1176 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1176 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| #include <stdlib.h>
 | |
| #include <common.h>
 | |
| #include <fs_internal.h>
 | |
| #include "ctree.h"
 | |
| #include "disk-io.h"
 | |
| #include "volumes.h"
 | |
| #include "extent-io.h"
 | |
| 
 | |
| const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
 | |
| 	[BTRFS_RAID_RAID10] = {
 | |
| 		.sub_stripes	= 2,
 | |
| 		.dev_stripes	= 1,
 | |
| 		.devs_max	= 0,	/* 0 == as many as possible */
 | |
| 		.devs_min	= 4,
 | |
| 		.tolerated_failures = 1,
 | |
| 		.devs_increment	= 2,
 | |
| 		.ncopies	= 2,
 | |
| 		.nparity	= 0,
 | |
| 		.raid_name	= "raid10",
 | |
| 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
 | |
| 	},
 | |
| 	[BTRFS_RAID_RAID1] = {
 | |
| 		.sub_stripes	= 1,
 | |
| 		.dev_stripes	= 1,
 | |
| 		.devs_max	= 2,
 | |
| 		.devs_min	= 2,
 | |
| 		.tolerated_failures = 1,
 | |
| 		.devs_increment	= 2,
 | |
| 		.ncopies	= 2,
 | |
| 		.nparity	= 0,
 | |
| 		.raid_name	= "raid1",
 | |
| 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
 | |
| 	},
 | |
| 	[BTRFS_RAID_RAID1C3] = {
 | |
| 		.sub_stripes	= 1,
 | |
| 		.dev_stripes	= 1,
 | |
| 		.devs_max	= 3,
 | |
| 		.devs_min	= 3,
 | |
| 		.tolerated_failures = 2,
 | |
| 		.devs_increment	= 3,
 | |
| 		.ncopies	= 3,
 | |
| 		.raid_name	= "raid1c3",
 | |
| 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
 | |
| 	},
 | |
| 	[BTRFS_RAID_RAID1C4] = {
 | |
| 		.sub_stripes	= 1,
 | |
| 		.dev_stripes	= 1,
 | |
| 		.devs_max	= 4,
 | |
| 		.devs_min	= 4,
 | |
| 		.tolerated_failures = 3,
 | |
| 		.devs_increment	= 4,
 | |
| 		.ncopies	= 4,
 | |
| 		.raid_name	= "raid1c4",
 | |
| 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
 | |
| 	},
 | |
| 	[BTRFS_RAID_DUP] = {
 | |
| 		.sub_stripes	= 1,
 | |
| 		.dev_stripes	= 2,
 | |
| 		.devs_max	= 1,
 | |
| 		.devs_min	= 1,
 | |
| 		.tolerated_failures = 0,
 | |
| 		.devs_increment	= 1,
 | |
| 		.ncopies	= 2,
 | |
| 		.nparity	= 0,
 | |
| 		.raid_name	= "dup",
 | |
| 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
 | |
| 	},
 | |
| 	[BTRFS_RAID_RAID0] = {
 | |
| 		.sub_stripes	= 1,
 | |
| 		.dev_stripes	= 1,
 | |
| 		.devs_max	= 0,
 | |
| 		.devs_min	= 2,
 | |
| 		.tolerated_failures = 0,
 | |
| 		.devs_increment	= 1,
 | |
| 		.ncopies	= 1,
 | |
| 		.nparity	= 0,
 | |
| 		.raid_name	= "raid0",
 | |
| 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
 | |
| 	},
 | |
| 	[BTRFS_RAID_SINGLE] = {
 | |
| 		.sub_stripes	= 1,
 | |
| 		.dev_stripes	= 1,
 | |
| 		.devs_max	= 1,
 | |
| 		.devs_min	= 1,
 | |
| 		.tolerated_failures = 0,
 | |
| 		.devs_increment	= 1,
 | |
| 		.ncopies	= 1,
 | |
| 		.nparity	= 0,
 | |
| 		.raid_name	= "single",
 | |
| 		.bg_flag	= 0,
 | |
| 	},
 | |
| 	[BTRFS_RAID_RAID5] = {
 | |
| 		.sub_stripes	= 1,
 | |
| 		.dev_stripes	= 1,
 | |
| 		.devs_max	= 0,
 | |
| 		.devs_min	= 2,
 | |
| 		.tolerated_failures = 1,
 | |
| 		.devs_increment	= 1,
 | |
| 		.ncopies	= 1,
 | |
| 		.nparity	= 1,
 | |
| 		.raid_name	= "raid5",
 | |
| 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
 | |
| 	},
 | |
| 	[BTRFS_RAID_RAID6] = {
 | |
| 		.sub_stripes	= 1,
 | |
| 		.dev_stripes	= 1,
 | |
| 		.devs_max	= 0,
 | |
| 		.devs_min	= 3,
 | |
| 		.tolerated_failures = 2,
 | |
| 		.devs_increment	= 1,
 | |
| 		.ncopies	= 1,
 | |
| 		.nparity	= 2,
 | |
| 		.raid_name	= "raid6",
 | |
