469 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			469 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 2008 Freescale Semiconductor, Inc.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * Version 2 as published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <asm/fsl_ddr_sdram.h>
 | |
| 
 | |
| #include "ddr.h"
 | |
| 
 | |
| unsigned int
 | |
| compute_cas_latency_ddr3(const dimm_params_t *dimm_params,
 | |
| 			 common_timing_params_t *outpdimm,
 | |
| 			 unsigned int number_of_dimms)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	unsigned int tAAmin_ps = 0;
 | |
| 	unsigned int tCKmin_X_ps = 0;
 | |
| 	unsigned int common_caslat;
 | |
| 	unsigned int caslat_actual;
 | |
| 	unsigned int retry = 16;
 | |
| 	unsigned int tmp;
 | |
| 	const unsigned int mclk_ps = get_memory_clk_period_ps();
 | |
| 
 | |
| 	/* compute the common CAS latency supported between slots */
 | |
| 	tmp = dimm_params[0].caslat_X;
 | |
| 	for (i = 1; i < number_of_dimms; i++)
 | |
| 		 tmp &= dimm_params[i].caslat_X;
 | |
| 	common_caslat = tmp;
 | |
| 
 | |
| 	/* compute the max tAAmin tCKmin between slots */
 | |
| 	for (i = 0; i < number_of_dimms; i++) {
 | |
| 		tAAmin_ps = max(tAAmin_ps, dimm_params[i].tAA_ps);
 | |
| 		tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
 | |
| 	}
 | |
| 	/* validate if the memory clk is in the range of dimms */
 | |
| 	if (mclk_ps < tCKmin_X_ps) {
 | |
| 		printf("The DIMM max tCKmin is %d ps,"
 | |
| 			"doesn't support the MCLK cycle %d ps\n",
 | |
| 			tCKmin_X_ps, mclk_ps);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	/* determine the acutal cas latency */
 | |
| 	caslat_actual = (tAAmin_ps + mclk_ps - 1) / mclk_ps;
 | |
| 	/* check if the dimms support the CAS latency */
 | |
| 	while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
 | |
| 		caslat_actual++;
 | |
| 		retry--;
 | |
| 	}
 | |
| 	/* once the caculation of caslat_actual is completed
 | |
| 	 * we must verify that this CAS latency value does not
 | |
| 	 * exceed tAAmax, which is 20 ns for all DDR3 speed grades
 | |
| 	 */
 | |
| 	if (caslat_actual * mclk_ps > 20000) {
 | |
| 		printf("The choosen cas latency %d is too large\n",
 | |
| 			caslat_actual);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	outpdimm->lowest_common_SPD_caslat = caslat_actual;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * compute_lowest_common_dimm_parameters()
 | |
|  *
 | |
|  * Determine the worst-case DIMM timing parameters from the set of DIMMs
 | |
|  * whose parameters have been computed into the array pointed to
 | |
|  * by dimm_params.
 | |
|  */
 | |
| unsigned int
 | |
| compute_lowest_common_dimm_parameters(const dimm_params_t *dimm_params,
 | |
| 				      common_timing_params_t *outpdimm,
 | |
| 				      unsigned int number_of_dimms)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	unsigned int tCKmin_X_ps = 0;
 | |
| 	unsigned int tCKmax_ps = 0xFFFFFFFF;
 | |
| 	unsigned int tCKmax_max_ps = 0;
 | |
| 	unsigned int tRCD_ps = 0;
 | |
| 	unsigned int tRP_ps = 0;
 | |
| 	unsigned int tRAS_ps = 0;
 | |
| 	unsigned int tWR_ps = 0;
 | |
| 	unsigned int tWTR_ps = 0;
 | |
| 	unsigned int tRFC_ps = 0;
 | |
| 	unsigned int tRRD_ps = 0;
 | |
| 	unsigned int tRC_ps = 0;
 | |
| 	unsigned int refresh_rate_ps = 0;
 | |
| 	unsigned int tIS_ps = 0;
 | |
| 	unsigned int tIH_ps = 0;
 | |
| 	unsigned int tDS_ps = 0;
 | |
| 	unsigned int tDH_ps = 0;
 | |
| 	unsigned int tRTP_ps = 0;
 | |
| 	unsigned int tDQSQ_max_ps = 0;
 | |
| 	unsigned int tQHS_ps = 0;
 | |
| 
 | |
| 	unsigned int temp1, temp2;
 | |
| 	unsigned int additive_latency = 0;
 | |
| #if !defined(CONFIG_FSL_DDR3)
 | |
| 	const unsigned int mclk_ps = get_memory_clk_period_ps();
 | |
| 	unsigned int lowest_good_caslat;
 | |
| 	unsigned int not_ok;
 | |
| 
 | |
| 	debug("using mclk_ps = %u\n", mclk_ps);
 | |
| #endif
 | |
| 
 | |
| 	temp1 = 0;
 | |
| 	for (i = 0; i < number_of_dimms; i++) {
 | |
| 		/*
 | |
| 		 * If there are no ranks on this DIMM,
 | |
| 		 * it probably doesn't exist, so skip it.
