| 		rc = octeontx_nand_set_features(mtd, nand,
 | |
| 						page_addr, tn->buf.dmabuf);
 | |
| 		if (rc)
 | |
| 			dev_err(tn->dev, "SET_FEATURES failed with %d\n", rc);
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_GET_FEATURES:
 | |
| 		octeontx_nand->oob_only = false;
 | |
| 		rc = octeontx_nand_get_features(mtd, nand,
 | |
| 						page_addr, tn->buf.dmabuf);
 | |
| 		if (!rc) {
 | |
| 			tn->buf.data_index = 0;
 | |
| 			tn->buf.data_len = 4;
 | |
| 		} else {
 | |
| 			dev_err(tn->dev, "GET_FEATURES failed with %d\n", rc);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		dev_err(tn->dev, "unhandled nand cmd: %x\n", command);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int octeontx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
 | |
| {
 | |
| 	struct octeontx_nfc *tn = to_otx_nfc(chip->controller);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = ndf_wait_idle(tn);
 | |
| 	return (ret < 0) ? -EIO : 0;
 | |
| }
 | |
| 
 | |
| /* check compatibility with ONFI timing mode#N, and optionally apply */
 | |
| /* TODO: Implement chipnr support? */
 | |
| static int octeontx_nand_setup_dat_intf(struct mtd_info *mtd, int chipnr,
 | |
| 					const struct nand_data_interface *conf)
 | |
| {
 | |
| 	static const bool check_only;
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct octeontx_nand_chip *chip = to_otx_nand(nand);
 | |
| 	static u64 t_wc_n[MAX_ONFI_MODE + 2]; /* cache a mode signature */
 | |
| 	int mode; /* deduced mode number, for reporting and restricting */
 | |
| 	int rc;
 | |
| 
 | |
| 	/*
 | |
| 	 * Cache timing modes for reporting, and reducing needless change.
 | |
| 	 *
 | |
| 	 * Challenge: caller does not pass ONFI mode#, but reporting the mode
 | |
| 	 * and restricting to a maximum, or a list, are useful for diagnosing
 | |
| 	 * new hardware.  So use tWC_min, distinct and monotonic across modes,
 | |
| 	 * to discover the requested/accepted mode number
 | |
| 	 */
 | |
| 	for (mode = MAX_ONFI_MODE; mode >= 0 && !t_wc_n[0]; mode--) {
 | |
| 		const struct nand_sdr_timings *t;
 | |
| 
 | |
| 		t = onfi_async_timing_mode_to_sdr_timings(mode);
 | |
| 		if (!t)
 | |
| 			continue;
 | |
| 		t_wc_n[mode] = t->tWC_min;
 | |
| 	}
 | |
| 
 | |
| 	if (!conf) {
 | |
| 		rc = -EINVAL;
 | |
| 	} else if (check_only) {
 | |
| 		rc = 0;
 | |
| 	} else if (nand->data_interface &&
 | |
| 			chip->iface_set && chip->iface_mode == mode) {
 | |
| 		/*
 | |
| 		 * Cases:
 | |
| 		 * - called from nand_reset, which clears DDR timing
 | |
| 		 *   mode back to SDR.  BUT if we're already in SDR,
 | |
| 		 *   timing mode persists over resets.
 | |
| 		 *   While mtd/nand layer only supports SDR,
 | |
| 		 *   this is always safe. And this driver only supports SDR.
 | |
| 		 *
 | |
| 		 * - called from post-power-event nand_reset (maybe
 | |
| 		 *   NFC+flash power down, or system hibernate.