| 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| struct stripe {
 | |
| 	struct btrfs_device *dev;
 | |
| 	u64 physical;
 | |
| };
 | |
| 
 | |
| static inline int nr_parity_stripes(struct map_lookup *map)
 | |
| {
 | |
| 	if (map->type & BTRFS_BLOCK_GROUP_RAID5)
 | |
| 		return 1;
 | |
| 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
 | |
| 		return 2;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| static inline int nr_data_stripes(struct map_lookup *map)
 | |
| {
 | |
| 	return map->num_stripes - nr_parity_stripes(map);
 | |
| }
 | |
| 
 | |
| #define is_parity_stripe(x) ( ((x) == BTRFS_RAID5_P_STRIPE) || ((x) == BTRFS_RAID6_Q_STRIPE) )
 | |
| 
 | |
| static LIST_HEAD(fs_uuids);
 | |
| 
 | |
| /*
 | |
|  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
 | |
|  * return NULL.
 | |
|  *
 | |
|  * If devid and uuid are both specified, the match must be exact, otherwise
 | |
|  * only devid is used.
 | |
|  */
 | |
| static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
 | |
| 		u64 devid, u8 *uuid)
 | |
| {
 | |
| 	struct list_head *head = &fs_devices->devices;
 | |
| 	struct btrfs_device *dev;
 | |
| 
 | |
| 	list_for_each_entry(dev, head, dev_list) {
 | |
| 		if (dev->devid == devid &&
 | |
| 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
 | |
| 			return dev;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct btrfs_fs_devices *find_fsid(u8 *fsid, u8 *metadata_uuid)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices;
 | |
| 
 | |
| 	list_for_each_entry(fs_devices, &fs_uuids, list) {
 | |
| 		if (metadata_uuid && (memcmp(fsid, fs_devices->fsid,
 | |
| 					     BTRFS_FSID_SIZE) == 0) &&
 | |
| 		    (memcmp(metadata_uuid, fs_devices->metadata_uuid,
 | |
| 			    BTRFS_FSID_SIZE) == 0)) {
 | |
| 			return fs_devices;
 | |
| 		} else if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0){
 | |
| 			return fs_devices;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int device_list_add(struct btrfs_super_block *disk_super,
 | |
| 			   u64 devid, struct blk_desc *desc,
 | |
| 			   struct disk_partition *part,
 | |
| 			   struct btrfs_fs_devices **fs_devices_ret)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 	struct btrfs_fs_devices *fs_devices;
 | |
| 	u64 found_transid = btrfs_super_generation(disk_super);
 | |
| 	bool metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
 | |
| 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 | |
| 
 | |
| 	if (metadata_uuid)
 | |
| 		fs_devices = find_fsid(disk_super->fsid,
 | |
| 				       disk_super->metadata_uuid);
 | |
| 	else
 | |
| 		fs_devices = find_fsid(disk_super->fsid, NULL);
 | |
| 
 | |
| 	if (!fs_devices) {
 | |
| 		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
 | |
| 		if (!fs_devices)
 | |
| 			return -ENOMEM;
 | |
| 		INIT_LIST_HEAD(&fs_devices->devices);
 | |
| 		list_add(&fs_devices->list, &fs_uuids);
 | |
| 		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
 | |
| 		if (metadata_uuid)
 | |
| 			memcpy(fs_devices->metadata_uuid,
 | |
| 			       disk_super->metadata_uuid, BTRFS_FSID_SIZE);
 | |
| 		else
 | |
| 			memcpy(fs_devices->metadata_uuid, fs_devices->fsid,
 | |
| 			       BTRFS_FSID_SIZE);
 | |
| 
 | |
| 		fs_devices->latest_devid = devid;
 | |
| 		fs_devices->latest_trans = found_transid;
 | |
| 		fs_devices->lowest_devid = (u64)-1;
 | |
| 		device = NULL;
 | |
| 	} else {
 | |