 | |
| 		 */
 | |
| 		if (dimm_params[i].n_ranks == 0) {
 | |
| 			temp1++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Find minimum tCKmax_ps to find fastest slow speed,
 | |
| 		 * i.e., this is the slowest the whole system can go.
 | |
| 		 */
 | |
| 		tCKmax_ps = min(tCKmax_ps, dimm_params[i].tCKmax_ps);
 | |
| 
 | |
| 		/* Either find maximum value to determine slowest
 | |
| 		 * speed, delay, time, period, etc */
 | |
| 		tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
 | |
| 		tCKmax_max_ps = max(tCKmax_max_ps, dimm_params[i].tCKmax_ps);
 | |
| 		tRCD_ps = max(tRCD_ps, dimm_params[i].tRCD_ps);
 | |
| 		tRP_ps = max(tRP_ps, dimm_params[i].tRP_ps);
 | |
| 		tRAS_ps = max(tRAS_ps, dimm_params[i].tRAS_ps);
 | |
| 		tWR_ps = max(tWR_ps, dimm_params[i].tWR_ps);
 | |
| 		tWTR_ps = max(tWTR_ps, dimm_params[i].tWTR_ps);
 | |
| 		tRFC_ps = max(tRFC_ps, dimm_params[i].tRFC_ps);
 | |
| 		tRRD_ps = max(tRRD_ps, dimm_params[i].tRRD_ps);
 | |
| 		tRC_ps = max(tRC_ps, dimm_params[i].tRC_ps);
 | |
| 		tIS_ps = max(tIS_ps, dimm_params[i].tIS_ps);
 | |
| 		tIH_ps = max(tIH_ps, dimm_params[i].tIH_ps);
 | |
| 		tDS_ps = max(tDS_ps, dimm_params[i].tDS_ps);
 | |
| 		tDH_ps = max(tDH_ps, dimm_params[i].tDH_ps);
 | |
| 		tRTP_ps = max(tRTP_ps, dimm_params[i].tRTP_ps);
 | |
| 		tQHS_ps = max(tQHS_ps, dimm_params[i].tQHS_ps);
 | |
| 		refresh_rate_ps = max(refresh_rate_ps,
 | |
| 				      dimm_params[i].refresh_rate_ps);
 | |
| 
 | |
| 		/*
 | |
| 		 * Find maximum tDQSQ_max_ps to find slowest.
 | |
| 		 *
 | |
| 		 * FIXME: is finding the slowest value the correct
 | |
| 		 * strategy for this parameter?
 | |
| 		 */
 | |
| 		tDQSQ_max_ps = max(tDQSQ_max_ps, dimm_params[i].tDQSQ_max_ps);
 | |
| 	}
 | |
| 
 | |
| 	outpdimm->ndimms_present = number_of_dimms - temp1;
 | |
| 
 | |
| 	if (temp1 == number_of_dimms) {
 | |
| 		debug("no dimms this memory controller\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	outpdimm->tCKmin_X_ps = tCKmin_X_ps;
 | |
| 	outpdimm->tCKmax_ps = tCKmax_ps;
 | |
| 	outpdimm->tCKmax_max_ps = tCKmax_max_ps;
 | |
| 	outpdimm->tRCD_ps = tRCD_ps;
 | |
| 	outpdimm->tRP_ps = tRP_ps;
 | |
| 	outpdimm->tRAS_ps = tRAS_ps;
 | |
| 	outpdimm->tWR_ps = tWR_ps;
 | |
| 	outpdimm->tWTR_ps = tWTR_ps;
 | |
| 	outpdimm->tRFC_ps = tRFC_ps;
 | |
| 	outpdimm->tRRD_ps = tRRD_ps;
 | |
| 	outpdimm->tRC_ps = tRC_ps;
 | |
| 	outpdimm->refresh_rate_ps = refresh_rate_ps;
 | |
| 	outpdimm->tIS_ps = tIS_ps;
 | |
| 	outpdimm->tIH_ps = tIH_ps;
 | |
| 	outpdimm->tDS_ps = tDS_ps;
 | |
| 	outpdimm->tDH_ps = tDH_ps;
 | |
| 	outpdimm->tRTP_ps = tRTP_ps;
 | |
| 	outpdimm->tDQSQ_max_ps = tDQSQ_max_ps;
 | |
| 	outpdimm->tQHS_ps = tQHS_ps;
