1104 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1104 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| 
 | |
| /*
 | |
|  * Copyright (C) 2020 Cortina Access Inc.
 | |
|  * Author: Aaron Tseng <aaron.tseng@cortina-access.com>
 | |
|  *
 | |
|  * Ethernet MAC Driver for all supported CAxxxx SoCs
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <command.h>
 | |
| #include <malloc.h>
 | |
| #include <net.h>
 | |
| #include <miiphy.h>
 | |
| #include <env.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <u-boot/crc.h>
 | |
| #include <led.h>
 | |
| 
 | |
| #include "cortina_ni.h"
 | |
| 
 | |
| #define HEADER_A_SIZE	8
 | |
| 
 | |
| enum ca_led_state_t {
 | |
| 	CA_LED_OFF = 0,
 | |
| 	CA_LED_ON = 1,
 | |
| };
 | |
| 
 | |
| enum ca_port_t {
 | |
| 	NI_PORT_0 = 0,
 | |
| 	NI_PORT_1,
 | |
| 	NI_PORT_2,
 | |
| 	NI_PORT_3,
 | |
| 	NI_PORT_4,
 | |
| 	NI_PORT_5,
 | |
| 	NI_PORT_MAX,
 | |
| };
 | |
| 
 | |
| static struct udevice *curr_dev;
 | |
| 
 | |
| static u32 *ca_rdwrptr_adv_one(u32 *x, unsigned long base, unsigned long max)
 | |
| {
 | |
| 	if (x + 1 >= (u32 *)max)
 | |
| 		return (u32 *)base;
 | |
| 	else
 | |
| 		return (x + 1);
 | |
| }
 | |
| 
 | |
| static void ca_reg_read(void *reg, u64 base, u64 offset)
 | |
| {
 | |
| 	u32 *val = (u32 *)reg;
 | |
| 
 | |
| 	*val = readl(KSEG1_ATU_XLAT(base + offset));
 | |
| }
 | |
| 
 | |
| static void ca_reg_write(void *reg, u64 base, u64 offset)
 | |
| {
 | |
| 	u32 val = *(u32 *)reg;
 | |
| 
 | |
| 	writel(val, KSEG1_ATU_XLAT(base + offset));
 | |
| }
 | |
| 
 | |
| static int ca_mdio_write_rgmii(u32 addr, u32 offset, u16 data)
 | |
| {
 | |
| 	/* up to 10000 cycles*/
 | |
| 	u32 loop_wait = __MDIO_ACCESS_TIMEOUT;
 | |
| 	struct PER_MDIO_ADDR_t mdio_addr;
 | |
| 	struct PER_MDIO_CTRL_t mdio_ctrl;
 | |
| 	struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
 | |
| 
 | |
| 	memset(&mdio_addr, 0, sizeof(mdio_addr));
 | |
| 	mdio_addr.mdio_addr = addr;
 | |
| 	mdio_addr.mdio_offset = offset;
 | |
| 	mdio_addr.mdio_rd_wr = __MDIO_WR_FLAG;
 | |
| 	ca_reg_write(&mdio_addr, (u64)priv->per_mdio_base_addr,
 | |
| 		     PER_MDIO_ADDR_OFFSET);
 | |
| 	ca_reg_write(&data, (u64)priv->per_mdio_base_addr,
 | |
| 		     PER_MDIO_WRDATA_OFFSET);
 | |
| 
 | |
| 	memset(&mdio_ctrl, 0, sizeof(mdio_ctrl));
 | |
| 	mdio_ctrl.mdiostart = 1;
 | |
| 	ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
 | |
| 		     PER_MDIO_CTRL_OFFSET);
 | |
| 
 | |
| 	debug("%s: phy_addr=%d, offset=%d, data=0x%x\n",
 | |
| 	      __func__, addr, offset, data);
 | |
| 
 | |
| 	do {
 | |
| 		ca_reg_read(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
 | |
| 			    PER_MDIO_CTRL_OFFSET);
 | |
| 		if (mdio_ctrl.mdiodone) {
 | |
| 			ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
 | |
| 				     PER_MDIO_CTRL_OFFSET);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	} while (--loop_wait);
 | |
| 
 | |
| 	printf("CA NI %s: PHY write timeout!!!\n", __func__);
 | |
| 	return -ETIMEDOUT;
 | |
| }
 | |
| 
 | |
| int ca_mdio_write(u32 addr, u32 offset, u16 data)
 | |
| {
 | |
| 	u32 reg_addr, reg_val;
 | |
| 	struct NI_MDIO_OPER_T mdio_oper;
 | |
| 
 | |
| 	/* support range: 1~31*/
 | |
| 	if (addr < CA_MDIO_ADDR_MIN || addr > CA_MDIO_ADDR_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* the phy addr 5 is connect to RGMII */
 | |
| 	if (addr >= 5)
 | |
| 		return ca_mdio_write_rgmii(addr, offset, data);
 | |
| 
 | |
| 	memset(&mdio_oper, 0, sizeof(mdio_oper));
 | |
| 	mdio_oper.reg_off = offset;
 | |
| 	mdio_oper.phy_addr = addr;
 | |
| 	mdio_oper.reg_base = CA_NI_MDIO_REG_BASE;
 | |
| 	reg_val = data;
 | |
| 	memcpy(®_addr, &mdio_oper, sizeof(reg_addr));
 | |
| 	ca_reg_write(®_val, (u64)reg_addr, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ca_mdio_read_rgmii(u32 addr, u32 offset, u16 *data)
 | |
| {
 | |
| 	u32 loop_wait = __MDIO_ACCESS_TIMEOUT;
 | |
| 	struct PER_MDIO_ADDR_t mdio_addr;
 | |
| 	struct PER_MDIO_CTRL_t mdio_ctrl;
 | |
| 	struct PER_MDIO_RDDATA_t read_data;
 | |
| 	struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
 | |
| 
 | |
| 	memset(&mdio_addr, 0, sizeof(mdio_addr));
 | |
| 	mdio_addr.mdio_addr = addr;
 | |
| 	mdio_addr.mdio_offset = offset;
 | |
| 	mdio_addr.mdio_rd_wr = __MDIO_RD_FLAG;
 | |
| 	ca_reg_write(&mdio_addr, (u64)priv->per_mdio_base_addr,
 | |
| 		     PER_MDIO_ADDR_OFFSET);
 | |
| 
 | |
| 	memset(&mdio_ctrl, 0, sizeof(mdio_ctrl));
 | |
| 	mdio_ctrl.mdiostart = 1;
 | |
| 	ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
 | |
| 		     PER_MDIO_CTRL_OFFSET);
 | |
| 
 | |
| 	do {
 | |
| 		ca_reg_read(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
 | |
| 			    PER_MDIO_CTRL_OFFSET);
 | |
| 		if (mdio_ctrl.mdiodone) {
 | |
| 			ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
 | |
| 				     PER_MDIO_CTRL_OFFSET);
 | |
| 			ca_reg_read(&read_data, (u64)priv->per_mdio_base_addr,
 | |
| 				    PER_MDIO_RDDATA_OFFSET);
 | |
| 			*data = read_data.mdio_rddata;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	} while (--loop_wait);
 | |
| 
 | |
| 	printf("CA NI %s: TIMEOUT!!\n", __func__);
 | |
| 	return -ETIMEDOUT;
 | |
| }
 | |