| 		device = find_device(fs_devices, devid,
 | |
| 				    disk_super->dev_item.uuid);
 | |
| 	}
 | |
| 	if (!device) {
 | |
| 		device = kzalloc(sizeof(*device), GFP_NOFS);
 | |
| 		if (!device) {
 | |
| 			/* we can safely leave the fs_devices entry around */
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		device->devid = devid;
 | |
| 		device->desc = desc;
 | |
| 		device->part = part;
 | |
| 		device->generation = found_transid;
 | |
| 		memcpy(device->uuid, disk_super->dev_item.uuid,
 | |
| 		       BTRFS_UUID_SIZE);
 | |
| 		device->total_devs = btrfs_super_num_devices(disk_super);
 | |
| 		device->super_bytes_used = btrfs_super_bytes_used(disk_super);
 | |
| 		device->total_bytes =
 | |
| 			btrfs_stack_device_total_bytes(&disk_super->dev_item);
 | |
| 		device->bytes_used =
 | |
| 			btrfs_stack_device_bytes_used(&disk_super->dev_item);
 | |
| 		list_add(&device->dev_list, &fs_devices->devices);
 | |
| 		device->fs_devices = fs_devices;
 | |
| 	} else if (!device->desc || !device->part) {
 | |
| 		/*
 | |
| 		 * The existing device has newer generation, so this one could
 | |
| 		 * be a stale one, don't add it.
 | |
| 		 */
 | |
| 		if (found_transid < device->generation) {
 | |
| 			error(
 | |
| 	"adding devid %llu gen %llu but found an existing device gen %llu",
 | |
| 				device->devid, found_transid,
 | |
| 				device->generation);
 | |
| 			return -EEXIST;
 | |
| 		} else {
 | |
| 			device->desc = desc;
 | |
| 			device->part = part;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	if (found_transid > fs_devices->latest_trans) {
 | |
| 		fs_devices->latest_devid = devid;
 | |
| 		fs_devices->latest_trans = found_transid;
 | |
| 	}
 | |
| 	if (fs_devices->lowest_devid > devid) {
 | |
| 		fs_devices->lowest_devid = devid;
 | |
| 	}
 | |
| 	*fs_devices_ret = fs_devices;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 | |
| {
 | |
| 	struct btrfs_fs_devices *seed_devices;
 | |
| 	struct btrfs_device *device;
 | |
| 	int ret = 0;
 | |
| 
 | |
| again:
 | |
| 	if (!fs_devices)
 | |
| 		return 0;
 | |
| 	while (!list_empty(&fs_devices->devices)) {
 | |
| 		device = list_entry(fs_devices->devices.next,
 | |
| 				    struct btrfs_device, dev_list);
 | |
| 		list_del(&device->dev_list);
 | |
| 		/* free the memory */
 | |
| 		free(device);
 | |
| 	}
 | |
| 
 | |
| 	seed_devices = fs_devices->seed;
 | |
| 	fs_devices->seed = NULL;
 | |
| 	if (seed_devices) {
 | |
| 		struct btrfs_fs_devices *orig;
 | |
| 
 | |
| 		orig = fs_devices;
 | |
| 		fs_devices = seed_devices;
 | |
| 		list_del(&orig->list);
 | |
| 		free(orig);
 | |
| 		goto again;
 | |
| 	} else {
 | |
| 		list_del(&fs_devices->list);
 | |
| 		free(fs_devices);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_close_all_devices(void)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices;
 | |
| 
 | |
| 	while (!list_empty(&fs_uuids)) {
 | |
| 		fs_devices = list_entry(fs_uuids.next, struct btrfs_fs_devices,
 | |
| 					list);
 | |
| 		btrfs_close_devices(fs_devices);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int btrfs_open_devices(struct btrfs_fs_devices *fs_devices)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 
 | |
| 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
 | |
| 		if (!device->desc || !device->part) {
 | |
| 			printf("no device found for devid %llu, skip it \n",
 | |
| 				device->devid);
 | |