 | |
| 		 *   Address this when CONFIG_PM support added
 | |
| 		 */
 | |
| 		rc = 0;
 | |
| 	} else {
 | |
| 		rc = octeontx_nfc_chip_set_timings(chip, &conf->timings.sdr);
 | |
| 		if (!rc) {
 | |
| 			chip->iface_mode = mode;
 | |
| 			chip->iface_set = true;
 | |
| 		}
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void octeontx_bch_reset(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given a page, calculate the ECC code
 | |
|  *
 | |
|  * chip:	Pointer to NAND chip data structure
 | |
|  * buf:		Buffer to calculate ECC on
 | |
|  * code:	Buffer to hold ECC data
 | |
|  *
 | |
|  * Return 0 on success or -1 on failure
 | |
|  */
 | |
| static int octeontx_nand_bch_calculate_ecc_internal(struct mtd_info *mtd,
 | |
| 						    dma_addr_t ihandle,
 | |
| 						    u8 *code)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
 | |
| 	int rc;
 | |
| 	int i;
 | |
| 	static u8 *ecc_buffer;
 | |
| 	static int ecc_size;
 | |
| 	static unsigned long ecc_handle;
 | |
| 	union bch_resp *r = tn->bch_resp;
 | |
| 
 | |
| 	if (!ecc_buffer || ecc_size < nand->ecc.size) {
 | |
| 		ecc_size = nand->ecc.size;
 | |
| 		ecc_buffer = dma_alloc_coherent(ecc_size,
 | |
| 						(unsigned long *)&ecc_handle);
 | |
| 	}
 | |
| 
 | |
| 	memset(ecc_buffer, 0, nand->ecc.bytes);
 | |
| 
 | |
| 	r->u16 = 0;
 | |
| 	__iowmb(); /* flush done=0 before making request */
 | |
| 
 | |
| 	rc = octeontx_bch_encode(bch_vf, ihandle, nand->ecc.size,
 | |
| 				 nand->ecc.strength,
 | |
| 				 (dma_addr_t)ecc_handle, tn->bch_rhandle);
 | |
| 
 | |
| 	if (!rc) {
 | |
| 		octeontx_bch_wait(bch_vf, r, tn->bch_rhandle);
 | |
| 	} else {
 | |
| 		dev_err(tn->dev, "octeontx_bch_encode failed\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (!r->s.done || r->s.uncorrectable) {
 | |
| 		dev_err(tn->dev,
 | |
| 			"%s timeout, done:%d uncorr:%d corr:%d erased:%d\n",
 | |
| 			__func__, r->s.done, r->s.uncorrectable,
 | |
| 			r->s.num_errors, r->s.erased);
 | |
| 		octeontx_bch_reset();
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(code, ecc_buffer, nand->ecc.bytes);
 | |
| 
 | |
| 	for (i = 0; i < nand->ecc.bytes; i++)
 | |
| 		code[i] ^= tn->eccmask[i];
 | |
| 
 | |
| 	return tn->bch_resp->s.num_errors;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given a page, calculate the ECC code
 | |
|  *
 | |
|  * mtd:        MTD block structure
 | |
|  * dat:        raw data (unused)
 | |
|  * ecc_code:   buffer for ECC
 | |
|  */
 | |
| static int octeontx_nand_bch_calculate(struct mtd_info *mtd,
 | |
| 				       const u8 *dat, u8 *ecc_code)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	dma_addr_t handle = dma_map_single((u8 *)dat,
 | |
| 					   nand->ecc.size, DMA_TO_DEVICE);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = octeontx_nand_bch_calculate_ecc_internal(mtd, handle,
 | |
| 						       (void *)ecc_code);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Detect and correct multi-bit ECC for a page
 | |
|  *
 | |
|  * mtd:        MTD block structure
 | |
|  * dat:        raw data read from the chip
 | |
|  * read_ecc:   ECC from the chip (unused)
 | |
|  * isnull:     unused
 | |
|  *
 | |
|  * Returns number of bits corrected or -1 if unrecoverable
 | |
|  */
 | |
| static int octeontx_nand_bch_correct(struct mtd_info *mtd, u_char *dat,
 | |
| 				     u_char *read_ecc, u_char *isnull)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
 | |
| 	int i = nand->ecc.size + nand->ecc.bytes;
 | |
| 	static u8 *data_buffer;
 | |
| 	static dma_addr_t ihandle;
 | |
| 	static int buffer_size;
 | |
| 	dma_addr_t ohandle;
 | |
| 	union bch_resp *r = tn->bch_resp;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (i > buffer_size) {
 | |
| 		if (buffer_size)
 | |
| 			free(data_buffer);
 | |
| 		data_buffer = dma_alloc_coherent(i,
 | |
| 						 (unsigned long *)&ihandle);
 | |
| 		if (!data_buffer) {
 | |
| 			dev_err(tn->dev,
 | |
| 				"%s: Could not allocate %d bytes for buffer\n",
 | |
| 				__func__, i);
 | |
| 			goto error;
 | |
| 		}
 | |
| 		buffer_size = i;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(data_buffer, dat, nand->ecc.size);
 | |
| 	memcpy(data_buffer + nand->ecc.size, read_ecc, nand->ecc.bytes);
 | |
| 
 | |
| 	for (i = 0; i < nand->ecc.bytes; i++)
 | |
| 		data_buffer[nand->ecc.size + i] ^= tn->eccmask[i];
 | |
| 
 | |
| 	r->u16 = 0;
 | |
| 	__iowmb(); /* flush done=0 before making request */
 | |