| 
 | |
| int ca_mdio_read(u32 addr, u32 offset, u16 *data)
 | |
| {
 | |
| 	u32 reg_addr, reg_val;
 | |
| 	struct NI_MDIO_OPER_T mdio_oper;
 | |
| 
 | |
| 	if (!data)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* support range: 1~31*/
 | |
| 	if (addr < CA_MDIO_ADDR_MIN || addr > CA_MDIO_ADDR_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* the phy addr 5 is connect to RGMII */
 | |
| 	if (addr >= 5)
 | |
| 		return ca_mdio_read_rgmii(addr, offset, data);
 | |
| 
 | |
| 	memset(&mdio_oper, 0, sizeof(mdio_oper));
 | |
| 	mdio_oper.reg_off = offset;
 | |
| 	mdio_oper.phy_addr = addr;
 | |
| 	mdio_oper.reg_base = CA_NI_MDIO_REG_BASE;
 | |
| 	reg_val = *data;
 | |
| 	memcpy(®_addr, &mdio_oper, sizeof(reg_addr));
 | |
| 	ca_reg_read(®_val, (u64)reg_addr, 0);
 | |
| 	*data = reg_val;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ca_miiphy_read(const char *devname, u8 addr, u8 reg, u16 *value)
 | |
| {
 | |
| 	return ca_mdio_read(addr, reg, value);
 | |
| }
 | |
| 
 | |
| int ca_miiphy_write(const char *devname, u8 addr, u8 reg, u16 value)
 | |
| {
 | |
| 	return ca_mdio_write(addr, reg, value);
 | |
| }
 | |
| 
 | |
| static int cortina_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
 | |
| {
 | |
| 	u16 data;
 | |
| 
 | |
| 	ca_mdio_read(addr, reg, &data);
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| static int cortina_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
 | |
| 			      u16 val)
 | |
| {
 | |
| 	return ca_mdio_write(addr, reg, val);
 | |
| }
 | |
| 
 | |
| static void ca_ni_setup_mac_addr(void)
 | |
| {
 | |
| 	u8 mac[6];
 | |
| 	struct NI_HV_GLB_MAC_ADDR_CFG0_t mac_addr_cfg0;
 | |
| 	struct NI_HV_GLB_MAC_ADDR_CFG1_t mac_addr_cfg1;
 | |
| 	struct NI_HV_PT_PORT_STATIC_CFG_t port_static_cfg;
 | |
| 	struct NI_HV_XRAM_CPUXRAM_CFG_t cpuxram_cfg;
 | |
| 	struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
 | |
| 
 | |
| 	/* parsing ethaddr and set to NI registers. */
 | |
| 	if (eth_env_get_enetaddr("ethaddr", mac)) {
 | |
| 		/* The complete MAC address consists of
 | |
| 		 * {MAC_ADDR0_mac_addr0[0-3], MAC_ADDR1_mac_addr1[4],
 | |
| 		 * PT_PORT_STATIC_CFG_mac_addr6[5]}.
 | |
| 		 */
 | |
| 		mac_addr_cfg0.mac_addr0 = (mac[0] << 24) + (mac[1] << 16) +
 | |
| 					  (mac[2] << 8) + mac[3];
 | |
| 		ca_reg_write(&mac_addr_cfg0, (u64)priv->ni_hv_base_addr,
 | |
| 			     NI_HV_GLB_MAC_ADDR_CFG0_OFFSET);
 | |
| 
 | |
| 		memset(&mac_addr_cfg1, 0, sizeof(mac_addr_cfg1));
 | |
| 		mac_addr_cfg1.mac_addr1 = mac[4];
 | |
| 		ca_reg_write(&mac_addr_cfg1, (u64)priv->ni_hv_base_addr,
 | |
| 			     NI_HV_GLB_MAC_ADDR_CFG1_OFFSET);
 | |
| 
 | |
| 		ca_reg_read(&port_static_cfg, (u64)priv->ni_hv_base_addr,
 | |
| 			    NI_HV_PT_PORT_STATIC_CFG_OFFSET +
 | |
| 			    (APB0_NI_HV_PT_STRIDE * priv->active_port));
 | |
| 
 | |
| 		port_static_cfg.mac_addr6 = mac[5];
 | |
| 		ca_reg_write(&port_static_cfg, (u64)priv->ni_hv_base_addr,
 | |
| 			     NI_HV_PT_PORT_STATIC_CFG_OFFSET +
 | |
| 			     (APB0_NI_HV_PT_STRIDE * priv->active_port));
 | |
| 
 | |
| 		/* received only Broadcast and Address matched packets */
 | |
| 		ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
 | |
| 			    NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
 | |
| 		cpuxram_cfg.xram_mgmt_promisc_mode = 0;
 | |
| 		cpuxram_cfg.rx_0_cpu_pkt_dis = 0;
 | |
| 		cpuxram_cfg.tx_0_cpu_pkt_dis = 0;
 | |
| 		ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
 | |
| 			     NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
 | |
| 	} else {
 | |
| 		/* received all packets(promiscuous mode) */
 | |
| 		ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
 | |
| 			    NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
 | |
| 		cpuxram_cfg.xram_mgmt_promisc_mode = 3;
 | |
| 		cpuxram_cfg.rx_0_cpu_pkt_dis = 0;
 | |
| 		cpuxram_cfg.tx_0_cpu_pkt_dis = 0;
 | |
| 		ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
 | |
| 			     NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ca_ni_enable_tx_rx(void)
 | |
| {
 | |
| 	struct NI_HV_PT_RXMAC_CFG_t rxmac_cfg;
 | |
| 	struct NI_HV_PT_TXMAC_CFG_t txmac_cfg;
 | |
| 	struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
 | |
| 
 | |
| 	/* Enable TX and RX functions */
 | |
| 	ca_reg_read(&rxmac_cfg, (u64)priv->ni_hv_base_addr,
 | |
| 		    NI_HV_PT_RXMAC_CFG_OFFSET +
 | |
| 		    (APB0_NI_HV_PT_STRIDE * priv->active_port));
 | |
| 	rxmac_cfg.rx_en = 1;
 | |
| 	ca_reg_write(&rxmac_cfg, (u64)priv->ni_hv_base_addr,
 | |
| 		     NI_HV_PT_RXMAC_CFG_OFFSET +
 | |
| 		     (APB0_NI_HV_PT_STRIDE * priv->active_port));
 | |
| 
 | |
| 	ca_reg_read(&txmac_cfg, (u64)priv->ni_hv_base_addr,
 | |
| 		    NI_HV_PT_TXMAC_CFG_OFFSET +
 | |
| 		    (APB0_NI_HV_PT_STRIDE * priv->active_port));
 | |
| 	txmac_cfg.tx_en = 1;
 | |
| 	ca_reg_write(&txmac_cfg, (u64)priv->ni_hv_base_addr,
 | |
| 		     NI_HV_PT_TXMAC_CFG_OFFSET +
 | |
| 		     (APB0_NI_HV_PT_STRIDE * priv->active_port));
 | |
| }
 | |
| 
 | |
| #define AUTO_SCAN_TIMEOUT 3000 /* 3 seconds */
 | |
| static int ca_ni_auto_scan_active_port(struct cortina_ni_priv *priv)
 | |
| {
 | |
| 	u8 i;
 | |
| 	u16 data;
 | |