| 			continue;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_scan_one_device(struct blk_desc *desc, struct disk_partition *part,
 | |
| 			  struct btrfs_fs_devices **fs_devices_ret,
 | |
| 			  u64 *total_devs)
 | |
| {
 | |
| 	struct btrfs_super_block *disk_super;
 | |
| 	char buf[BTRFS_SUPER_INFO_SIZE];
 | |
| 	int ret;
 | |
| 	u64 devid;
 | |
| 
 | |
| 	disk_super = (struct btrfs_super_block *)buf;
 | |
| 	ret = btrfs_read_dev_super(desc, part, disk_super);
 | |
| 	if (ret < 0)
 | |
| 		return -EIO;
 | |
| 	devid = btrfs_stack_device_id(&disk_super->dev_item);
 | |
| 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP)
 | |
| 		*total_devs = 1;
 | |
| 	else
 | |
| 		*total_devs = btrfs_super_num_devices(disk_super);
 | |
| 
 | |
| 	ret = device_list_add(disk_super, devid, desc, part, fs_devices_ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
 | |
| 				       u8 *uuid, u8 *fsid)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 	struct btrfs_fs_devices *cur_devices;
 | |
| 
 | |
| 	cur_devices = fs_info->fs_devices;
 | |
| 	while (cur_devices) {
 | |
| 		if (!fsid ||
 | |
| 		   !memcmp(cur_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
 | |
| 			device = find_device(cur_devices, devid, uuid);
 | |
| 			if (device)
 | |
| 				return device;
 | |
| 		}
 | |
| 		cur_devices = cur_devices->seed;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct btrfs_device *fill_missing_device(u64 devid)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 
 | |
| 	device = kzalloc(sizeof(*device), GFP_NOFS);
 | |
| 	return device;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * slot == -1: SYSTEM chunk
 | |
|  * return -EIO on error, otherwise return 0
 | |
|  */
 | |
| int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
 | |
| 			    struct extent_buffer *leaf,
 | |
| 			    struct btrfs_chunk *chunk,
 | |
| 			    int slot, u64 logical)
 | |
| {
 | |
| 	u64 length;
 | |
| 	u64 stripe_len;
 | |
| 	u16 num_stripes;
 | |
| 	u16 sub_stripes;
 | |
| 	u64 type;
 | |
| 	u32 chunk_ondisk_size;
 | |
| 	u32 sectorsize = fs_info->sectorsize;
 | |
| 
 | |
| 	/*
 | |
| 	 * Basic chunk item size check.  Note that btrfs_chunk already contains
 | |
| 	 * one stripe, so no "==" check.
 | |
| 	 */
 | |
| 	if (slot >= 0 &&
 | |
| 	    btrfs_item_size_nr(leaf, slot) < sizeof(struct btrfs_chunk)) {
 | |
| 		error("invalid chunk item size, have %u expect [%zu, %zu)",
 | |
| 			btrfs_item_size_nr(leaf, slot),
 | |
| 			sizeof(struct btrfs_chunk),
 | |
| 			BTRFS_LEAF_DATA_SIZE(fs_info));
 | |
| 		return -EUCLEAN;
 | |
| 	}
 | |
| 	length = btrfs_chunk_length(leaf, chunk);
 | |
| 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
 | |
| 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
 | |
| 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
 | |
| 	type = btrfs_chunk_type(leaf, chunk);
 | |
| 
 | |
| 	if (num_stripes == 0) {
 | |
| 		error("invalid num_stripes, have %u expect non-zero",
 | |
| 			num_stripes);
 | |
| 		return -EUCLEAN;
 | |
| 	}
 | |
| 	if (slot >= 0 && btrfs_chunk_item_size(num_stripes) !=
 | |
| 	    btrfs_item_size_nr(leaf, slot)) {
 | |
| 		error("invalid chunk item size, have %u expect %lu",
 | |
| 			btrfs_item_size_nr(leaf, slot),
 | |
| 			btrfs_chunk_item_size(num_stripes));
 | |
| 		return -EUCLEAN;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * These valid checks may be insufficient to cover every corner cases.