 | |
| 
 | |
| 	/* Determine common burst length for all DIMMs. */
 | |
| 	temp1 = 0xff;
 | |
| 	for (i = 0; i < number_of_dimms; i++) {
 | |
| 		if (dimm_params[i].n_ranks) {
 | |
| 			temp1 &= dimm_params[i].burst_lengths_bitmask;
 | |
| 		}
 | |
| 	}
 | |
| 	outpdimm->all_DIMMs_burst_lengths_bitmask = temp1;
 | |
| 
 | |
| 	/* Determine if all DIMMs registered buffered. */
 | |
| 	temp1 = temp2 = 0;
 | |
| 	for (i = 0; i < number_of_dimms; i++) {
 | |
| 		if (dimm_params[i].n_ranks) {
 | |
| 			if (dimm_params[i].registered_dimm)
 | |
| 				temp1 = 1;
 | |
| 			if (!dimm_params[i].registered_dimm)
 | |
| 				temp2 = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	outpdimm->all_DIMMs_registered = 0;
 | |
| 	if (temp1 && !temp2) {
 | |
| 		outpdimm->all_DIMMs_registered = 1;
 | |
| 	}
 | |
| 
 | |
| 	outpdimm->all_DIMMs_unbuffered = 0;
 | |
| 	if (!temp1 && temp2) {
 | |
| 		outpdimm->all_DIMMs_unbuffered = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* CHECKME: */
 | |
| 	if (!outpdimm->all_DIMMs_registered
 | |
| 	    && !outpdimm->all_DIMMs_unbuffered) {
 | |
| 		printf("ERROR:  Mix of registered buffered and unbuffered "
 | |
| 				"DIMMs detected!\n");
 | |
| 	}
 | |
| 
 | |
| #if defined(CONFIG_FSL_DDR3)
 | |
| 	if (compute_cas_latency_ddr3(dimm_params, outpdimm, number_of_dimms))
 | |
| 		return 1;
 | |
| #else
 | |
| 	/*
 | |
| 	 * Compute a CAS latency suitable for all DIMMs
 | |
| 	 *
 | |
| 	 * Strategy for SPD-defined latencies: compute only
 | |
| 	 * CAS latency defined by all DIMMs.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 1: find CAS latency common to all DIMMs using bitwise
 | |
| 	 * operation.
 | |
| 	 */
 | |
| 	temp1 = 0xFF;
 | |
| 	for (i = 0; i < number_of_dimms; i++) {
 | |
| 		if (dimm_params[i].n_ranks) {
 | |
| 			temp2 = 0;
 | |
| 			temp2 |= 1 << dimm_params[i].caslat_X;
 | |
| 			temp2 |= 1 << dimm_params[i].caslat_X_minus_1;
 | |
| 			temp2 |= 1 << dimm_params[i].caslat_X_minus_2;
 | |
| 			/*
 | |
| 			 * FIXME: If there was no entry for X-2 (X-1) in
 | |
| 			 * the SPD, then caslat_X_minus_2
 | |
| 			 * (caslat_X_minus_1) contains either 255 or
 | |
| 			 * 0xFFFFFFFF because that's what the glorious
 | |
| 			 * __ilog2 function returns for an input of 0.
 | |
| 			 * On 32-bit PowerPC, left shift counts with bit
 | |
| 			 * 26 set (that the value of 255 or 0xFFFFFFFF
 | |
| 			 * will have), cause the destination register to
 | |
| 			 * be 0.  That is why this works.
 | |
| 			 */
 | |
| 			temp1 &= temp2;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 2: check each common CAS latency against tCK of each
 | |
| 	 * DIMM's SPD.
