1256 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1256 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2016-2017 Micron Technology, Inc.
 | |
|  *
 | |
|  * Authors:
 | |
|  *	Peter Pan <peterpandong@micron.com>
 | |
|  *	Boris Brezillon <boris.brezillon@bootlin.com>
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt)	"spi-nand: " fmt
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| #include <linux/device.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mtd/spinand.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/spi/spi.h>
 | |
| #include <linux/spi/spi-mem.h>
 | |
| #else
 | |
| #include <common.h>
 | |
| #include <errno.h>
 | |
| #include <watchdog.h>
 | |
| #include <spi.h>
 | |
| #include <spi-mem.h>
 | |
| #include <dm/device_compat.h>
 | |
| #include <dm/devres.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/mtd/spinand.h>
 | |
| #endif
 | |
| 
 | |
| /* SPI NAND index visible in MTD names */
 | |
| static int spi_nand_idx;
 | |
| 
 | |
| static void spinand_cache_op_adjust_colum(struct spinand_device *spinand,
 | |
| 					  const struct nand_page_io_req *req,
 | |
| 					  u16 *column)
 | |
| {
 | |
| 	struct nand_device *nand = spinand_to_nand(spinand);
 | |
| 	unsigned int shift;
 | |
| 
 | |
| 	if (nand->memorg.planes_per_lun < 2)
 | |
| 		return;
 | |
| 
 | |
| 	/* The plane number is passed in MSB just above the column address */
 | |
| 	shift = fls(nand->memorg.pagesize);
 | |
| 	*column |= req->pos.plane << shift;
 | |
| }
 | |
| 
 | |
| static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
 | |
| {
 | |
| 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
 | |
| 						      spinand->scratchbuf);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = spi_mem_exec_op(spinand->slave, &op);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	*val = *spinand->scratchbuf;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
 | |
| {
 | |
| 	struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
 | |
| 						      spinand->scratchbuf);
 | |
| 
 | |
| 	*spinand->scratchbuf = val;
 | |
| 	return spi_mem_exec_op(spinand->slave, &op);
 | |
| }
 | |
| 
 | |
| static int spinand_read_status(struct spinand_device *spinand, u8 *status)
 | |
| {
 | |
| 	return spinand_read_reg_op(spinand, REG_STATUS, status);
 | |
| }
 | |
| 
 | |
| static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
 | |
| {
 | |
| 	struct nand_device *nand = spinand_to_nand(spinand);
 | |
| 
 | |
| 	if (WARN_ON(spinand->cur_target < 0 ||
 | |
| 		    spinand->cur_target >= nand->memorg.ntargets))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	*cfg = spinand->cfg_cache[spinand->cur_target];
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
 | |
| {
 | |
| 	struct nand_device *nand = spinand_to_nand(spinand);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (WARN_ON(spinand->cur_target < 0 ||
 | |
| 		    spinand->cur_target >= nand->memorg.ntargets))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (spinand->cfg_cache[spinand->cur_target] == cfg)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	spinand->cfg_cache[spinand->cur_target] = cfg;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spinand_upd_cfg() - Update the configuration register
 | |
|  * @spinand: the spinand device
 | |
|  * @mask: the mask encoding the bits to update in the config reg
 | |
|  * @val: the new value to apply
 | |
|  *
 | |
|  * Update the configuration register.
 | |
|  *
 | |
|  * Return: 0 on success, a negative error code otherwise.
 | |
|  */
 | |
| int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
 | |
| {
 | |
| 	int ret;
 | |
| 	u8 cfg;
 | |
| 
 | |
| 	ret = spinand_get_cfg(spinand, &cfg);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	cfg &= ~mask;
 | |
| 	cfg |= val;
 | |
| 
 | |
| 	return spinand_set_cfg(spinand, cfg);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spinand_select_target() - Select a specific NAND target/die
 | |
|  * @spinand: the spinand device
 | |
|  * @target: the target/die to select
 | |
|  *
 | |
|  * Select a new target/die. If chip only has one die, this function is a NOOP.
 | |
|  *
 | |
|  * Return: 0 on success, a negative error code otherwise.
 | |
|  */
 | |
| int spinand_select_target(struct spinand_device *spinand, unsigned int target)
 | |
| {
 | |
| 	struct nand_device *nand = spinand_to_nand(spinand);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (WARN_ON(target >= nand->memorg.ntargets))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (spinand->cur_target == target)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (nand->memorg.ntargets == 1) {
 | |
| 		spinand->cur_target = target;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = spinand->select_target(spinand, target);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	spinand->cur_target = target;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int spinand_init_cfg_cache(struct spinand_device *spinand)
 | |
| {
 | |
| 	struct nand_device *nand = spinand_to_nand(spinand);
 | |
| 	struct udevice *dev = spinand->slave->dev;
 | |
| 	unsigned int target;
 | |
| 	int ret;
 | |
| 
 | |
| 	spinand->cfg_cache = devm_kzalloc(dev,
 | |
| 					  sizeof(*spinand->cfg_cache) *
 | |
| 					  nand->memorg.ntargets,
 | |
| 					  GFP_KERNEL);
 | |
| 	if (!spinand->cfg_cache)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (target = 0; target < nand->memorg.ntargets; target++) {
 | |
| 		ret = spinand_select_target(spinand, target);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		/*
 | |
| 		 * We use spinand_read_reg_op() instead of spinand_get_cfg()
 | |
| 		 * here to bypass the config cache.