| 	u32 start_time;
 | |
| 
 | |
| 	start_time = get_timer(0);
 | |
| 	while (get_timer(start_time) < AUTO_SCAN_TIMEOUT) {
 | |
| 		for (i = 0; i < priv->valid_port_num; i++) {
 | |
| 			if (!priv->port_map[i].phy_addr)
 | |
| 				continue;
 | |
| 
 | |
| 			ca_mdio_read(priv->port_map[i].phy_addr, 1, &data);
 | |
| 			if (data & 0x04) {
 | |
| 				priv->active_port = priv->port_map[i].port;
 | |
| 				return 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	printf("CA NI %s: auto scan active_port timeout.\n", __func__);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static void ca_ni_led(int port, int status)
 | |
| {
 | |
| 	char label[10];
 | |
| 	struct udevice *led_dev;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_LED_CORTINA)) {
 | |
| 		snprintf(label, sizeof(label), "led%d", port);
 | |
| 		debug("%s: set port %d led %s.\n",
 | |
| 		      __func__, port, status ? "on" : "off");
 | |
| 		led_get_by_label(label, &led_dev);
 | |
| 		led_set_state(led_dev, status);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ca_ni_reset(void)
 | |
| {
 | |
| 	int i;
 | |
| 	struct NI_HV_GLB_INIT_DONE_t init_done;
 | |
| 	struct NI_HV_GLB_INTF_RST_CONFIG_t intf_rst_config;
 | |
| 	struct NI_HV_GLB_STATIC_CFG_t static_cfg;
 | |
| 	struct GLOBAL_BLOCK_RESET_t glb_blk_reset;
 | |
| 	struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
 | |
| 
 | |
| 	/* NI global resets */
 | |
| 	ca_reg_read(&glb_blk_reset, (u64)priv->glb_base_addr,
 | |
| 		    GLOBAL_BLOCK_RESET_OFFSET);
 | |
| 	glb_blk_reset.reset_ni = 1;
 | |
| 	ca_reg_write(&glb_blk_reset, (u64)priv->glb_base_addr,
 | |
| 		     GLOBAL_BLOCK_RESET_OFFSET);
 | |
| 	/* Remove resets */
 | |
| 	glb_blk_reset.reset_ni = 0;
 | |
| 	ca_reg_write(&glb_blk_reset, (u64)priv->glb_base_addr,
 | |
| 		     GLOBAL_BLOCK_RESET_OFFSET);
 | |
| 
 | |
| 	/* check the ready bit of NI module */
 | |
| 	for (i = 0; i < NI_READ_POLL_COUNT; i++) {
 | |
| 		ca_reg_read(&init_done, (u64)priv->ni_hv_base_addr,
 | |
| 			    NI_HV_GLB_INIT_DONE_OFFSET);
 | |
| 		if (init_done.ni_init_done)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (i == NI_READ_POLL_COUNT) {
 | |
| 		printf("CA NI %s: NI init done not ready, init_done=0x%x!!!\n",
 | |
| 		       __func__, init_done.ni_init_done);
 | |
| 	}
 | |
| 
 | |
| 	ca_reg_read(&intf_rst_config, (u64)priv->ni_hv_base_addr,
 | |
| 		    NI_HV_GLB_INTF_RST_CONFIG_OFFSET);
 | |
| 	switch (priv->active_port) {
 | |
| 	case NI_PORT_0:
 | |
| 		intf_rst_config.intf_rst_p0 = 0;
 | |
| 		intf_rst_config.mac_rx_rst_p0 = 0;
 | |
| 		intf_rst_config.mac_tx_rst_p0 = 0;
 | |
| 		break;
 | |
| 	case NI_PORT_1:
 | |
| 		intf_rst_config.intf_rst_p1 = 0;
 | |
| 		intf_rst_config.mac_rx_rst_p1 = 0;
 | |
| 		intf_rst_config.mac_tx_rst_p1 = 0;
 | |
| 		break;
 | |
| 	case NI_PORT_2:
 | |
| 		intf_rst_config.intf_rst_p2 = 0;
 | |
| 		intf_rst_config.mac_rx_rst_p2 = 0;
 | |
| 		intf_rst_config.mac_tx_rst_p2 = 0;
 | |
| 		break;
 | |
| 	case NI_PORT_3:
 | |
| 		intf_rst_config.intf_rst_p3 = 0;
 | |
| 		intf_rst_config.mac_tx_rst_p3 = 0;
 | |
| 		intf_rst_config.mac_rx_rst_p3 = 0;
 | |
| 		break;
 | |
| 	case NI_PORT_4:
 | |
| 		intf_rst_config.intf_rst_p4 = 0;
 | |
| 		intf_rst_config.mac_tx_rst_p4 = 0;
 | |
| 		intf_rst_config.mac_rx_rst_p4 = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	ca_reg_write(&intf_rst_config, (u64)priv->ni_hv_base_addr,
 | |
| 		     NI_HV_GLB_INTF_RST_CONFIG_OFFSET);
 | |
| 
 | |
| 	/* Only one GMAC can connect to CPU */
 | |
| 	ca_reg_read(&static_cfg, (u64)priv->ni_hv_base_addr,
 | |
| 		    NI_HV_GLB_STATIC_CFG_OFFSET);
 | |
| 	static_cfg.port_to_cpu = priv->active_port;
 | |
| 	static_cfg.txmib_mode = 1;
 | |
| 	static_cfg.rxmib_mode = 1;
 | |
| 
 | |
| 	ca_reg_write(&static_cfg, (u64)priv->ni_hv_base_addr,
 | |
| 		     NI_HV_GLB_STATIC_CFG_OFFSET);
 | |
| }
 | |
| 
 | |
| static void ca_internal_gphy_cal(struct cortina_ni_priv *priv)
 | |
| {
 | |
| 	int i, port, num;
 | |
| 	u32 reg_off, value;
 | |
| 
 | |
| 	num = priv->gphy_num;
 | |
| 	for (port = 0; port < 4; port++) {
 | |
| 		for (i = 0; i < num; i++) {
 | |
| 			reg_off = priv->gphy_values[i].reg_off + (port * 0x80);
 | |
| 			value = priv->gphy_values[i].value;
 | |
| 			ca_reg_write(&value, reg_off, 0);
 | |
| 			mdelay(50);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int ca_mdio_register(struct udevice *dev)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct cortina_ni_priv *priv = dev_get_priv(dev);
 | |
| 	struct mii_dev *mdio_bus = mdio_alloc();
 | |
| 
 | |
| 	if (!mdio_bus)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mdio_bus->read = cortina_mdio_read;
 | |
| 	mdio_bus->write = cortina_mdio_write;
 | |
| 	snprintf(mdio_bus->name, sizeof(mdio_bus->name), dev->name);
 | |
| 
 | |
| 	mdio_bus->priv = (void *)priv;
 | |
| 
 | |
| 	ret = mdio_register(mdio_bus);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	priv->mdio_bus = mdio_bus;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ca_rgmii_init(struct cortina_ni_priv *priv)
 | |
| {
 | |
| 	struct GLOBAL_GLOBAL_CONFIG_t	glb_config;
 | |
| 	struct GLOBAL_IO_DRIVE_CONTROL_t io_drive_control;