 | |
| 	 */
 | |
| 	lowest_good_caslat = 0;
 | |
| 	temp2 = 0;
 | |
| 	while (temp1) {
 | |
| 		not_ok = 0;
 | |
| 		temp2 =  __ilog2(temp1);
 | |
| 		debug("checking common caslat = %u\n", temp2);
 | |
| 
 | |
| 		/* Check if this CAS latency will work on all DIMMs at tCK. */
 | |
| 		for (i = 0; i < number_of_dimms; i++) {
 | |
| 			if (!dimm_params[i].n_ranks) {
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (dimm_params[i].caslat_X == temp2) {
 | |
| 				if (mclk_ps >= dimm_params[i].tCKmin_X_ps) {
 | |
| 					debug("CL = %u ok on DIMM %u at tCK=%u"
 | |
| 					    " ps with its tCKmin_X_ps of %u\n",
 | |
| 					       temp2, i, mclk_ps,
 | |
| 					       dimm_params[i].tCKmin_X_ps);
 | |
| 					continue;
 | |
| 				} else {
 | |
| 					not_ok++;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (dimm_params[i].caslat_X_minus_1 == temp2) {
 | |
| 				unsigned int tCKmin_X_minus_1_ps
 | |
| 					= dimm_params[i].tCKmin_X_minus_1_ps;
 | |
| 				if (mclk_ps >= tCKmin_X_minus_1_ps) {
 | |
| 					debug("CL = %u ok on DIMM %u at "
 | |
| 						"tCK=%u ps with its "
 | |
| 						"tCKmin_X_minus_1_ps of %u\n",
 | |
| 					       temp2, i, mclk_ps,
 | |
| 					       tCKmin_X_minus_1_ps);
 | |
| 					continue;
 | |
| 				} else {
 | |
| 					not_ok++;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (dimm_params[i].caslat_X_minus_2 == temp2) {
 | |
| 				unsigned int tCKmin_X_minus_2_ps
 | |
| 					= dimm_params[i].tCKmin_X_minus_2_ps;
 | |
| 				if (mclk_ps >= tCKmin_X_minus_2_ps) {
 | |
| 					debug("CL = %u ok on DIMM %u at "
 | |
| 						"tCK=%u ps with its "
 | |
| 						"tCKmin_X_minus_2_ps of %u\n",
 | |
| 					       temp2, i, mclk_ps,
 | |
| 					       tCKmin_X_minus_2_ps);
 | |
| 					continue;
 | |
| 				} else {
 | |
| 					not_ok++;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!not_ok) {
 | |
| 			lowest_good_caslat = temp2;
 | |
| 		}
 | |
| 
 | |
| 		temp1 &= ~(1 << temp2);
 | |
| 	}
 | |
| 
 | |
| 	debug("lowest common SPD-defined CAS latency = %u\n",
 | |
| 	       lowest_good_caslat);
 | |
| 	outpdimm->lowest_common_SPD_caslat = lowest_good_caslat;
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute a common 'de-rated' CAS latency.
 | |
| 	 *
 | |
| 	 * The strategy here is to find the *highest* dereated cas latency
 | |
| 	 * with the assumption that all of the DIMMs will support a dereated
 | |
| 	 * CAS latency higher than or equal to their lowest dereated value.
 | |
| 	 */
 | |
| 	temp1 = 0;
 | |
| 	for (i = 0; i < number_of_dimms; i++) {
 | |
| 		temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
 | |
| 	}
 | |
| 	outpdimm->highest_common_derated_caslat = temp1;
 | |
| 	debug("highest common dereated CAS latency = %u\n", temp1);
 | |
| #endif /* #if defined(CONFIG_FSL_DDR3) */
 | |
| 
 | |
| 	/* Determine if all DIMMs ECC capable. */
 | |
| 	temp1 = 1;
 | |
| 	for (i = 0; i < number_of_dimms; i++) {
 | |
| 		if (dimm_params[i].n_ranks && dimm_params[i].edc_config != 2) {
 | |
| 			temp1 = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (temp1) {
 | |
| 		debug("all DIMMs ECC capable\n");
 | |
| 	} else {
 | |
| 		debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
 | |
| 	}
 | |
| 	outpdimm->all_DIMMs_ECC_capable = temp1;
 | |
| 
 | |
| #ifndef CONFIG_FSL_DDR3
 | |
| 	/* FIXME: move to somewhere else to validate. */
 | |
| 	if (mclk_ps > tCKmax_max_ps) {
 | |
| 		printf("Warning: some of the installed DIMMs "
 | |
| 				"can not operate this slowly.\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| #endif
 | |
| 	/*
 | |
| 	 * Compute additive latency.
 | |
| 	 *
 | |
| 	 * For DDR1, additive latency should be 0.