 | |
| 		 */
 | |
| 		ret = spinand_read_reg_op(spinand, REG_CFG,
 | |
| 					  &spinand->cfg_cache[target]);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int spinand_init_quad_enable(struct spinand_device *spinand)
 | |
| {
 | |
| 	bool enable = false;
 | |
| 
 | |
| 	if (!(spinand->flags & SPINAND_HAS_QE_BIT))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (spinand->op_templates.read_cache->data.buswidth == 4 ||
 | |
| 	    spinand->op_templates.write_cache->data.buswidth == 4 ||
 | |
| 	    spinand->op_templates.update_cache->data.buswidth == 4)
 | |
| 		enable = true;
 | |
| 
 | |
| 	return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
 | |
| 			       enable ? CFG_QUAD_ENABLE : 0);
 | |
| }
 | |
| 
 | |
| static int spinand_ecc_enable(struct spinand_device *spinand,
 | |
| 			      bool enable)
 | |
| {
 | |
| 	return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
 | |
| 			       enable ? CFG_ECC_ENABLE : 0);
 | |
| }
 | |
| 
 | |
| static int spinand_write_enable_op(struct spinand_device *spinand)
 | |
| {
 | |
| 	struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
 | |
| 
 | |
| 	return spi_mem_exec_op(spinand->slave, &op);
 | |
| }
 | |
| 
 | |
| static int spinand_load_page_op(struct spinand_device *spinand,
 | |
| 				const struct nand_page_io_req *req)
 | |
| {
 | |
| 	struct nand_device *nand = spinand_to_nand(spinand);
 | |
| 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
 | |
| 	struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
 | |
| 
 | |
| 	return spi_mem_exec_op(spinand->slave, &op);
 | |
| }
 | |
| 
 | |
| static int spinand_read_from_cache_op(struct spinand_device *spinand,
 | |
| 				      const struct nand_page_io_req *req)
 | |
| {
 | |
| 	struct spi_mem_op op = *spinand->op_templates.read_cache;
 | |
| 	struct nand_device *nand = spinand_to_nand(spinand);
 | |
| 	struct mtd_info *mtd = nanddev_to_mtd(nand);
 | |
| 	struct nand_page_io_req adjreq = *req;
 | |
| 	unsigned int nbytes = 0;
 | |
| 	void *buf = NULL;
 | |
| 	u16 column = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (req->datalen) {
 | |
| 		adjreq.datalen = nanddev_page_size(nand);
 | |
| 		adjreq.dataoffs = 0;
 | |
| 		adjreq.databuf.in = spinand->databuf;
 | |
| 		buf = spinand->databuf;
 | |
| 		nbytes = adjreq.datalen;
 | |
| 	}
 | |
| 
 | |
| 	if (req->ooblen) {
 | |
| 		adjreq.ooblen = nanddev_per_page_oobsize(nand);
 | |
| 		adjreq.ooboffs = 0;
 | |
| 		adjreq.oobbuf.in = spinand->oobbuf;
 | |
| 		nbytes += nanddev_per_page_oobsize(nand);
 | |
| 		if (!buf) {
 | |
| 			buf = spinand->oobbuf;
 | |
| 			column = nanddev_page_size(nand);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
 | |
| 	op.addr.val = column;
 | |
| 
 | |
| 	/*
 | |
| 	 * Some controllers are limited in term of max RX data size. In this
 | |
| 	 * case, just repeat the READ_CACHE operation after updating the
 | |
| 	 * column.