 | |
| 
 | |
| 	/* Generating 25Mhz reference clock for switch */
 | |
| 	ca_reg_read(&glb_config, (u64)priv->glb_base_addr,
 | |
| 		    GLOBAL_GLOBAL_CONFIG_OFFSET);
 | |
| 	glb_config.refclk_sel = 0x01;
 | |
| 	glb_config.ext_reset = 0x01;
 | |
| 	ca_reg_write(&glb_config, (u64)priv->glb_base_addr,
 | |
| 		     GLOBAL_GLOBAL_CONFIG_OFFSET);
 | |
| 
 | |
| 	mdelay(20);
 | |
| 
 | |
| 	/* Do external reset */
 | |
| 	ca_reg_read(&glb_config, (u64)priv->glb_base_addr,
 | |
| 		    GLOBAL_GLOBAL_CONFIG_OFFSET);
 | |
| 	glb_config.ext_reset = 0x0;
 | |
| 	ca_reg_write(&glb_config, (u64)priv->glb_base_addr,
 | |
| 		     GLOBAL_GLOBAL_CONFIG_OFFSET);
 | |
| 
 | |
| 	ca_reg_read(&io_drive_control, (u64)priv->glb_base_addr,
 | |
| 		    GLOBAL_IO_DRIVE_CONTROL_OFFSET);
 | |
| 	io_drive_control.gmac_mode = 2;
 | |
| 	io_drive_control.gmac_dn = 1;
 | |
| 	io_drive_control.gmac_dp = 1;
 | |
| 	ca_reg_write(&io_drive_control, (u64)priv->glb_base_addr,
 | |
| 		     GLOBAL_IO_DRIVE_CONTROL_OFFSET);
 | |
| }
 | |
| 
 | |
| static int ca_phy_probe(struct udevice *dev)
 | |
| {
 | |
| 	int auto_scan_active_port = 0, tmp_port;
 | |
| 	char *buf;
 | |
| 	struct cortina_ni_priv *priv = dev_get_priv(dev);
 | |
| 	struct phy_device *int_phydev, *ext_phydev;
 | |
| 
 | |
| 	/* Initialize internal phy device */
 | |
| 	int_phydev = phy_connect(priv->mdio_bus,
 | |
| 				 priv->port_map[NI_PORT_3].phy_addr,
 | |
| 				 dev, priv->phy_interface);
 | |
| 	if (int_phydev) {
 | |
| 		int_phydev->supported &= PHY_GBIT_FEATURES;
 | |
| 		int_phydev->advertising = int_phydev->supported;
 | |
| 		phy_config(int_phydev);
 | |
| 	} else {
 | |
| 		printf("CA NI %s: There is no internal phy device\n", __func__);
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize external phy device */
 | |
| 	ext_phydev = phy_connect(priv->mdio_bus,
 | |
| 				 priv->port_map[NI_PORT_4].phy_addr,
 | |
| 				 dev, priv->phy_interface);
 | |
| 	if (ext_phydev) {
 | |
| 		ext_phydev->supported &= PHY_GBIT_FEATURES;
 | |
| 		ext_phydev->advertising = int_phydev->supported;
 | |
| 		phy_config(ext_phydev);
 | |
| 	} else {
 | |
| 		printf("CA NI %s: There is no external phy device\n", __func__);
 | |
| 	}
 | |
| 
 | |
| 	/* auto scan the first link up port as active_port */
 | |
| 	buf = env_get("auto_scan_active_port");
 | |
| 	if (buf != 0) {
 | |
| 		auto_scan_active_port = simple_strtoul(buf, NULL, 0);
 | |
| 		printf("CA NI %s: auto_scan_active_port=%d\n", __func__,
 | |
| 		       auto_scan_active_port);
 | |
| 	}
 | |
| 
 | |
| 	if (auto_scan_active_port) {
 | |
| 		ca_ni_auto_scan_active_port(priv);
 | |
| 	} else {
 | |
| 		buf = env_get("active_port");
 | |
| 		if (buf != 0) {
 | |
| 			tmp_port = simple_strtoul(buf, NULL, 0);
 | |
| 			if (tmp_port < 0 &&
 | |
| 			    !(priv->valid_port_map && BIT(tmp_port))) {
 | |
| 				printf("CA NI ERROR: not support this port.");
 | |
| 				free(dev);
 | |
| 				free(priv);
 | |
| 				return 1;
 | |
| 			}
 | |
| 
 | |
| 			priv->active_port = tmp_port;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	printf("CA NI %s: active_port=%d\n", __func__, priv->active_port);
 | |
| 	if (priv->active_port == NI_PORT_4)
 | |
| 		priv->phydev = ext_phydev;
 | |
| 	else
 | |
| 		priv->phydev = int_phydev;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cortina_eth_start(struct udevice *dev)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct NI_HV_XRAM_CPUXRAM_ADRCFG_RX_t cpuxram_adrcfg_rx;
 | |
| 	struct NI_HV_XRAM_CPUXRAM_ADRCFG_TX_0_t cpuxram_adrcfg_tx;
 | |
| 	struct NI_HV_XRAM_CPUXRAM_CFG_t	cpuxram_cfg;
 | |
| 	struct NI_HV_PT_PORT_STATIC_CFG_t port_static_cfg;
 | |
| 	struct NI_HV_PT_PORT_GLB_CFG_t port_glb_cfg;
 | |
| 	struct cortina_ni_priv *priv = dev_get_priv(dev);
 | |
| 	struct phy_device *phydev = priv->phydev;
 | |
| 
 | |
| 	ret = phy_startup(priv->phydev);
 | |
| 	if (ret) {
 | |
| 		ca_ni_led(priv->active_port, CA_LED_OFF);
 | |
| 		printf("CA NI Could not initialize PHY %s, active_port=%d\n",
 | |
| 		       priv->phydev->dev->name, priv->active_port);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (!priv->phydev->link) {
 | |
| 		printf("CA NI %s: link down.\n", priv->phydev->dev->name);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ca_ni_led(priv->active_port, CA_LED_ON);
 | |
| 	printf("CA NI PHY ID 0x%08X %dMbps %s duplex\n",
 | |
| 	       phydev->phy_id, phydev->speed,
 | |
| 	       phydev->duplex == DUPLEX_HALF ? "half" : "full");
 | |
| 
 | |
| 	/* RX XRAM ADDRESS CONFIG (start and end address) */
 | |
| 	memset(&cpuxram_adrcfg_rx, 0, sizeof(cpuxram_adrcfg_rx));
 | |
| 	cpuxram_adrcfg_rx.rx_top_addr = RX_TOP_ADDR;
 | |
| 	cpuxram_adrcfg_rx.rx_base_addr = RX_BASE_ADDR;
 | |
| 	ca_reg_write(&cpuxram_adrcfg_rx, (u64)priv->ni_hv_base_addr,
 | |
| 		     NI_HV_XRAM_CPUXRAM_ADRCFG_RX_OFFSET);
 | |
| 
 | |
| 	/* TX XRAM ADDRESS CONFIG (start and end address) */
 | |
| 	memset(&cpuxram_adrcfg_tx, 0, sizeof(cpuxram_adrcfg_tx));
 | |
| 	cpuxram_adrcfg_tx.tx_top_addr = TX_TOP_ADDR;
 | |
| 	cpuxram_adrcfg_tx.tx_base_addr = TX_BASE_ADDR;
 | |
| 	ca_reg_write(&cpuxram_adrcfg_tx, (u64)priv->ni_hv_base_addr,