 | |
| 	 */
 | |
| 	if (!IS_ALIGNED(logical, sectorsize)) {
 | |
| 		error("invalid chunk logical %llu",  logical);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	if (btrfs_chunk_sector_size(leaf, chunk) != sectorsize) {
 | |
| 		error("invalid chunk sectorsize %llu",
 | |
| 		      (unsigned long long)btrfs_chunk_sector_size(leaf, chunk));
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	if (!length || !IS_ALIGNED(length, sectorsize)) {
 | |
| 		error("invalid chunk length %llu",  length);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	if (stripe_len != BTRFS_STRIPE_LEN) {
 | |
| 		error("invalid chunk stripe length: %llu", stripe_len);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	/* Check on chunk item type */
 | |
| 	if (slot == -1 && (type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
 | |
| 		error("invalid chunk type %llu", type);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	if (type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
 | |
| 		     BTRFS_BLOCK_GROUP_PROFILE_MASK)) {
 | |
| 		error("unrecognized chunk type: %llu",
 | |
| 		      ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
 | |
| 			BTRFS_BLOCK_GROUP_PROFILE_MASK) & type);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
 | |
| 		error("missing chunk type flag: %llu", type);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	if (!(is_power_of_2(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) ||
 | |
| 	      (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)) {
 | |
| 		error("conflicting chunk type detected: %llu", type);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	if ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
 | |
| 	    !is_power_of_2(type & BTRFS_BLOCK_GROUP_PROFILE_MASK)) {
 | |
| 		error("conflicting chunk profile detected: %llu", type);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	chunk_ondisk_size = btrfs_chunk_item_size(num_stripes);
 | |
| 	/*
 | |
| 	 * Btrfs_chunk contains at least one stripe, and for sys_chunk
 | |
| 	 * it can't exceed the system chunk array size
 | |
| 	 * For normal chunk, it should match its chunk item size.
 | |
| 	 */
 | |
| 	if (num_stripes < 1 ||
 | |
| 	    (slot == -1 && chunk_ondisk_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) ||
 | |
| 	    (slot >= 0 && chunk_ondisk_size > btrfs_item_size_nr(leaf, slot))) {
 | |
| 		error("invalid num_stripes: %u", num_stripes);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Device number check against profile
 | |
| 	 */
 | |
| 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && (sub_stripes != 2 ||
 | |
| 		  !IS_ALIGNED(num_stripes, sub_stripes))) ||
 | |
| 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
 | |
| 	    (type & BTRFS_BLOCK_GROUP_RAID1C3 && num_stripes < 3) ||
 | |
| 	    (type & BTRFS_BLOCK_GROUP_RAID1C4 && num_stripes < 4) ||
 | |
| 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
 | |
| 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
 | |
| 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
 | |
| 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
 | |
| 	     num_stripes != 1)) {
 | |
| 		error("Invalid num_stripes:sub_stripes %u:%u for profile %llu",
 | |
| 		      num_stripes, sub_stripes,
 | |
| 		      type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Slot is used to verify the chunk item is valid
 | |
|  *
 | |
|  * For sys chunk in superblock, pass -1 to indicate sys chunk.
 | |
|  */
 | |
| static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
 | |
| 			  struct extent_buffer *leaf,
 | |
| 			  struct btrfs_chunk *chunk, int slot)
 | |
| {
 | |
| 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
 | |
| 	struct map_lookup *map;
 | |
| 	struct cache_extent *ce;
 | |
| 	u64 logical;
 | |
| 	u64 length;
 | |
| 	u64 devid;
 | |
| 	u8 uuid[BTRFS_UUID_SIZE];
 | |
| 	int num_stripes;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	logical = key->offset;
 | |
| 	length = btrfs_chunk_length(leaf, chunk);
 | |
| 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
 | |
| 	/* Validation check */
 | |
| 	ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, slot, logical);
 | |
| 	if (ret) {
 | |
| 		error("%s checksums match, but it has an invalid chunk, %s",
 | |
| 		      (slot == -1) ? "Superblock" : "Metadata",
 | |
| 		      (slot == -1) ? "try btrfsck --repair -s <superblock> ie, 0,1,2" : "");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ce = search_cache_extent(&map_tree->cache_tree, logical);