 | |
| 	 */
 | |
| 	while (nbytes) {
 | |
| 		op.data.buf.in = buf;
 | |
| 		op.data.nbytes = nbytes;
 | |
| 		ret = spi_mem_adjust_op_size(spinand->slave, &op);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = spi_mem_exec_op(spinand->slave, &op);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		buf += op.data.nbytes;
 | |
| 		nbytes -= op.data.nbytes;
 | |
| 		op.addr.val += op.data.nbytes;
 | |
| 	}
 | |
| 
 | |
| 	if (req->datalen)
 | |
| 		memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
 | |
| 		       req->datalen);
 | |
| 
 | |
| 	if (req->ooblen) {
 | |
| 		if (req->mode == MTD_OPS_AUTO_OOB)
 | |
| 			mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
 | |
| 						    spinand->oobbuf,
 | |
| 						    req->ooboffs,
 | |
| 						    req->ooblen);
 | |
| 		else
 | |
| 			memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
 | |
| 			       req->ooblen);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int spinand_write_to_cache_op(struct spinand_device *spinand,
 | |
| 				     const struct nand_page_io_req *req)
 | |
| {
 | |
| 	struct spi_mem_op op = *spinand->op_templates.write_cache;
 | |
| 	struct nand_device *nand = spinand_to_nand(spinand);
 | |
| 	struct mtd_info *mtd = nanddev_to_mtd(nand);
 | |
| 	struct nand_page_io_req adjreq = *req;
 | |
| 	unsigned int nbytes = 0;
 | |
| 	void *buf = NULL;
 | |
| 	u16 column = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	memset(spinand->databuf, 0xff,
 | |
| 	       nanddev_page_size(nand) +
 | |
| 	       nanddev_per_page_oobsize(nand));
 | |
| 
 | |
| 	if (req->datalen) {
 | |
| 		memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
 | |
| 		       req->datalen);
 | |
| 		adjreq.dataoffs = 0;
 | |
| 		adjreq.datalen = nanddev_page_size(nand);
 | |
| 		adjreq.databuf.out = spinand->databuf;
 | |
| 		nbytes = adjreq.datalen;
 | |
| 		buf = spinand->databuf;
 | |
| 	}
 | |
| 
 | |
| 	if (req->ooblen) {
 | |
| 		if (req->mode == MTD_OPS_AUTO_OOB)
 | |
| 			mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
 | |
| 						    spinand->oobbuf,
 | |
| 						    req->ooboffs,
 | |
| 						    req->ooblen);
 | |
| 		else
 | |
| 			memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
 | |
| 			       req->ooblen);
 | |
| 
 | |
| 		adjreq.ooblen = nanddev_per_page_oobsize(nand);
 | |
| 		adjreq.ooboffs = 0;
 | |
| 		nbytes += nanddev_per_page_oobsize(nand);
 | |
| 		if (!buf) {
 | |
| 			buf = spinand->oobbuf;
 | |
| 			column = nanddev_page_size(nand);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
 | |
| 
 | |
| 	op = *spinand->op_templates.write_cache;
 | |
| 	op.addr.val = column;
 | |
| 
 | |
| 	/*
 | |
| 	 * Some controllers are limited in term of max TX data size. In this
 | |
| 	 * case, split the operation into one LOAD CACHE and one or more
 | |
| 	 * LOAD RANDOM CACHE.
 | |
| 	 */
 | |
| 	while (nbytes) {
 | |
| 		op.data.buf.out = buf;
 | |
| 		op.data.nbytes = nbytes;
 | |
| 
 | |
| 		ret = spi_mem_adjust_op_size(spinand->slave, &op);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = spi_mem_exec_op(spinand->slave, &op);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		buf += op.data.nbytes;
 | |
| 		nbytes -= op.data.nbytes;
 | |
| 		op.addr.val += op.data.nbytes;
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to use the RANDOM LOAD CACHE operation if there's
 | |
| 		 * more than one iteration, because the LOAD operation resets
 | |
| 		 * the cache to 0xff.
 | |
| 		 */
 | |
| 		if (nbytes) {
 | |
| 			column = op.addr.val;
 | |
| 			op = *spinand->op_templates.update_cache;
 | |
| 			op.addr.val = column;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int spinand_program_op(struct spinand_device *spinand,
 | |
| 			      const struct nand_page_io_req *req)
 | |
| {
 | |
| 	struct nand_device *nand = spinand_to_nand(spinand);
 | |
| 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
 | |
| 	struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
 | |
| 
 | |
| 	return spi_mem_exec_op(spinand->slave, &op);
 | |
| }
 | |
| 
 | |
| static int spinand_erase_op(struct spinand_device *spinand,
 | |
| 			    const struct nand_pos *pos)
 | |
| {
 | |
| 	struct nand_device *nand = &spinand->base;
 | |
| 	unsigned int row = nanddev_pos_to_row(nand, pos);
 | |
| 	struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
 | |
| 
 | |
| 	return spi_mem_exec_op(spinand->slave, &op);
 | |
| }
 | |
| 
 | |
| static int spinand_wait(struct spinand_device *spinand, u8 *s)
 | |
| {
 | |
| 	unsigned long start, stop;
 | |
| 	u8 status;
 | |
| 	int ret;
 | |
| 
 | |
| 	start = get_timer(0);
 | |
| 	stop = 400;
 | |
| 	do {
 | |
| 		ret = spinand_read_status(spinand, &status);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		if (!(status & STATUS_BUSY))
 | |
| 			goto out;
 | |
| 	} while (get_timer(start) < stop);
 | |
| 
 | |
| 	/*
 | |
| 	 * Extra read, just in case the STATUS_READY bit has changed
 | |
| 	 * since our last check
 | |
| 	 */
 | |
| 	ret = spinand_read_status(spinand, &status);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| out:
 | |
| 	if (s)
 | |
| 		*s = status;
 | |
| 
 | |
| 	return status & STATUS_BUSY ? -ETIMEDOUT : 0;
 | |
| }
 | |
| 
 | |
| static int spinand_read_id_op(struct spinand_device *spinand, u8 *buf)
 | |
| {
 | |
| 	struct spi_mem_op op = SPINAND_READID_OP(0, spinand->scratchbuf,
 | |
| 						 SPINAND_MAX_ID_LEN);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = spi_mem_exec_op(spinand->slave, &op);
 | |
| 	if (!ret)
 | |
| 		memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int spinand_reset_op(struct spinand_device *spinand)
 | |
| {
 | |
| 	struct spi_mem_op op = SPINAND_RESET_OP;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = spi_mem_exec_op(spinand->slave, &op);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return spinand_wait(spinand, NULL);
 | |
| }
 | |
| 
 | |
| static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
 | |
| {
 | |
| 	return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
 | |
| }
 | |
| 
 | |
| static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
 | |
| {
 | |
| 	struct nand_device *nand = spinand_to_nand(spinand);
 | |
| 
 | |
| 	if (spinand->eccinfo.get_status)
 | |
| 		return spinand->eccinfo.get_status(spinand, status);
 | |
| 
 | |
| 	switch (status & STATUS_ECC_MASK) {
 | |
| 	case STATUS_ECC_NO_BITFLIPS:
 | |
| 		return 0;
 | |
| 
 | |
| 	case STATUS_ECC_HAS_BITFLIPS:
 | |
| 		/*
 | |
| 		 * We have no way to know exactly how many bitflips have been
 | |
| 		 * fixed, so let's return the maximum possible value so that
 | |
| 		 * wear-leveling layers move the data immediately.