 | |
| 		     NI_HV_XRAM_CPUXRAM_ADRCFG_TX_0_OFFSET);
 | |
| 
 | |
| 	/*
 | |
| 	 * Configuration for Management Ethernet Interface:
 | |
| 	 * - RGMII 1000 mode or RGMII 100 mode
 | |
| 	 * - MAC mode
 | |
| 	 */
 | |
| 	ca_reg_read(&port_static_cfg, (u64)priv->ni_hv_base_addr,
 | |
| 		    NI_HV_PT_PORT_STATIC_CFG_OFFSET +
 | |
| 		    (APB0_NI_HV_PT_STRIDE * priv->active_port));
 | |
| 	if (phydev->speed == SPEED_1000) {
 | |
| 		/* port 4 connects to RGMII PHY */
 | |
| 		if (phydev->addr == 5)
 | |
| 			port_static_cfg.int_cfg = GE_MAC_INTF_RGMII_1000;
 | |
| 		else
 | |
| 			port_static_cfg.int_cfg = GE_MAC_INTF_GMII;
 | |
| 	} else {
 | |
| 		/* port 4 connects to RGMII PHY */
 | |
| 		if (phydev->addr == 5)
 | |
| 			port_static_cfg.int_cfg = GE_MAC_INTF_RGMII_100;
 | |
| 		else
 | |
| 			port_static_cfg.int_cfg = GE_MAC_INTF_MII;
 | |
| 	}
 | |
| 
 | |
| 	ca_reg_write(&port_static_cfg, (u64)priv->ni_hv_base_addr,
 | |
| 		     NI_HV_PT_PORT_STATIC_CFG_OFFSET +
 | |
| 		     (APB0_NI_HV_PT_STRIDE * priv->active_port));
 | |
| 
 | |
| 	ca_reg_read(&port_glb_cfg, (u64)priv->ni_hv_base_addr,
 | |
| 		    NI_HV_PT_PORT_GLB_CFG_OFFSET +
 | |
| 		    (APB0_NI_HV_PT_STRIDE * priv->active_port));
 | |
| 	port_glb_cfg.speed = phydev->speed == SPEED_10 ? 1 : 0;
 | |
| 	port_glb_cfg.duplex = phydev->duplex == DUPLEX_HALF ? 1 : 0;
 | |
| 	ca_reg_write(&port_glb_cfg, (u64)priv->ni_hv_base_addr,
 | |
| 		     NI_HV_PT_PORT_GLB_CFG_OFFSET +
 | |
| 		     (APB0_NI_HV_PT_STRIDE * priv->active_port));
 | |
| 
 | |
| 	/* Need to toggle the tx and rx cpu_pkt_dis bit */
 | |
| 	/* after changing Address config register.      */
 | |
| 	ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
 | |
| 		    NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
 | |
| 	cpuxram_cfg.rx_0_cpu_pkt_dis = 1;
 | |
| 	cpuxram_cfg.tx_0_cpu_pkt_dis = 1;
 | |
| 	ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
 | |
| 		     NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
 | |
| 
 | |
| 	ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
 | |
| 		    NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
 | |
| 	cpuxram_cfg.rx_0_cpu_pkt_dis = 0;
 | |
| 	cpuxram_cfg.tx_0_cpu_pkt_dis = 0;
 | |
| 	ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
 | |
| 		     NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
 | |
| 
 | |
| 	ca_ni_enable_tx_rx();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*********************************************
 | |
|  * Packet receive routine from Management FE
 | |
|  * Expects a previously allocated buffer and
 | |
|  * fills the length
 | |
|  * Retruns 0 on success -1 on failure
 | |
|  *******************************************/
 | |
| static int cortina_eth_recv(struct udevice *dev, int flags, uchar **packetp)
 | |
| {
 | |
| 	u8 *ptr;
 | |
| 	u32 next_link, pktlen = 0;
 | |
| 	u32 sw_rx_rd_ptr, hw_rx_wr_ptr, *rx_xram_ptr, *data_ptr;
 | |
| 	int loop, index = 0, blk_num;
 | |
| 	struct cortina_ni_priv *priv = dev_get_priv(dev);
 | |
| 	struct NI_HEADER_X_T header_x;
 | |
| 	struct NI_PACKET_STATUS packet_status;
 | |
| 	struct NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_t cpuxram_cpu_sta_rx;
 | |
| 	struct NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_t cpuxram_cpu_cfg_rx;
 | |
| 
 | |
| 	/* get the hw write pointer */
 | |
| 	memset(&cpuxram_cpu_sta_rx, 0, sizeof(cpuxram_cpu_sta_rx));
 | |
| 	ca_reg_read(&cpuxram_cpu_sta_rx, (u64)priv->ni_hv_base_addr,
 | |
| 		    NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET);
 | |
| 	hw_rx_wr_ptr = cpuxram_cpu_sta_rx.pkt_wr_ptr;
 | |
| 
 | |
| 	/* get the sw read pointer */
 | |
| 	memset(&cpuxram_cpu_cfg_rx, 0, sizeof(cpuxram_cpu_cfg_rx));
 | |
| 	ca_reg_read(&cpuxram_cpu_cfg_rx, (u64)priv->ni_hv_base_addr,
 | |
| 		    NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
 | |
| 	sw_rx_rd_ptr = cpuxram_cpu_cfg_rx.pkt_rd_ptr;
 | |
| 
 | |
| 	debug("%s: NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0 = 0x%p, ", __func__,
 | |
| 	      priv->ni_hv_base_addr + NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET);
 | |
| 	debug("NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0 = 0x%p\n",
 | |
| 	      priv->ni_hv_base_addr + NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
 | |
| 	debug("%s : RX hw_wr_ptr = %d, sw_rd_ptr = %d\n",
 | |
| 	      __func__, hw_rx_wr_ptr, sw_rx_rd_ptr);
 | |
| 
 | |
| 	while (sw_rx_rd_ptr != hw_rx_wr_ptr) {
 | |
| 		/* Point to the absolute memory address of XRAM
 | |
| 		 * where read pointer is
 | |
| 		 */
 | |
| 		rx_xram_ptr = (u32 *)
 | |
| 			      ((unsigned long)priv->ni_xram_base
 | |
| 			       + sw_rx_rd_ptr * 8);
 | |
| 
 | |
| 		/* Wrap around if required */
 | |
| 		if (rx_xram_ptr >= (u32 *)(unsigned long)priv->rx_xram_end_adr)
 | |
| 			rx_xram_ptr = (u32 *)
 | |
| 				      (unsigned long)priv->rx_xram_base_adr;
 | |
| 
 | |
| 		/* Checking header XR. Do not update the read pointer yet */
 | |
| 		/* skip unused 32-bit in Header XR */
 | |
| 		rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr,
 | |
| 						 priv->rx_xram_base_adr,
 | |
| 						 priv->rx_xram_end_adr);