| 
 | |
| 	ohandle = dma_map_single(dat, nand->ecc.size, DMA_FROM_DEVICE);
 | |
| 	rc = octeontx_bch_decode(bch_vf, ihandle, nand->ecc.size,
 | |
| 				 nand->ecc.strength, ohandle, tn->bch_rhandle);
 | |
| 
 | |
| 	if (!rc)
 | |
| 		octeontx_bch_wait(bch_vf, r, tn->bch_rhandle);
 | |
| 
 | |
| 	if (rc) {
 | |
| 		dev_err(tn->dev, "octeontx_bch_decode failed\n");
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	if (!r->s.done) {
 | |
| 		dev_err(tn->dev, "Error: BCH engine timeout\n");
 | |
| 		octeontx_bch_reset();
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	if (r->s.erased) {
 | |
| 		debug("Info: BCH block is erased\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (r->s.uncorrectable) {
 | |
| 		debug("Cannot correct NAND block, response: 0x%x\n",
 | |
| 		      r->u16);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	return r->s.num_errors;
 | |
| 
 | |
| error:
 | |
| 	debug("Error performing bch correction\n");
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| void octeontx_nand_bch_hwctl(struct mtd_info *mtd, int mode)
 | |
| {
 | |
| 	/* Do nothing. */
 | |
| }
 | |
| 
 | |
| static int octeontx_nand_hw_bch_read_page(struct mtd_info *mtd,
 | |
| 					  struct nand_chip *chip, u8 *buf,
 | |
| 					  int oob_required, int page)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
 | |
| 	int i, eccsize = chip->ecc.size, ret;
 | |
| 	int eccbytes = chip->ecc.bytes;
 | |
| 	int eccsteps = chip->ecc.steps;
 | |
| 	u8 *p;
 | |
| 	u8 *ecc_code = chip->buffers->ecccode;
 | |
| 	unsigned int max_bitflips = 0;
 | |
| 
 | |
| 	/* chip->read_buf() insists on sequential order, we do OOB first */
 | |
| 	memcpy(chip->oob_poi, tn->buf.dmabuf + mtd->writesize, mtd->oobsize);
 | |
| 
 | |
| 	/* Use private buffer as input for ECC correction */
 | |
| 	p = tn->buf.dmabuf;
 | |
| 
 | |
| 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
 | |
| 					 chip->ecc.total);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
 | |
| 		int stat;
 | |
| 
 | |
| 		debug("Correcting block offset %lx, ecc offset %x\n",
 | |
| 		      p - buf, i);
 | |
| 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
 | |
| 
 | |
| 		if (stat < 0) {
 | |
| 			mtd->ecc_stats.failed++;
 | |
| 			debug("Cannot correct NAND page %d\n", page);
 | |
| 		} else {
 | |
| 			mtd->ecc_stats.corrected += stat;
 | |
| 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Copy corrected data to caller's buffer now */
 | |
| 	memcpy(buf, tn->buf.dmabuf, mtd->writesize);
 | |
| 
 | |
| 	return max_bitflips;
 | |
| }
 | |
| 
 | |
| static int octeontx_nand_hw_bch_write_page(struct mtd_info *mtd,
 | |
| 					   struct nand_chip *chip,
 | |
| 					   const u8 *buf, int oob_required,
 | |
| 					   int page)
 | |
| {
 | |
| 	struct octeontx_nfc *tn = to_otx_nfc(chip->controller);
 | |
| 	int i, eccsize = chip->ecc.size, ret;
 | |
| 	int eccbytes = chip->ecc.bytes;
 | |
| 	int eccsteps = chip->ecc.steps;
 | |
| 	const u8 *p;
 | |
| 	u8 *ecc_calc = chip->buffers->ecccalc;
 | |
| 
 | |
| 	debug("%s(buf?%p, oob%d p%x)\n",
 | |
| 	      __func__, buf, oob_required, page);
 | |
| 	for (i = 0; i < chip->ecc.total; i++)
 | |
| 		ecc_calc[i] = 0xFF;
 | |
| 
 | |
| 	/* Copy the page data from caller's buffers to private buffer */
 | |
| 	chip->write_buf(mtd, buf, mtd->writesize);
 | |
| 	/* Use private date as source for ECC calculation */
 | |
| 	p = tn->buf.dmabuf;
 | |
| 
 | |
| 	/* Hardware ECC calculation */
 | |
| 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = chip->ecc.calculate(mtd, p, &ecc_calc[i]);
 | |
| 
 | |
| 		if (ret < 0)
 | |
| 			debug("calculate(mtd, p?%p, &ecc_calc[%d]?%p) returned %d\n",
 | |
| 			      p, i, &ecc_calc[i], ret);
 | |
| 
 | |
| 		debug("block offset %lx, ecc offset %x\n", p - buf, i);
 | |
| 	}
 | |
| 
 | |
| 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
 | |
| 					 chip->ecc.total);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Store resulting OOB into private buffer, will be sent to HW */
 | |
| 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nand_write_page_raw - [INTERN] raw page write function
 | |
|  * @mtd: mtd info structure
 | |
|  * @chip: nand chip info structure
 | |
|  * @buf: data buffer
 | |
|  * @oob_required: must write chip->oob_poi to OOB
 | |
|  * @page: page number to write
 | |
|  *
 | |
|  * Not for syndrome calculating ECC controllers, which use a special oob layout.