 | |
| 		 */
 | |
| 		return nand->eccreq.strength;
 | |
| 
 | |
| 	case STATUS_ECC_UNCOR_ERROR:
 | |
| 		return -EBADMSG;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int spinand_read_page(struct spinand_device *spinand,
 | |
| 			     const struct nand_page_io_req *req,
 | |
| 			     bool ecc_enabled)
 | |
| {
 | |
| 	u8 status;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = spinand_load_page_op(spinand, req);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = spinand_wait(spinand, &status);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = spinand_read_from_cache_op(spinand, req);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (!ecc_enabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	return spinand_check_ecc_status(spinand, status);
 | |
| }
 | |
| 
 | |
| static int spinand_write_page(struct spinand_device *spinand,
 | |
| 			      const struct nand_page_io_req *req)
 | |
| {
 | |
| 	u8 status;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = spinand_write_enable_op(spinand);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = spinand_write_to_cache_op(spinand, req);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = spinand_program_op(spinand, req);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = spinand_wait(spinand, &status);
 | |
| 	if (!ret && (status & STATUS_PROG_FAILED))
 | |
| 		ret = -EIO;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
 | |
| 			    struct mtd_oob_ops *ops)
 | |
| {
 | |
| 	struct spinand_device *spinand = mtd_to_spinand(mtd);
 | |
| 	struct nand_device *nand = mtd_to_nanddev(mtd);
 | |
| 	unsigned int max_bitflips = 0;
 | |
| 	struct nand_io_iter iter;
 | |
| 	bool enable_ecc = false;
 | |
| 	bool ecc_failed = false;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout)
 | |
| 		enable_ecc = true;
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| 	mutex_lock(&spinand->lock);
 | |
| #endif
 | |
| 
 | |
| 	nanddev_io_for_each_page(nand, from, ops, &iter) {
 | |
| 		WATCHDOG_RESET();
 | |
| 		ret = spinand_select_target(spinand, iter.req.pos.target);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		ret = spinand_ecc_enable(spinand, enable_ecc);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		ret = spinand_read_page(spinand, &iter.req, enable_ecc);
 | |
| 		if (ret < 0 && ret != -EBADMSG)
 | |
| 			break;
 | |
| 
 | |
| 		if (ret == -EBADMSG) {
 | |
| 			ecc_failed = true;
 | |
| 			mtd->ecc_stats.failed++;
 | |
| 			ret = 0;
 | |
| 		} else {
 | |
| 			mtd->ecc_stats.corrected += ret;
 | |
| 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
 | |
| 		}
 | |
| 
 | |
| 		ops->retlen += iter.req.datalen;
 | |
| 		ops->oobretlen += iter.req.ooblen;
 | |
| 	}
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| 	mutex_unlock(&spinand->lock);
 | |
| #endif
 | |
| 	if (ecc_failed && !ret)
 | |
| 		ret = -EBADMSG;
 | |
| 
 | |
| 	return ret ? ret : max_bitflips;
 | |
| }
 | |
| 
 | |
| static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
 | |
| 			     struct mtd_oob_ops *ops)
 | |
| {
 | |
| 	struct spinand_device *spinand = mtd_to_spinand(mtd);
 | |
| 	struct nand_device *nand = mtd_to_nanddev(mtd);
 | |
| 	struct nand_io_iter iter;
 | |
| 	bool enable_ecc = false;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (ops->mode != MTD_OPS_RAW && mtd->ooblayout)
 | |
| 		enable_ecc = true;
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| 	mutex_lock(&spinand->lock);
 | |
| #endif
 | |
| 
 | |
| 	nanddev_io_for_each_page(nand, to, ops, &iter) {
 | |
| 		WATCHDOG_RESET();
 | |
| 		ret = spinand_select_target(spinand, iter.req.pos.target);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		ret = spinand_ecc_enable(spinand, enable_ecc);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		ret = spinand_write_page(spinand, &iter.req);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		ops->retlen += iter.req.datalen;
 | |
| 		ops->oobretlen += iter.req.ooblen;
 | |
| 	}
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| 	mutex_unlock(&spinand->lock);
 | |
| #endif
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
 | |
| {
 | |
| 	struct spinand_device *spinand = nand_to_spinand(nand);