 | |
| 
 | |
| 		memcpy(&header_x, rx_xram_ptr, sizeof(header_x));
 | |
| 		next_link = header_x.next_link;
 | |
| 		/* Header XR [31:0] */
 | |
| 
 | |
| 		if (*rx_xram_ptr == 0xffffffff)
 | |
| 			printf("CA NI %s: XRAM Error !\n", __func__);
 | |
| 
 | |
| 		debug("%s : RX next link 0x%x\n", __func__, next_link);
 | |
| 		debug("%s : bytes_valid %x\n", __func__, header_x.bytes_valid);
 | |
| 
 | |
| 		if (header_x.ownership == 0) {
 | |
| 			/* point to Packet status [31:0] */
 | |
| 			rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr,
 | |
| 							 priv->rx_xram_base_adr,
 | |
| 							 priv->rx_xram_end_adr);
 | |
| 
 | |
| 			memcpy(&packet_status, rx_xram_ptr,
 | |
| 			       sizeof(*rx_xram_ptr));
 | |
| 			if (packet_status.valid == 0) {
 | |
| 				debug("%s: Invalid Packet !!, ", __func__);
 | |
| 				debug("next_link=%d\n", next_link);
 | |
| 
 | |
| 				/* Update the software read pointer */
 | |
| 				ca_reg_write(&next_link,
 | |
| 					     (u64)priv->ni_hv_base_addr,
 | |
| 					NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
 | |
| 				return 0;
 | |
| 			}
 | |
| 
 | |
| 			if (packet_status.drop ||
 | |
| 			    packet_status.runt ||
 | |
| 			    packet_status.oversize ||
 | |
| 			    packet_status.jabber ||
 | |
| 			    packet_status.crc_error ||
 | |
| 			    packet_status.jumbo) {
 | |
| 				debug("%s: Error Packet!!, ", __func__);
 | |
| 				debug("next_link=%d\n", next_link);
 | |
| 
 | |
| 				/* Update the software read pointer */
 | |
| 				ca_reg_write(&next_link,
 | |
| 					     (u64)priv->ni_hv_base_addr,
 | |
| 					NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
 | |
| 				return 0;
 | |
| 			}
 | |
| 
 | |
| 			/* check whether packet size is larger than 1514 */
 | |
| 			if (packet_status.packet_size > 1518) {
 | |
| 				debug("%s: Error Packet !! Packet size=%d, ",
 | |
| 				      __func__, packet_status.packet_size);
 | |
| 				debug("larger than 1518, next_link=%d\n",
 | |
| 				      next_link);
 | |
| 
 | |
| 				/* Update the software read pointer */
 | |
| 				ca_reg_write(&next_link,
 | |
| 					     (u64)priv->ni_hv_base_addr,
 | |
| 					NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
 | |
| 				return 0;
 | |
| 			}
 | |
| 
 | |
| 			rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr,
 | |
| 							 priv->rx_xram_base_adr,
 | |
| 							 priv->rx_xram_end_adr);
 | |
| 
 | |
| 			pktlen = packet_status.packet_size;
 | |
| 
 | |
| 			debug("%s : rx packet length = %d\n",
 | |
| 			      __func__, packet_status.packet_size);
 | |
| 
 | |
| 			rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr,
 | |
| 							 priv->rx_xram_base_adr,
 | |
| 							 priv->rx_xram_end_adr);
 | |
| 
 | |
| 			data_ptr = (u32 *)net_rx_packets[index];
 | |
| 
 | |
| 			/* Read out the packet */
 | |
| 			/* Data is in little endian form in the XRAM */
 | |
| 
 | |
| 			/* Send the packet to upper layer */
 | |
| 
 | |
| 			debug("%s: packet data[]=", __func__);
 | |
| 
 | |
| 			for (loop = 0; loop <= pktlen / 4; loop++) {
 | |
| 				ptr = (u8 *)rx_xram_ptr;
 | |
| 				if (loop < 10)
 | |
| 					debug("[0x%x]-[0x%x]-[0x%x]-[0x%x]",
 | |
| 					      ptr[0], ptr[1], ptr[2], ptr[3]);
 | |
| 				*data_ptr++ = *rx_xram_ptr++;
 | |
| 				/* Wrap around if required */
 | |
| 				if (rx_xram_ptr >= (u32 *)
 | |
| 				    (unsigned long)priv->rx_xram_end_adr) {
 | |
| 					rx_xram_ptr = (u32 *)(unsigned long)
 | |
| 						       (priv->rx_xram_base_adr);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			debug("\n");
 | |
| 			net_process_received_packet(net_rx_packets[index],
 | |
| 						    pktlen);
 | |
| 			if (++index >= PKTBUFSRX)
 | |
| 				index = 0;
 | |
| 			blk_num = net_rx_packets[index][0x2c] * 255 +
 | |
| 				net_rx_packets[index][0x2d];
 | |
| 			debug("%s: tftp block number=%d\n", __func__, blk_num);
 | |
| 
 | |
| 			/* Update the software read pointer */
 | |
| 			ca_reg_write(&next_link,
 | |
| 				     (u64)priv->ni_hv_base_addr,
 | |
| 				     NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
 | |
| 		}
 | |
| 
 | |
| 		/* get the hw write pointer */
 | |
| 		ca_reg_read(&cpuxram_cpu_sta_rx, (u64)priv->ni_hv_base_addr,
 | |
| 			    NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET);
 | |
| 		hw_rx_wr_ptr = cpuxram_cpu_sta_rx.pkt_wr_ptr;
 | |
| 
 | |
| 		/* get the sw read pointer */
 | |
| 		ca_reg_read(&sw_rx_rd_ptr, (u64)priv->ni_hv_base_addr,
 | |
| 			    NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cortina_eth_send(struct udevice *dev, void *packet, int length)
 | |
| {
 | |
| 	u32 hw_tx_rd_ptr = 0, sw_tx_wr_ptr = 0;
 | |
| 	u32 loop, new_pkt_len, ca_crc32;
 | |
| 	u32 *tx_xram_ptr, *data_ptr;
 | |
| 	u16 next_link = 0;
 | |
| 	u8 *ptr, *pkt_buf_ptr, valid_bytes = 0;
 | |
| 	int pad = 0;
 | |
| 	static u8 pkt_buf[2048];
 | |
| 	struct NI_HEADER_X_T hdr_xt;
 | |
| 	struct NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_t cpuxram_cpu_cfg_tx;
 | |
| 	struct cortina_ni_priv *priv = dev_get_priv(dev);
 | |
| 
 | |
| 	if (!packet || length > 2032)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* Get the hardware read pointer */