 | |
|  */
 | |
| static int octeontx_nand_write_page_raw(struct mtd_info *mtd,
 | |
| 					struct nand_chip *chip,
 | |
| 					const u8 *buf, int oob_required,
 | |
| 					int page)
 | |
| {
 | |
| 	chip->write_buf(mtd, buf, mtd->writesize);
 | |
| 	if (oob_required)
 | |
| 		chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * octeontx_nand_write_oob_std - [REPLACEABLE] the most common OOB data write
 | |
|  *                             function
 | |
|  * @mtd: mtd info structure
 | |
|  * @chip: nand chip info structure
 | |
|  * @page: page number to write
 | |
|  */
 | |
| static int octeontx_nand_write_oob_std(struct mtd_info *mtd,
 | |
| 				       struct nand_chip *chip,
 | |
| 				       int page)
 | |
| {
 | |
| 	int status = 0;
 | |
| 	const u8 *buf = chip->oob_poi;
 | |
| 	int length = mtd->oobsize;
 | |
| 
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
 | |
| 	chip->write_buf(mtd, buf, length);
 | |
| 	/* Send command to program the OOB data */
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 | |
| 
 | |
| 	status = chip->waitfunc(mtd, chip);
 | |
| 
 | |
| 	return status & NAND_STATUS_FAIL ? -EIO : 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * octeontx_nand_read_page_raw - [INTERN] read raw page data without ecc
 | |
|  * @mtd: mtd info structure
 | |
|  * @chip: nand chip info structure
 | |
|  * @buf: buffer to store read data
 | |
|  * @oob_required: caller requires OOB data read to chip->oob_poi
 | |
|  * @page: page number to read
 | |
|  *
 | |
|  * Not for syndrome calculating ECC controllers, which use a special oob layout.
 | |
|  */
 | |
| static int octeontx_nand_read_page_raw(struct mtd_info *mtd,
 | |
| 				       struct nand_chip *chip,
 | |
| 				       u8 *buf, int oob_required, int page)
 | |
| {
 | |
| 	chip->read_buf(mtd, buf, mtd->writesize);
 | |
| 	if (oob_required)
 | |
| 		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int octeontx_nand_read_oob_std(struct mtd_info *mtd,
 | |
| 				      struct nand_chip *chip,
 | |
| 				      int page)
 | |
| 
 | |
| {
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
 | |
| 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int octeontx_nand_calc_bch_ecc_strength(struct nand_chip *nand)
 | |
| {
 | |
| 	struct mtd_info *mtd = nand_to_mtd(nand);
 | |
| 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 | |
| 	struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
 | |
| 	int nsteps = mtd->writesize / ecc->size;
 | |
| 	int oobchunk = mtd->oobsize / nsteps;
 | |
| 
 | |
| 	/* ecc->strength determines ecc_level and OOB's ecc_bytes. */
 | |
| 	const u8 strengths[]  = {4, 8, 16, 24, 32, 40, 48, 56, 60, 64};
 | |
| 	/* first set the desired ecc_level to match strengths[] */
 | |
| 	int index = ARRAY_SIZE(strengths) - 1;
 | |
| 	int need;
 | |
| 
 | |
| 	while (index > 0 && !(ecc->options & NAND_ECC_MAXIMIZE) &&
 | |
| 	       strengths[index - 1] >= ecc->strength)
 | |
| 		index--;
 | |
| 
 | |
| 	do {
 | |
| 		need = DIV_ROUND_UP(15 * strengths[index], 8);
 | |
| 		if (need <= oobchunk - 2)
 | |
| 			break;
 | |
| 	} while (index > 0);
 | |
| 
 | |
| 	debug("%s: steps ds: %d, strength ds: %d\n", __func__,
 | |
| 	      nand->ecc_step_ds, nand->ecc_strength_ds);
 | |
| 	ecc->strength = strengths[index];
 | |
| 	ecc->bytes = need;
 | |
| 	debug("%s: strength: %d, bytes: %d\n", __func__, ecc->strength,
 | |
| 	      ecc->bytes);
 | |
| 
 | |
| 	if (!tn->eccmask)
 | |
| 		tn->eccmask = devm_kzalloc(tn->dev, ecc->bytes, GFP_KERNEL);
 | |
| 	if (!tn->eccmask)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* sample the BCH signature of an erased (all 0xff) page,
 | |
|  * to XOR into all page traffic, so erased pages have no ECC errors
 | |
|  */
 | |
| static int octeontx_bch_save_empty_eccmask(struct nand_chip *nand)
 | |
| {
 | |
| 	struct mtd_info *mtd = nand_to_mtd(nand);
 | |
| 	struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
 | |
| 	unsigned int eccsize = nand->ecc.size;
 | |
| 	unsigned int eccbytes = nand->ecc.bytes;
 | |
| 	u8 erased_ecc[eccbytes];
 | |
| 	unsigned long erased_handle;
 | |
| 	unsigned char *erased_page = dma_alloc_coherent(eccsize,
 | |
| 							&erased_handle);
 | |
| 	int i;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	if (!erased_page)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	memset(erased_page, 0xff, eccsize);
 | |
| 	memset(erased_ecc, 0, eccbytes);
 | |
| 
 | |
| 	rc = octeontx_nand_bch_calculate_ecc_internal(mtd,
 | |
| 						      (dma_addr_t)erased_handle,
 | |
| 						      erased_ecc);
 | |
| 
 | |
| 	free(erased_page);
 | |
| 
 | |
| 	for (i = 0; i < eccbytes; i++)
 | |
| 		tn->eccmask[i] = erased_ecc[i] ^ 0xff;
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void octeontx_nfc_chip_sizing(struct nand_chip *nand)
 | |
| {
 | |
| 	struct octeontx_nand_chip *chip = to_otx_nand(nand);
 | |
| 	struct mtd_info *mtd = nand_to_mtd(nand);
 | |
| 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 | |
| 
 | |
| 	chip->row_bytes = nand->onfi_params.addr_cycles & 0xf;
 | |
| 	chip->col_bytes = nand->onfi_params.addr_cycles >> 4;
 | |
| 	debug("%s(%p) row bytes: %d, col bytes: %d, ecc mode: %d\n",
 | |
| 	      __func__, nand, chip->row_bytes, chip->col_bytes, ecc->mode);
 | |
| 
 | |
| 	/*
 | |
| 	 * HW_BCH using OcteonTX BCH engine, or SOFT_BCH laid out in
 | |
| 	 * HW_BCH-compatible fashion, depending on devtree advice
 | |
| 	 * and kernel config.