 | |
| 	u8 marker[2] = { };
 | |
| 	struct nand_page_io_req req = {
 | |
| 		.pos = *pos,
 | |
| 		.ooblen = sizeof(marker),
 | |
| 		.ooboffs = 0,
 | |
| 		.oobbuf.in = marker,
 | |
| 		.mode = MTD_OPS_RAW,
 | |
| 	};
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = spinand_select_target(spinand, pos->target);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = spinand_read_page(spinand, &req, false);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (marker[0] != 0xff || marker[1] != 0xff)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
 | |
| {
 | |
| 	struct nand_device *nand = mtd_to_nanddev(mtd);
 | |
| #ifndef __UBOOT__
 | |
| 	struct spinand_device *spinand = nand_to_spinand(nand);
 | |
| #endif
 | |
| 	struct nand_pos pos;
 | |
| 	int ret;
 | |
| 
 | |
| 	nanddev_offs_to_pos(nand, offs, &pos);
 | |
| #ifndef __UBOOT__
 | |
| 	mutex_lock(&spinand->lock);
 | |
| #endif
 | |
| 	ret = nanddev_isbad(nand, &pos);
 | |
| #ifndef __UBOOT__
 | |
| 	mutex_unlock(&spinand->lock);
 | |
| #endif
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
 | |
| {
 | |
| 	struct spinand_device *spinand = nand_to_spinand(nand);
 | |
| 	u8 marker[2] = { };
 | |
| 	struct nand_page_io_req req = {
 | |
| 		.pos = *pos,
 | |
| 		.ooboffs = 0,
 | |
| 		.ooblen = sizeof(marker),
 | |
| 		.oobbuf.out = marker,
 | |
| 		.mode = MTD_OPS_RAW,
 | |
| 	};
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = spinand_select_target(spinand, pos->target);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return spinand_write_page(spinand, &req);
 | |
| }
 | |
| 
 | |
| static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
 | |
| {
 | |
| 	struct nand_device *nand = mtd_to_nanddev(mtd);
 | |
| #ifndef __UBOOT__
 | |
| 	struct spinand_device *spinand = nand_to_spinand(nand);
 | |
| #endif
 | |
| 	struct nand_pos pos;
 | |
| 	int ret;
 | |
| 
 | |
| 	nanddev_offs_to_pos(nand, offs, &pos);
 | |
| #ifndef __UBOOT__
 | |
| 	mutex_lock(&spinand->lock);
 | |
| #endif
 | |
| 	ret = nanddev_markbad(nand, &pos);
 | |
| #ifndef __UBOOT__
 | |
| 	mutex_unlock(&spinand->lock);
 | |
| #endif
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
 | |
| {
 | |
| 	struct spinand_device *spinand = nand_to_spinand(nand);
 | |
| 	u8 status;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = spinand_select_target(spinand, pos->target);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = spinand_write_enable_op(spinand);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = spinand_erase_op(spinand, pos);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = spinand_wait(spinand, &status);
 | |
| 	if (!ret && (status & STATUS_ERASE_FAILED))
 | |
| 		ret = -EIO;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int spinand_mtd_erase(struct mtd_info *mtd,
 | |
| 			     struct erase_info *einfo)
 | |
| {
 | |
| #ifndef __UBOOT__
 | |
| 	struct spinand_device *spinand = mtd_to_spinand(mtd);
 | |
| #endif
 | |
| 	int ret;
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| 	mutex_lock(&spinand->lock);
 | |
| #endif
 | |
| 	ret = nanddev_mtd_erase(mtd, einfo);
 | |
| #ifndef __UBOOT__
 | |
| 	mutex_unlock(&spinand->lock);
 | |
| #endif
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
 | |
| {
 | |
| #ifndef __UBOOT__
 | |
| 	struct spinand_device *spinand = mtd_to_spinand(mtd);
 | |
| #endif
 | |
| 	struct nand_device *nand = mtd_to_nanddev(mtd);
 | |
| 	struct nand_pos pos;
 | |
| 	int ret;
 | |
| 
 | |
| 	nanddev_offs_to_pos(nand, offs, &pos);
 | |
| #ifndef __UBOOT__
 | |
| 	mutex_lock(&spinand->lock);
 | |
| #endif
 | |
| 	ret = nanddev_isreserved(nand, &pos);
 | |
| #ifndef __UBOOT__
 | |
| 	mutex_unlock(&spinand->lock);
 | |
| #endif
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| const struct spi_mem_op *
 | |
| spinand_find_supported_op(struct spinand_device *spinand,
 | |
| 			  const struct spi_mem_op *ops,
 | |
| 			  unsigned int nops)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < nops; i++) {
 | |
| 		if (spi_mem_supports_op(spinand->slave, &ops[i]))
 | |
| 			return &ops[i];
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static const struct nand_ops spinand_ops = {