 | |
| 	ca_reg_read(&hw_tx_rd_ptr, (u64)priv->ni_hv_base_addr,
 | |
| 		    NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0_OFFSET);
 | |
| 
 | |
| 	/* Get the software write pointer */
 | |
| 	ca_reg_read(&sw_tx_wr_ptr, (u64)priv->ni_hv_base_addr,
 | |
| 		    NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET);
 | |
| 
 | |
| 	debug("%s: NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0=0x%p, ",
 | |
| 	      __func__,
 | |
| 	      KSEG1_ATU_XLAT(priv->ni_hv_base_addr +
 | |
| 			     NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0_OFFSET));
 | |
| 	debug("NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0=0x%p\n",
 | |
| 	      KSEG1_ATU_XLAT(priv->ni_hv_base_addr +
 | |
| 			     NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET));
 | |
| 	debug("%s : hw_tx_rd_ptr = %d\n", __func__, hw_tx_rd_ptr);
 | |
| 	debug("%s : sw_tx_wr_ptr = %d\n", __func__, sw_tx_wr_ptr);
 | |
| 
 | |
| 	if (hw_tx_rd_ptr != sw_tx_wr_ptr) {
 | |
| 		printf("CA NI %s: Tx FIFO is not available!\n", __func__);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* a workaround on 2015/10/01
 | |
| 	 * the packet size+CRC should be 8-byte alignment
 | |
| 	 */
 | |
| 	if (((length + 4) % 8) != 0)
 | |
| 		length += (8 - ((length + 4) % 8));
 | |
| 
 | |
| 	memset(pkt_buf, 0x00, sizeof(pkt_buf));
 | |
| 
 | |
| 	/* add 8-byte header_A at the beginning of packet */
 | |
| 	memcpy(&pkt_buf[HEADER_A_SIZE], (const void *)packet, length);
 | |
| 
 | |
| 	pad = 64 - (length + 4);	/* if packet length < 60 */
 | |
| 	pad = (pad < 0) ? 0 : pad;
 | |
| 
 | |
| 	debug("%s: length=%d, pad=%d\n", __func__, length, pad);
 | |
| 
 | |
| 	new_pkt_len = length + pad;	/* new packet length */
 | |
| 
 | |
| 	pkt_buf_ptr = (u8 *)pkt_buf;
 | |
| 
 | |
| 	/* Calculate the CRC32, skip 8-byte header_A */
 | |
| 	ca_crc32 = crc32(0, (u8 *)(pkt_buf_ptr + HEADER_A_SIZE), new_pkt_len);
 | |
| 
 | |
| 	debug("%s: crc32 is 0x%x\n", __func__, ca_crc32);
 | |
| 	debug("%s: ~crc32 is 0x%x\n", __func__, ~ca_crc32);
 | |
| 	debug("%s: pkt len %d\n", __func__, new_pkt_len);
 | |
| 	/* should add 8-byte header_! */
 | |
| 	/* CRC will re-calculated by hardware */
 | |
| 	memcpy((pkt_buf_ptr + new_pkt_len + HEADER_A_SIZE),
 | |
| 	       (u8 *)(&ca_crc32), sizeof(ca_crc32));
 | |
| 	new_pkt_len = new_pkt_len + 4;	/* add CRC */
 | |
| 
 | |
| 	valid_bytes = new_pkt_len % 8;
 | |
| 	valid_bytes = valid_bytes ? valid_bytes : 0;
 | |
| 	debug("%s: valid_bytes %d\n", __func__, valid_bytes);
 | |
| 
 | |
| 	/* should add 8-byte headerA */
 | |
| 	next_link = sw_tx_wr_ptr +
 | |
| 		(new_pkt_len + 7 + HEADER_A_SIZE) / 8; /* for headr XT */
 | |
| 	/* add header */
 | |
| 	next_link = next_link + 1;
 | |
| 	/* Wrap around if required */
 | |
| 	if (next_link > priv->tx_xram_end) {
 | |
| 		next_link = priv->tx_xram_start +
 | |
| 			(next_link - (priv->tx_xram_end + 1));
 | |
| 	}
 | |
| 
 | |
| 	debug("%s: TX next_link %x\n", __func__, next_link);
 | |
| 	memset(&hdr_xt, 0, sizeof(hdr_xt));
 | |
| 	hdr_xt.ownership = 1;
 | |
| 	hdr_xt.bytes_valid = valid_bytes;
 | |
| 	hdr_xt.next_link = next_link;
 | |
| 
 | |
| 	tx_xram_ptr = (u32 *)((unsigned long)priv->ni_xram_base
 | |
| 		      + sw_tx_wr_ptr * 8);
 | |
| 
 | |
| 	/* Wrap around if required */
 | |
| 	if (tx_xram_ptr >= (u32 *)(unsigned long)priv->tx_xram_end_adr)
 | |
| 		tx_xram_ptr = (u32 *)(unsigned long)priv->tx_xram_base_adr;
 | |
| 
 | |
| 	tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr,
 | |
| 					 priv->tx_xram_base_adr,
 | |
| 					 priv->tx_xram_end_adr);
 | |
| 
 | |
| 	memcpy(tx_xram_ptr, &hdr_xt, sizeof(*tx_xram_ptr));
 | |
| 
 | |
| 	tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr,
 | |
| 					 priv->tx_xram_base_adr,
 | |
| 					 priv->tx_xram_end_adr);
 | |
| 
 | |
| 	/* Now to copy the data. The first byte on the line goes first */
 | |
| 	data_ptr = (u32 *)pkt_buf_ptr;
 | |
| 	debug("%s: packet data[]=", __func__);
 | |
| 
 | |
| 	/* copy header_A to XRAM */
 | |
| 	for (loop = 0; loop <= (new_pkt_len + HEADER_A_SIZE) / 4; loop++) {
 | |
| 		ptr = (u8 *)data_ptr;
 | |
| 		if ((loop % 4) == 0)
 | |
| 			debug("\n");
 | |
| 		debug("[0x%x]-[0x%x]-[0x%x]-[0x%x]-",
 | |
| 		      ptr[0], ptr[1], ptr[2], ptr[3]);
 | |
| 
 | |
| 		*tx_xram_ptr = *data_ptr++;
 | |
| 		tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr,
 | |
| 						 priv->tx_xram_base_adr,
 | |
| 						 priv->tx_xram_end_adr);
 | |
| 	}
 | |
| 	debug("\n");
 | |
| 
 | |
| 	/* Publish the software write pointer */
 | |
| 	cpuxram_cpu_cfg_tx.pkt_wr_ptr = next_link;
 | |
| 	ca_reg_write(&cpuxram_cpu_cfg_tx,
 | |
| 		     (u64)priv->ni_hv_base_addr,
 | |
| 		     NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cortina_eth_stop(struct udevice *netdev)
 | |
| {
 | |
| 	/* Nothing to do for now. */
 | |
| }
 | |
| 
 | |
| static int cortina_eth_probe(struct udevice *dev)
 | |
| {
 | |
| 	int ret, reg_value;
 | |
| 	struct cortina_ni_priv *priv;
 | |
| 
 | |
| 	priv = dev_get_priv(dev);
 | |
| 	priv->rx_xram_base_adr	= priv->ni_xram_base + (RX_BASE_ADDR * 8);
 | |