 | |
| 	 * BCH/NFC hardware capable of subpage ops, not implemented.
 | |
| 	 */
 | |
| 	mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
 | |
| 	nand->options |= NAND_NO_SUBPAGE_WRITE;
 | |
| 	debug("%s: start steps: %d, size: %d, bytes: %d\n",
 | |
| 	      __func__, ecc->steps, ecc->size, ecc->bytes);
 | |
| 	debug("%s: step ds: %d, strength ds: %d\n", __func__,
 | |
| 	      nand->ecc_step_ds, nand->ecc_strength_ds);
 | |
| 
 | |
| 	if (ecc->mode != NAND_ECC_NONE) {
 | |
| 		int nsteps = ecc->steps ? ecc->steps : 1;
 | |
| 
 | |
| 		if (ecc->size && ecc->size != mtd->writesize)
 | |
| 			nsteps = mtd->writesize / ecc->size;
 | |
| 		else if (mtd->writesize > def_ecc_size &&
 | |
| 			 !(mtd->writesize & (def_ecc_size - 1)))
 | |
| 			nsteps = mtd->writesize / def_ecc_size;
 | |
| 		ecc->steps = nsteps;
 | |
| 		ecc->size = mtd->writesize / nsteps;
 | |
| 		ecc->bytes = mtd->oobsize / nsteps;
 | |
| 
 | |
| 		if (nand->ecc_strength_ds)
 | |
| 			ecc->strength = nand->ecc_strength_ds;
 | |
| 		if (nand->ecc_step_ds)
 | |
| 			ecc->size = nand->ecc_step_ds;
 | |
| 		/*
 | |
| 		 * no subpage ops, but set subpage-shift to match ecc->steps
 | |
| 		 * so mtd_nandbiterrs tests appropriate boundaries
 | |
| 		 */
 | |
| 		if (!mtd->subpage_sft && !(ecc->steps & (ecc->steps - 1)))
 | |
| 			mtd->subpage_sft = fls(ecc->steps) - 1;
 | |
| 
 | |
| 		if (IS_ENABLED(CONFIG_NAND_OCTEONTX_HW_ECC)) {
 | |
| 			debug("%s: ecc mode: %d\n", __func__, ecc->mode);
 | |
| 			if (ecc->mode != NAND_ECC_SOFT &&
 | |
| 			    !octeontx_nand_calc_bch_ecc_strength(nand)) {
 | |
| 				struct octeontx_nfc *tn =
 | |
| 					to_otx_nfc(nand->controller);
 | |
| 
 | |
| 				debug("Using hardware BCH engine support\n");
 | |
| 				ecc->mode = NAND_ECC_HW_SYNDROME;
 | |
| 				ecc->read_page = octeontx_nand_hw_bch_read_page;
 | |
| 				ecc->write_page =
 | |
| 					octeontx_nand_hw_bch_write_page;
 | |
| 				ecc->read_page_raw =
 | |
| 					octeontx_nand_read_page_raw;
 | |
| 				ecc->write_page_raw =
 | |
| 					octeontx_nand_write_page_raw;
 | |
| 				ecc->read_oob = octeontx_nand_read_oob_std;
 | |
| 				ecc->write_oob = octeontx_nand_write_oob_std;
 | |
| 
 | |
| 				ecc->calculate = octeontx_nand_bch_calculate;
 | |
| 				ecc->correct = octeontx_nand_bch_correct;
 | |
| 				ecc->hwctl = octeontx_nand_bch_hwctl;
 | |
| 
 | |
| 				debug("NAND chip %d using hw_bch\n",
 | |
| 				      tn->selected_chip);
 | |
| 				debug(" %d bytes ECC per %d byte block\n",
 | |
| 				      ecc->bytes, ecc->size);
 | |
| 				debug(" for %d bits of correction per block.",
 | |
| 				      ecc->strength);
 | |
| 				octeontx_nand_calc_ecc_layout(nand);
 | |
| 				octeontx_bch_save_empty_eccmask(nand);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int octeontx_nfc_chip_init(struct octeontx_nfc *tn, struct udevice *dev,
 | |
| 				  ofnode node)
 | |
| {
 | |
| 	struct octeontx_nand_chip *chip;
 | |
| 	struct nand_chip *nand;
 | |
| 	struct mtd_info *mtd;
 | |
| 	int ret;
 | |
| 
 | |
| 	chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
 | |
| 	if (!chip)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	debug("%s: Getting chip select\n", __func__);
 | |
| 	ret = ofnode_read_s32(node, "reg", &chip->cs);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "could not retrieve reg property: %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (chip->cs >= NAND_MAX_CHIPS) {
 | |
| 		dev_err(dev, "invalid reg value: %u (max CS = 7)\n", chip->cs);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	debug("%s: chip select: %d\n", __func__, chip->cs);
 | |
| 	nand = &chip->nand;
 | |
| 	nand->controller = &tn->controller;
 | |
| 	if (!tn->controller.active)
 | |
| 		tn->controller.active = nand;
 | |
| 
 | |
| 	debug("%s: Setting flash node\n", __func__);