 | |
| 	.erase = spinand_erase,
 | |
| 	.markbad = spinand_markbad,
 | |
| 	.isbad = spinand_isbad,
 | |
| };
 | |
| 
 | |
| static const struct spinand_manufacturer *spinand_manufacturers[] = {
 | |
| 	&gigadevice_spinand_manufacturer,
 | |
| 	¯onix_spinand_manufacturer,
 | |
| 	µn_spinand_manufacturer,
 | |
| 	&toshiba_spinand_manufacturer,
 | |
| 	&winbond_spinand_manufacturer,
 | |
| };
 | |
| 
 | |
| static int spinand_manufacturer_detect(struct spinand_device *spinand)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
 | |
| 		ret = spinand_manufacturers[i]->ops->detect(spinand);
 | |
| 		if (ret > 0) {
 | |
| 			spinand->manufacturer = spinand_manufacturers[i];
 | |
| 			return 0;
 | |
| 		} else if (ret < 0) {
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return -ENOTSUPP;
 | |
| }
 | |
| 
 | |
| static int spinand_manufacturer_init(struct spinand_device *spinand)
 | |
| {
 | |
| 	if (spinand->manufacturer->ops->init)
 | |
| 		return spinand->manufacturer->ops->init(spinand);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
 | |
| {
 | |
| 	/* Release manufacturer private data */
 | |
| 	if (spinand->manufacturer->ops->cleanup)
 | |
| 		return spinand->manufacturer->ops->cleanup(spinand);
 | |
| }
 | |
| 
 | |
| static const struct spi_mem_op *
 | |
| spinand_select_op_variant(struct spinand_device *spinand,
 | |
| 			  const struct spinand_op_variants *variants)
 | |
| {
 | |
| 	struct nand_device *nand = spinand_to_nand(spinand);
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < variants->nops; i++) {
 | |
| 		struct spi_mem_op op = variants->ops[i];
 | |
| 		unsigned int nbytes;
 | |
| 		int ret;
 | |
| 
 | |
| 		nbytes = nanddev_per_page_oobsize(nand) +
 | |
| 			 nanddev_page_size(nand);
 | |
| 
 | |
| 		while (nbytes) {
 | |
| 			op.data.nbytes = nbytes;
 | |
| 			ret = spi_mem_adjust_op_size(spinand->slave, &op);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 
 | |
| 			if (!spi_mem_supports_op(spinand->slave, &op))
 | |
| 				break;
 | |
| 
 | |
| 			nbytes -= op.data.nbytes;
 | |
| 		}
 | |
| 
 | |
| 		if (!nbytes)
 | |
| 			return &variants->ops[i];
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spinand_match_and_init() - Try to find a match between a device ID and an
 | |
|  *			      entry in a spinand_info table
 | |
|  * @spinand: SPI NAND object
 | |
|  * @table: SPI NAND device description table
 | |
|  * @table_size: size of the device description table
 | |
|  *
 | |
|  * Should be used by SPI NAND manufacturer drivers when they want to find a
 | |
|  * match between a device ID retrieved through the READ_ID command and an
 | |
|  * entry in the SPI NAND description table. If a match is found, the spinand
 | |
|  * object will be initialized with information provided by the matching
 | |
|  * spinand_info entry.
 | |
|  *
 | |
|  * Return: 0 on success, a negative error code otherwise.
 | |
|  */
 | |
| int spinand_match_and_init(struct spinand_device *spinand,
 | |
| 			   const struct spinand_info *table,
 | |
| 			   unsigned int table_size, u8 devid)
 | |
| {
 | |
| 	struct nand_device *nand = spinand_to_nand(spinand);
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < table_size; i++) {
 | |
| 		const struct spinand_info *info = &table[i];
 | |
| 		const struct spi_mem_op *op;
 | |
| 
 | |
| 		if (devid != info->devid)
 | |
| 			continue;
 | |
| 
 | |
| 		nand->memorg = table[i].memorg;
 | |
| 		nand->eccreq = table[i].eccreq;
 | |
| 		spinand->eccinfo = table[i].eccinfo;
 | |
| 		spinand->flags = table[i].flags;
 | |
| 		spinand->select_target = table[i].select_target;
 | |
| 
 | |
| 		op = spinand_select_op_variant(spinand,
 | |
| 					       info->op_variants.read_cache);
 | |
| 		if (!op)
 | |
| 			return -ENOTSUPP;
 | |
| 
 | |
| 		spinand->op_templates.read_cache = op;
 | |
| 
 | |
| 		op = spinand_select_op_variant(spinand,
 | |
| 					       info->op_variants.write_cache);
 | |
| 		if (!op)
 | |
| 			return -ENOTSUPP;
 | |
| 
 | |
| 		spinand->op_templates.write_cache = op;
 | |
| 
 | |
| 		op = spinand_select_op_variant(spinand,
 | |
| 					       info->op_variants.update_cache);