 | |
| 	 *
 | |
| 	 * For DDR2, with ODT enabled, use "a value" less than ACTTORW,
 | |
| 	 *	which comes from Trcd, and also note that:
 | |
| 	 *	    add_lat + caslat must be >= 4
 | |
| 	 *
 | |
| 	 * For DDR3, we use the AL=0
 | |
| 	 *
 | |
| 	 * When to use additive latency for DDR2:
 | |
| 	 *
 | |
| 	 * I. Because you are using CL=3 and need to do ODT on writes and
 | |
| 	 *    want functionality.
 | |
| 	 *    1. Are you going to use ODT? (Does your board not have
 | |
| 	 *      additional termination circuitry for DQ, DQS, DQS_,
 | |
| 	 *      DM, RDQS, RDQS_ for x4/x8 configs?)
 | |
| 	 *    2. If so, is your lowest supported CL going to be 3?
 | |
| 	 *    3. If so, then you must set AL=1 because
 | |
| 	 *
 | |
| 	 *       WL >= 3 for ODT on writes
 | |
| 	 *       RL = AL + CL
 | |
| 	 *       WL = RL - 1
 | |
| 	 *       ->
 | |
| 	 *       WL = AL + CL - 1
 | |
| 	 *       AL + CL - 1 >= 3
 | |
| 	 *       AL + CL >= 4
 | |
| 	 *  QED
 | |
| 	 *
 | |
| 	 *  RL >= 3 for ODT on reads
 | |
| 	 *  RL = AL + CL
 | |
| 	 *
 | |
| 	 *  Since CL aren't usually less than 2, AL=0 is a minimum,
 | |
| 	 *  so the WL-derived AL should be the  -- FIXME?
 | |
| 	 *
 | |
| 	 * II. Because you are using auto-precharge globally and want to
 | |
| 	 *     use additive latency (posted CAS) to get more bandwidth.
 | |
| 	 *     1. Are you going to use auto-precharge mode globally?
 | |
| 	 *
 | |
| 	 *        Use addtivie latency and compute AL to be 1 cycle less than
 | |
| 	 *        tRCD, i.e. the READ or WRITE command is in the cycle
 | |
| 	 *        immediately following the ACTIVATE command..
 | |
| 	 *
 | |
| 	 * III. Because you feel like it or want to do some sort of
 | |
| 	 *      degraded-performance experiment.
 | |
| 	 *     1.  Do you just want to use additive latency because you feel
 | |
| 	 *         like it?
 | |
| 	 *
 | |
| 	 * Validation:  AL is less than tRCD, and within the other
 | |
| 	 * read-to-precharge constraints.
 | |
| 	 */
 | |
| 
 | |
| 	additive_latency = 0;
 | |
| 
 | |
| #if defined(CONFIG_FSL_DDR2)
 | |
| 	if (lowest_good_caslat < 4) {
 | |
| 		additive_latency = picos_to_mclk(tRCD_ps) - lowest_good_caslat;
 | |
| 		if (mclk_to_picos(additive_latency) > tRCD_ps) {
 | |
| 			additive_latency = picos_to_mclk(tRCD_ps);
 | |
| 			debug("setting additive_latency to %u because it was "
 | |
| 				" greater than tRCD_ps\n", additive_latency);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #elif defined(CONFIG_FSL_DDR3)
 | |
| 	/*
 | |
| 	 * The system will not use the global auto-precharge mode.
 | |
| 	 * However, it uses the page mode, so we set AL=0
 | |
| 	 */
 | |
| 	additive_latency = 0;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Validate additive latency
 | |
| 	 * FIXME: move to somewhere else to validate
 | |
| 	 *
 | |
| 	 * AL <= tRCD(min)
 | |
| 	 */
 | |
| 	if (mclk_to_picos(additive_latency) > tRCD_ps) {
 | |
| 		printf("Error: invalid additive latency exceeds tRCD(min).\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * RL = CL + AL;  RL >= 3 for ODT_RD_CFG to be enabled
 | |
| 	 * WL = RL - 1;  WL >= 3 for ODT_WL_CFG to be enabled
 | |
| 	 * ADD_LAT (the register) must be set to a value less
 | |
| 	 * than ACTTORW if WL = 1, then AL must be set to 1
 | |
| 	 * RD_TO_PRE (the register) must be set to a minimum
 | |
| 	 * tRTP + AL if AL is nonzero
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Additive latency will be applied only if the memctl option to
 | |
| 	 * use it.
 | |
| 	 */
 | |
| 	outpdimm->additive_latency = additive_latency;
 | |
| 
 | |
| 	return 0;
 | |
| }
 |