 | |
| 	nand_set_flash_node(nand, node);
 | |
| 
 | |
| 	nand->options = 0;
 | |
| 	nand->select_chip = octeontx_nand_select_chip;
 | |
| 	nand->cmdfunc = octeontx_nand_cmdfunc;
 | |
| 	nand->waitfunc = octeontx_nand_waitfunc;
 | |
| 	nand->read_byte = octeontx_nand_read_byte;
 | |
| 	nand->read_buf = octeontx_nand_read_buf;
 | |
| 	nand->write_buf = octeontx_nand_write_buf;
 | |
| 	nand->onfi_set_features = octeontx_nand_set_features;
 | |
| 	nand->onfi_get_features = octeontx_nand_get_features;
 | |
| 	nand->setup_data_interface = octeontx_nand_setup_dat_intf;
 | |
| 
 | |
| 	mtd = nand_to_mtd(nand);
 | |
| 	debug("%s: mtd: %p\n", __func__, mtd);
 | |
| 	mtd->dev->parent = dev;
 | |
| 
 | |
| 	debug("%s: NDF_MISC: 0x%llx\n", __func__,
 | |
| 	      readq(tn->base + NDF_MISC));
 | |
| 
 | |
| 	/* TODO: support more then 1 chip */
 | |
| 	debug("%s: Scanning identification\n", __func__);
 | |
| 	ret = nand_scan_ident(mtd, 1, NULL);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	debug("%s: Sizing chip\n", __func__);
 | |
| 	octeontx_nfc_chip_sizing(nand);
 | |
| 
 | |
| 	debug("%s: Scanning tail\n", __func__);
 | |
| 	ret = nand_scan_tail(mtd);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "nand_scan_tail failed: %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	debug("%s: Registering mtd\n", __func__);
 | |
| 	ret = nand_register(0, mtd);
 | |
| 
 | |
| 	debug("%s: Adding tail\n", __func__);
 | |
| 	list_add_tail(&chip->node, &tn->chips);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int octeontx_nfc_chips_init(struct octeontx_nfc *tn)
 | |
| {
 | |
| 	struct udevice *dev = tn->dev;
 | |
| 	ofnode node = dev_ofnode(dev);
 | |
| 	ofnode nand_node;
 | |
| 	int nr_chips = of_get_child_count(node);
 | |
| 	int ret;
 | |
| 
 | |
| 	debug("%s: node: %s\n", __func__, ofnode_get_name(node));
 | |
| 	debug("%s: %d chips\n", __func__, nr_chips);
 | |
| 	if (nr_chips > NAND_MAX_CHIPS) {
 | |
| 		dev_err(dev, "too many NAND chips: %d\n", nr_chips);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!nr_chips) {
 | |
| 		debug("no DT NAND chips found\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	pr_info("%s: scanning %d chips DTs\n", __func__, nr_chips);
 | |
| 
 | |
| 	ofnode_for_each_subnode(nand_node, node) {
 | |
| 		debug("%s: Calling octeontx_nfc_chip_init(%p, %s, %ld)\n",
 | |
| 		      __func__, tn, dev->name, nand_node.of_offset);
 | |
| 		ret = octeontx_nfc_chip_init(tn, dev, nand_node);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Reset NFC and initialize registers. */
 | |
| static int octeontx_nfc_init(struct octeontx_nfc *tn)
 | |
| {
 | |
| 	const struct nand_sdr_timings *timings;
 | |
| 	u64 ndf_misc;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Initialize values and reset the fifo */
 | |
| 	ndf_misc = readq(tn->base + NDF_MISC);
 | |
| 
 | |
| 	ndf_misc &= ~NDF_MISC_EX_DIS;
 | |
| 	ndf_misc |= (NDF_MISC_BT_DIS | NDF_MISC_RST_FF);
 | |
| 	writeq(ndf_misc, tn->base + NDF_MISC);
 | |
| 	debug("%s: NDF_MISC: 0x%llx\n", __func__, readq(tn->base + NDF_MISC));
 | |
| 
 | |
| 	/* Bring the fifo out of reset */
 | |
| 	ndf_misc &= ~(NDF_MISC_RST_FF);
 | |
| 
 | |
| 	/* Maximum of co-processor cycles for glitch filtering */
 | |
| 	ndf_misc |= FIELD_PREP(NDF_MISC_WAIT_CNT, 0x3f);
 | |
| 
 | |
| 	writeq(ndf_misc, tn->base + NDF_MISC);
 | |
| 
 | |
| 	/* Set timing parameters to onfi mode 0 for probing */
 | |
| 	timings = onfi_async_timing_mode_to_sdr_timings(0);
 | |
| 	if (IS_ERR(timings))
 | |
| 		return PTR_ERR(timings);
 | |
| 	rc = set_default_timings(tn, timings);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int octeontx_pci_nand_probe(struct udevice *dev)
 | |
| {
 | |
| 	struct octeontx_nfc *tn = dev_get_priv(dev);
 | |
| 	int ret;
 | |