 | |
| 		spinand->op_templates.update_cache = op;
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return -ENOTSUPP;
 | |
| }
 | |
| 
 | |
| static int spinand_detect(struct spinand_device *spinand)
 | |
| {
 | |
| 	struct nand_device *nand = spinand_to_nand(spinand);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = spinand_reset_op(spinand);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = spinand_read_id_op(spinand, spinand->id.data);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	spinand->id.len = SPINAND_MAX_ID_LEN;
 | |
| 
 | |
| 	ret = spinand_manufacturer_detect(spinand);
 | |
| 	if (ret) {
 | |
| 		dev_err(spinand->slave->dev, "unknown raw ID %*phN\n",
 | |
| 			SPINAND_MAX_ID_LEN, spinand->id.data);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (nand->memorg.ntargets > 1 && !spinand->select_target) {
 | |
| 		dev_err(spinand->slave->dev,
 | |
| 			"SPI NANDs with more than one die must implement ->select_target()\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	dev_info(spinand->slave->dev,
 | |
| 		 "%s SPI NAND was found.\n", spinand->manufacturer->name);
 | |
| 	dev_info(spinand->slave->dev,
 | |
| 		 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
 | |
| 		 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
 | |
| 		 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
 | |
| 				       struct mtd_oob_region *region)
 | |
| {
 | |
| 	return -ERANGE;
 | |
| }
 | |
| 
 | |
| static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
 | |
| 					struct mtd_oob_region *region)
 | |
| {
 | |
| 	if (section)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	/* Reserve 2 bytes for the BBM. */
 | |
| 	region->offset = 2;
 | |
| 	region->length = 62;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
 | |
| 	.ecc = spinand_noecc_ooblayout_ecc,
 | |
| 	.rfree = spinand_noecc_ooblayout_free,
 | |
| };
 | |
| 
 | |
| static int spinand_init(struct spinand_device *spinand)
 | |
| {
 | |
| 	struct mtd_info *mtd = spinand_to_mtd(spinand);
 | |
| 	struct nand_device *nand = mtd_to_nanddev(mtd);
 | |
| 	int ret, i;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need a scratch buffer because the spi_mem interface requires that
 | |
| 	 * buf passed in spi_mem_op->data.buf be DMA-able.
 | |
| 	 */
 | |
| 	spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
 | |
| 	if (!spinand->scratchbuf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = spinand_detect(spinand);
 | |
| 	if (ret)
 | |
| 		goto err_free_bufs;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
 | |
| 	 * may use this buffer for DMA access.
 | |
| 	 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
 | |
| 	 */
 | |
| 	spinand->databuf = kzalloc(nanddev_page_size(nand) +
 | |
| 			       nanddev_per_page_oobsize(nand),
 | |
| 			       GFP_KERNEL);
 | |
| 	if (!spinand->databuf) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_free_bufs;
 | |
| 	}
 | |
| 
 | |
| 	spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
 | |
| 
 | |
| 	ret = spinand_init_cfg_cache(spinand);
 | |
| 	if (ret)
 | |
| 		goto err_free_bufs;
 | |
| 
 | |
| 	ret = spinand_init_quad_enable(spinand);
 | |
| 	if (ret)
 | |
| 		goto err_free_bufs;
 | |
| 
 | |
| 	ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
 | |
| 	if (ret)
 | |
| 		goto err_free_bufs;
 | |
| 
 | |
| 	ret = spinand_manufacturer_init(spinand);
 | |
| 	if (ret) {
 | |
| 		dev_err(spinand->slave->dev,
 | |
| 			"Failed to initialize the SPI NAND chip (err = %d)\n",
 | |
| 			ret);
 | |
| 		goto err_free_bufs;
 | |
| 	}
 | |
| 
 | |
| 	/* After power up, all blocks are locked, so unlock them here. */
 | |
| 	for (i = 0; i < nand->memorg.ntargets; i++) {
 | |
| 		ret = spinand_select_target(spinand, i);
 | |
| 		if (ret)
 | |
| 			goto err_free_bufs;
 | |
| 
 | |
| 		ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
 | |
| 		if (ret)
 | |
| 			goto err_free_bufs;
 | |
| 	}
 | |
| 
 | |
| 	ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
 | |
| 	if (ret)
 | |
| 		goto err_manuf_cleanup;
 | |
| 
 | |
| 	/*
 | |
| 	 * Right now, we don't support ECC, so let the whole oob
 | |
| 	 * area is available for user.