| 	priv->rx_xram_end_adr	= priv->ni_xram_base + ((RX_TOP_ADDR + 1) * 8);
 | |
| 	priv->rx_xram_start	= RX_BASE_ADDR;
 | |
| 	priv->rx_xram_end	= RX_TOP_ADDR;
 | |
| 	priv->tx_xram_base_adr	= priv->ni_xram_base + (TX_BASE_ADDR * 8);
 | |
| 	priv->tx_xram_end_adr	= priv->ni_xram_base + ((TX_TOP_ADDR + 1) * 8);
 | |
| 	priv->tx_xram_start	= TX_BASE_ADDR;
 | |
| 	priv->tx_xram_end	= TX_TOP_ADDR;
 | |
| 
 | |
| 	curr_dev = dev;
 | |
| 	debug("%s: rx_base_addr:%x\t rx_top_addr %x\n",
 | |
| 	      __func__, priv->rx_xram_start, priv->rx_xram_end);
 | |
| 	debug("%s: tx_base_addr:%x\t tx_top_addr %x\n",
 | |
| 	      __func__, priv->tx_xram_start, priv->tx_xram_end);
 | |
| 	debug("%s: rx physical start address = %x end address = %x\n",
 | |
| 	      __func__, priv->rx_xram_base_adr, priv->rx_xram_end_adr);
 | |
| 	debug("%s: tx physical start address = %x end address = %x\n",
 | |
| 	      __func__, priv->tx_xram_base_adr, priv->tx_xram_end_adr);
 | |
| 
 | |
| 	/* MDIO register */
 | |
| 	ret = ca_mdio_register(dev);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* set MDIO pre-scale value */
 | |
| 	ca_reg_read(®_value, (u64)priv->per_mdio_base_addr,
 | |
| 		    PER_MDIO_CFG_OFFSET);
 | |
| 	reg_value = reg_value | 0x00280000;
 | |
| 	ca_reg_write(®_value, (u64)priv->per_mdio_base_addr,
 | |
| 		     PER_MDIO_CFG_OFFSET);
 | |
| 
 | |
| 	ca_phy_probe(dev);
 | |
| 	priv->phydev->addr = priv->port_map[priv->active_port].phy_addr;
 | |
| 
 | |
| 	ca_ni_led(priv->active_port, CA_LED_ON);
 | |
| 
 | |
| 	ca_ni_reset();
 | |
| 
 | |
| 	printf("CA NI %s: active_port=%d, phy_addr=%d\n",
 | |
| 	       __func__, priv->active_port, priv->phydev->addr);
 | |
| 	printf("CA NI %s: phy_id=0x%x, phy_id & PHY_ID_MASK=0x%x\n", __func__,
 | |
| 	       priv->phydev->phy_id, priv->phydev->phy_id & 0xFFFFFFF0);
 | |
| 
 | |
| 	/* parsing ethaddr and set to NI registers. */
 | |
| 	ca_ni_setup_mac_addr();
 | |
| 
 | |
| #ifdef MIIPHY_REGISTER
 | |
| 	/* the phy_read and phy_write
 | |
| 	 * should meet the proto type of miiphy_register
 | |
| 	 */
 | |
| 	miiphy_register(dev->name, ca_miiphy_read, ca_miiphy_write);
 | |
| #endif
 | |
| 
 | |
| 	if (priv->init_rgmii) {
 | |
| 		/* hardware settings for RGMII port */
 | |
| 		ca_rgmii_init(priv);
 | |
| 	}
 | |
| 
 | |
| 	if (priv->gphy_num > 0) {
 | |
| 		/* do internal gphy calibration */
 | |
| 		ca_internal_gphy_cal(priv);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ca_ni_of_to_plat(struct udevice *dev)
 | |
| {
 | |
| 	int i, ret;
 | |
| 	struct cortina_ni_priv *priv = dev_get_priv(dev);
 | |
| 
 | |
| 	memset(priv, 0, sizeof(struct cortina_ni_priv));
 | |
| 	priv->glb_base_addr = dev_remap_addr_index(dev, 0);
 | |
| 	if (!priv->glb_base_addr)
 | |
| 		return -ENOENT;
 | |
| 	printf("CA NI %s: priv->glb_base_addr for index 0 is 0x%p\n",
 | |
| 	       __func__, priv->glb_base_addr);
 | |
| 
 | |
| 	priv->per_mdio_base_addr = dev_remap_addr_index(dev, 1);
 | |
| 	if (!priv->per_mdio_base_addr)
 | |
| 		return -ENOENT;
 | |
| 	printf("CA NI %s: priv->per_mdio_base_addr for index 1 is 0x%p\n",
 | |
| 	       __func__, priv->per_mdio_base_addr);
 | |
| 
 | |
| 	priv->ni_hv_base_addr = dev_remap_addr_index(dev, 2);
 | |
| 	if (!priv->ni_hv_base_addr)
 | |
| 		return -ENOENT;
 | |
| 	printf("CA NI %s: priv->ni_hv_base_addr for index 2 is 0x%p\n",
 | |
| 	       __func__, priv->ni_hv_base_addr);
 | |
| 
 | |
| 	priv->valid_port_map = dev_read_u32_default(dev, "valid-port-map", 1);
 | |
| 	priv->valid_port_num = dev_read_u32_default(dev, "valid-port-num", 1);
 | |
| 
 | |
| 	for (i = 0; i < priv->valid_port_num; i++) {
 | |
| 		ret = dev_read_u32_index(dev, "valid-ports", i * 2,
 | |
| 					 &priv->port_map[i].phy_addr);
 | |
| 		ret = dev_read_u32_index(dev, "valid-ports", (i * 2) + 1,
 | |
| 					 &priv->port_map[i].port);
 | |
| 	}
 | |
| 
 | |
| 	priv->gphy_num = dev_read_u32_default(dev, "inter-gphy-num", 1);
 | |
| 	for (i = 0; i < priv->gphy_num; i++) {
 | |
| 		ret = dev_read_u32_index(dev, "inter-gphy-val", i * 2,
 | |
| 					 &priv->gphy_values[i].reg_off);
 | |
| 		ret = dev_read_u32_index(dev, "inter-gphy-val", (i * 2) + 1,
 | |
| 					 &priv->gphy_values[i].value);
 | |
| 	}
 | |
| 
 | |
| 	priv->active_port = dev_read_u32_default(dev, "def-active-port", 1);
 | |
| 	priv->init_rgmii = dev_read_u32_default(dev, "init-rgmii", 1);
 | |
| 	priv->ni_xram_base = dev_read_u32_default(dev, "ni-xram-base", 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct eth_ops cortina_eth_ops = {
 | |
| 	.start = cortina_eth_start,
 | |
| 	.send = cortina_eth_send,
 | |
| 	.recv = cortina_eth_recv,
 | |
| 	.stop = cortina_eth_stop,
 | |
| };
 | |
| 
 | |
| static const struct udevice_id cortina_eth_ids[] = {
 | |
| 	{ .compatible = "eth_cortina" },
 | |
| 	{ }
 | |
| };
 | |
| 
 | |
| U_BOOT_DRIVER(eth_cortina) = {
 | |
| 	.name = "eth_cortina",
 | |
| 	.id = UCLASS_ETH,
 | |
| 	.of_match = cortina_eth_ids,
 | |
| 	.probe = cortina_eth_probe,
 | |
| 	.ops = &cortina_eth_ops,
 | |
| 	.priv_auto = sizeof(struct cortina_ni_priv),
 | |
| 	.plat_auto = sizeof(struct eth_pdata),
 | |
| 	.of_to_plat = ca_ni_of_to_plat,
 | |
| };
 |