| 	static bool probe_done;
 | |
| 
 | |
| 	debug("%s(%s) tn: %p\n", __func__, dev->name, tn);
 | |
| 	if (probe_done)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_NAND_OCTEONTX_HW_ECC)) {
 | |
| 		bch_vf = octeontx_bch_getv();
 | |
| 		if (!bch_vf) {
 | |
| 			struct octeontx_probe_device *probe_dev;
 | |
| 
 | |
| 			debug("%s: bch not yet initialized\n", __func__);
 | |
| 			probe_dev = calloc(sizeof(*probe_dev), 1);
 | |
| 			if (!probe_dev) {
 | |
| 				printf("%s: Out of memory\n", __func__);
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 			probe_dev->dev = dev;
 | |
| 			INIT_LIST_HEAD(&probe_dev->list);
 | |
| 			list_add_tail(&probe_dev->list,
 | |
| 				      &octeontx_pci_nand_deferred_devices);
 | |
| 			debug("%s: Defering probe until after BCH initialization\n",
 | |
| 			      __func__);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	tn->dev = dev;
 | |
| 	INIT_LIST_HEAD(&tn->chips);
 | |
| 
 | |
| 	tn->base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, PCI_REGION_MEM);
 | |
| 	if (!tn->base) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto release;
 | |
| 	}
 | |
| 	debug("%s: bar at %p\n", __func__, tn->base);
 | |
| 	tn->buf.dmabuflen = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
 | |
| 	tn->buf.dmabuf = dma_alloc_coherent(tn->buf.dmabuflen,
 | |
| 					    (unsigned long *)&tn->buf.dmaaddr);
 | |
| 	if (!tn->buf.dmabuf) {
 | |
| 		ret = -ENOMEM;
 | |
| 		debug("%s: Could not allocate DMA buffer\n", __func__);
 | |
| 		goto unclk;
 | |
| 	}
 | |
| 
 | |
| 	/* one hw-bch response, for one outstanding transaction */
 | |
| 	tn->bch_resp = dma_alloc_coherent(sizeof(*tn->bch_resp),
 | |
| 					  (unsigned long *)&tn->bch_rhandle);
 | |
| 
 | |
| 	tn->stat = dma_alloc_coherent(8, (unsigned long *)&tn->stat_addr);
 | |
| 	if (!tn->stat || !tn->bch_resp) {
 | |
| 		debug("%s: Could not allocate bch status or response\n",
 | |
| 		      __func__);
 | |
| 		ret = -ENOMEM;
 | |
| 		goto unclk;
 | |
| 	}
 | |
| 
 | |
| 	debug("%s: Calling octeontx_nfc_init()\n", __func__);
 | |
| 	octeontx_nfc_init(tn);
 | |
| 	debug("%s: Initializing chips\n", __func__);
 | |
| 	ret = octeontx_nfc_chips_init(tn);
 | |
| 	debug("%s: init chips ret: %d\n", __func__, ret);
 | |
| 	if (ret) {
 | |
| 		if (ret != -ENODEV)
 | |
| 			dev_err(dev, "failed to init nand chips\n");
 | |
| 		goto unclk;
 | |
| 	}
 | |
| 	dev_info(dev, "probed\n");
 | |
| 	return 0;
 | |
| 
 | |
| unclk:
 | |
| release:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int octeontx_pci_nand_disable(struct udevice *dev)
 | |
| {
 | |
| 	struct octeontx_nfc *tn = dev_get_priv(dev);
 | |
| 	u64 dma_cfg;
 | |
| 	u64 ndf_misc;
 | |
| 
 | |
| 	debug("%s: Disabling NAND device %s\n", __func__, dev->name);
 | |
| 	dma_cfg = readq(tn->base + NDF_DMA_CFG);
 | |
| 	dma_cfg &= ~NDF_DMA_CFG_EN;
 | |
| 	dma_cfg |= NDF_DMA_CFG_CLR;
 | |
| 	writeq(dma_cfg, tn->base + NDF_DMA_CFG);
 | |
| 
 | |
| 	/* Disable execution and put FIFO in reset mode */
 | |
| 	ndf_misc = readq(tn->base + NDF_MISC);
 | |
| 	ndf_misc |= NDF_MISC_EX_DIS | NDF_MISC_RST_FF;
 | |
| 	writeq(ndf_misc, tn->base + NDF_MISC);
 | |
| 	ndf_misc &= ~NDF_MISC_RST_FF;
 | |
| 	writeq(ndf_misc, tn->base + NDF_MISC);
 | |
| #ifdef DEBUG
 | |
| 	printf("%s: NDF_MISC: 0x%llx\n", __func__, readq(tn->base + NDF_MISC));
 | |
| #endif
 | |
| 	/* Clear any interrupts and enable bits */
 | |
| 	writeq(~0ull, tn->base + NDF_INT_ENA_W1C);
 | |
| 	writeq(~0ull, tn->base + NDF_INT);
 | |
| 	debug("%s: NDF_ST_REG: 0x%llx\n", __func__,
 | |
| 	      readq(tn->base + NDF_ST_REG));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Since it's possible (and even likely) that the NAND device will be probed
 | |
|  * before the BCH device has been probed, we may need to defer the probing.