 | |
| 	 */
 | |
| 	mtd->_read_oob = spinand_mtd_read;
 | |
| 	mtd->_write_oob = spinand_mtd_write;
 | |
| 	mtd->_block_isbad = spinand_mtd_block_isbad;
 | |
| 	mtd->_block_markbad = spinand_mtd_block_markbad;
 | |
| 	mtd->_block_isreserved = spinand_mtd_block_isreserved;
 | |
| 	mtd->_erase = spinand_mtd_erase;
 | |
| 
 | |
| 	if (spinand->eccinfo.ooblayout)
 | |
| 		mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
 | |
| 	else
 | |
| 		mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
 | |
| 
 | |
| 	ret = mtd_ooblayout_count_freebytes(mtd);
 | |
| 	if (ret < 0)
 | |
| 		goto err_cleanup_nanddev;
 | |
| 
 | |
| 	mtd->oobavail = ret;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_cleanup_nanddev:
 | |
| 	nanddev_cleanup(nand);
 | |
| 
 | |
| err_manuf_cleanup:
 | |
| 	spinand_manufacturer_cleanup(spinand);
 | |
| 
 | |
| err_free_bufs:
 | |
| 	kfree(spinand->databuf);
 | |
| 	kfree(spinand->scratchbuf);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void spinand_cleanup(struct spinand_device *spinand)
 | |
| {
 | |
| 	struct nand_device *nand = spinand_to_nand(spinand);
 | |
| 
 | |
| 	nanddev_cleanup(nand);
 | |
| 	spinand_manufacturer_cleanup(spinand);
 | |
| 	kfree(spinand->databuf);
 | |
| 	kfree(spinand->scratchbuf);
 | |
| }
 | |
| 
 | |
| static int spinand_probe(struct udevice *dev)
 | |
| {
 | |
| 	struct spinand_device *spinand = dev_get_priv(dev);
 | |
| 	struct spi_slave *slave = dev_get_parent_priv(dev);
 | |
| 	struct mtd_info *mtd = dev_get_uclass_priv(dev);
 | |
| 	struct nand_device *nand = spinand_to_nand(spinand);
 | |
| 	int ret;
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| 	spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
 | |
| 			       GFP_KERNEL);
 | |
| 	if (!spinand)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spinand->spimem = mem;
 | |
| 	spi_mem_set_drvdata(mem, spinand);
 | |
| 	spinand_set_of_node(spinand, mem->spi->dev.of_node);
 | |
| 	mutex_init(&spinand->lock);
 | |
| 
 | |
| 	mtd = spinand_to_mtd(spinand);
 | |
| 	mtd->dev.parent = &mem->spi->dev;
 | |
| #else
 | |
| 	nand->mtd = mtd;
 | |
| 	mtd->priv = nand;
 | |
| 	mtd->dev = dev;
 | |
| 	mtd->name = malloc(20);
 | |
| 	if (!mtd->name)
 | |
| 		return -ENOMEM;
 | |
| 	sprintf(mtd->name, "spi-nand%d", spi_nand_idx++);
 | |
| 	spinand->slave = slave;
 | |
| 	spinand_set_ofnode(spinand, dev_ofnode(dev));
 | |
| #endif
 | |
| 
 | |
| 	ret = spinand_init(spinand);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| 	ret = mtd_device_register(mtd, NULL, 0);
 | |
| #else
 | |
| 	ret = add_mtd_device(mtd);
 | |
| #endif
 | |
| 	if (ret)
 | |
| 		goto err_spinand_cleanup;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_spinand_cleanup:
 | |
| 	spinand_cleanup(spinand);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| static int spinand_remove(struct udevice *slave)
 | |
| {
 | |
| 	struct spinand_device *spinand;
 | |
| 	struct mtd_info *mtd;
 | |
| 	int ret;
 | |
| 
 | |
| 	spinand = spi_mem_get_drvdata(slave);
 | |
| 	mtd = spinand_to_mtd(spinand);
 | |
| 	free(mtd->name);
 | |
| 
 | |
| 	ret = mtd_device_unregister(mtd);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	spinand_cleanup(spinand);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct spi_device_id spinand_ids[] = {
 | |
| 	{ .name = "spi-nand" },
 | |
| 	{ /* sentinel */ },
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_OF
 | |
| static const struct of_device_id spinand_of_ids[] = {
 | |
| 	{ .compatible = "spi-nand" },
 | |
| 	{ /* sentinel */ },
 | |
| };
 | |
| #endif
 | |
| 
 | |
| static struct spi_mem_driver spinand_drv = {
 | |
| 	.spidrv = {
 | |
| 		.id_table = spinand_ids,
 | |
| 		.driver = {
 | |
| 			.name = "spi-nand",
 | |
| 			.of_match_table = of_match_ptr(spinand_of_ids),
 | |
| 		},
 | |
| 	},
 | |
| 	.probe = spinand_probe,
 | |
| 	.remove = spinand_remove,
 | |
| };
 | |
| module_spi_mem_driver(spinand_drv);
 | |
| 
 | |
| MODULE_DESCRIPTION("SPI NAND framework");
 | |
| MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
 | |
| MODULE_LICENSE("GPL v2");
 | |
| #endif /* __UBOOT__ */
 | |
| 
 | |
| static const struct udevice_id spinand_ids[] = {
 | |
| 	{ .compatible = "spi-nand" },
 | |
| 	{ /* sentinel */ },
 | |
| };
 | |
| 
 | |
| U_BOOT_DRIVER(spinand) = {
 | |
| 	.name = "spi_nand",
 | |
| 	.id = UCLASS_MTD,
 | |
| 	.of_match = spinand_ids,
 | |
| 	.priv_auto	= sizeof(struct spinand_device),
 | |
| 	.probe = spinand_probe,
 | |
| };
 |