 | |
|  *
 | |
|  * In this case, the initial probe returns success but the actual probing
 | |
|  * is deferred until the BCH VF has been probed.
 | |
|  *
 | |
|  * @return	0 for success, otherwise error
 | |
|  */
 | |
| int octeontx_pci_nand_deferred_probe(void)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	struct octeontx_probe_device *pdev;
 | |
| 
 | |
| 	debug("%s: Performing deferred probing\n", __func__);
 | |
| 	list_for_each_entry(pdev, &octeontx_pci_nand_deferred_devices, list) {
 | |
| 		debug("%s: Probing %s\n", __func__, pdev->dev->name);
 | |
| 		dev_get_flags(pdev->dev) &= ~DM_FLAG_ACTIVATED;
 | |
| 		rc = device_probe(pdev->dev);
 | |
| 		if (rc && rc != -ENODEV) {
 | |
| 			printf("%s: Error %d with deferred probe of %s\n",
 | |
| 			       __func__, rc, pdev->dev->name);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static const struct pci_device_id octeontx_nfc_pci_id_table[] = {
 | |
| 	{ PCI_VDEVICE(CAVIUM, 0xA04F) },
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| static int octeontx_nand_of_to_plat(struct udevice *dev)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct udevice_id octeontx_nand_ids[] = {
 | |
| 	{ .compatible = "cavium,cn8130-nand" },
 | |
| 	{ },
 | |
| };
 | |
| 
 | |
| U_BOOT_DRIVER(octeontx_pci_nand) = {
 | |
| 	.name	= OCTEONTX_NAND_DRIVER_NAME,
 | |
| 	.id	= UCLASS_MTD,
 | |
| 	.of_match = of_match_ptr(octeontx_nand_ids),
 | |
| 	.of_to_plat = octeontx_nand_of_to_plat,
 | |
| 	.probe = octeontx_pci_nand_probe,
 | |
| 	.priv_auto	= sizeof(struct octeontx_nfc),
 | |
| 	.remove = octeontx_pci_nand_disable,
 | |
| 	.flags = DM_FLAG_OS_PREPARE,
 | |
| };
 | |
| 
 | |
| U_BOOT_PCI_DEVICE(octeontx_pci_nand, octeontx_nfc_pci_id_table);
 | |
| 
 | |
| void board_nand_init(void)
 | |
| {
 | |
| 	struct udevice *dev;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_NAND_OCTEONTX_HW_ECC)) {
 | |
| 		ret = uclass_get_device_by_driver(UCLASS_MISC,
 | |
| 						  DM_DRIVER_GET(octeontx_pci_bchpf),
 | |
| 						  &dev);
 | |
| 		if (ret && ret != -ENODEV) {
 | |
| 			pr_err("Failed to initialize OcteonTX BCH PF controller. (error %d)\n",
 | |
| 			       ret);
 | |
| 		}
 | |
| 		ret = uclass_get_device_by_driver(UCLASS_MISC,
 | |
| 						  DM_DRIVER_GET(octeontx_pci_bchvf),
 | |
| 						  &dev);
 | |
| 		if (ret && ret != -ENODEV) {
 | |
| 			pr_err("Failed to initialize OcteonTX BCH VF controller. (error %d)\n",
 | |
| 			       ret);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = uclass_get_device_by_driver(UCLASS_MTD,
 | |
| 					  DM_DRIVER_GET(octeontx_pci_nand),
 | |
| 					  &dev);
 | |
| 	if (ret && ret != -ENODEV)
 | |
| 		pr_err("Failed to initialize OcteonTX NAND controller. (error %d)\n",
 | |
| 		       ret);
 | |
| }
 |