 | |
| 
 | |
| 	/* already mapped? */
 | |
| 	if (ce && ce->start <= logical && ce->start + ce->size > logical) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
 | |
| 	if (!map)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	map->ce.start = logical;
 | |
| 	map->ce.size = length;
 | |
| 	map->num_stripes = num_stripes;
 | |
| 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
 | |
| 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
 | |
| 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
 | |
| 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
 | |
| 	map->type = btrfs_chunk_type(leaf, chunk);
 | |
| 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
 | |
| 
 | |
| 	for (i = 0; i < num_stripes; i++) {
 | |
| 		map->stripes[i].physical =
 | |
| 			btrfs_stripe_offset_nr(leaf, chunk, i);
 | |
| 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
 | |
| 		read_extent_buffer(leaf, uuid, (unsigned long)
 | |
| 				   btrfs_stripe_dev_uuid_nr(chunk, i),
 | |
| 				   BTRFS_UUID_SIZE);
 | |
| 		map->stripes[i].dev = btrfs_find_device(fs_info, devid, uuid,
 | |
| 							NULL);
 | |
| 		if (!map->stripes[i].dev) {
 | |
| 			map->stripes[i].dev = fill_missing_device(devid);
 | |
| 			printf("warning, device %llu is missing\n",
 | |
| 			       (unsigned long long)devid);
 | |
| 			list_add(&map->stripes[i].dev->dev_list,
 | |
| 				 &fs_info->fs_devices->devices);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	ret = insert_cache_extent(&map_tree->cache_tree, &map->ce);
 | |
| 	if (ret < 0) {
 | |
| 		errno = -ret;
 | |
| 		error("failed to add chunk map start=%llu len=%llu: %d (%m)",
 | |
| 		      map->ce.start, map->ce.size, ret);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int fill_device_from_item(struct extent_buffer *leaf,
 | |
| 				 struct btrfs_dev_item *dev_item,
 | |
| 				 struct btrfs_device *device)
 | |
| {
 | |
| 	unsigned long ptr;
 | |
| 
 | |
| 	device->devid = btrfs_device_id(leaf, dev_item);
 | |
| 	device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
 | |
| 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
 | |
| 	device->type = btrfs_device_type(leaf, dev_item);
 | |
| 	device->io_align = btrfs_device_io_align(leaf, dev_item);
 | |
| 	device->io_width = btrfs_device_io_width(leaf, dev_item);
 | |
| 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
 | |
| 
 | |
| 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
 | |
| 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int read_one_dev(struct btrfs_fs_info *fs_info,
 | |
| 			struct extent_buffer *leaf,
 | |
| 			struct btrfs_dev_item *dev_item)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 	u64 devid;
 | |
| 	int ret = 0;
 | |
| 	u8 fs_uuid[BTRFS_UUID_SIZE];
 | |
| 	u8 dev_uuid[BTRFS_UUID_SIZE];
 | |
| 
 | |
| 	devid = btrfs_device_id(leaf, dev_item);
 | |
| 	read_extent_buffer(leaf, dev_uuid,
 | |
| 			   (unsigned long)btrfs_device_uuid(dev_item),
 | |
| 			   BTRFS_UUID_SIZE);
 | |
| 	read_extent_buffer(leaf, fs_uuid,
 | |
| 			   (unsigned long)btrfs_device_fsid(dev_item),
 | |
| 			   BTRFS_FSID_SIZE);
 | |
| 
 | |
| 	if (memcmp(fs_uuid, fs_info->fs_devices->fsid, BTRFS_UUID_SIZE)) {
 | |
| 		error("Seed device is not yet supported\n");
 | |
| 		return -ENOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
 | |
| 	if (!device) {
 | |
| 		device = kzalloc(sizeof(*device), GFP_NOFS);
 | |
| 		if (!device)
 | |
| 			return -ENOMEM;
 | |
| 		list_add(&device->dev_list,
 | |
| 			 &fs_info->fs_devices->devices);
 | |
| 	}
 | |
| 
 | |
| 	fill_device_from_item(leaf, dev_item, device);
 | |
| 	fs_info->fs_devices->total_rw_bytes +=
 | |
| 		btrfs_device_total_bytes(leaf, dev_item);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_super_block *super_copy = fs_info->super_copy;
 | |
| 	struct extent_buffer *sb;
 | |
| 	struct btrfs_disk_key *disk_key;
 | |
| 	struct btrfs_chunk *chunk;
 | |
| 	u8 *array_ptr;
 | |
| 	unsigned long sb_array_offset;
 | |
| 	int ret = 0;
 | |
| 	u32 num_stripes;
 | |
| 	u32 array_size;
 | |
| 	u32 len = 0;
 | |
| 	u32 cur_offset;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	if (fs_info->nodesize < BTRFS_SUPER_INFO_SIZE) {
 | |
| 		printf("ERROR: nodesize %u too small to read superblock\n",
 | |
| 				fs_info->nodesize);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET,
 | |
| 				       BTRFS_SUPER_INFO_SIZE);
 | |
| 	if (!sb)
 | |
| 		return -ENOMEM;
 | |
| 	btrfs_set_buffer_uptodate(sb);
 | |
| 	write_extent_buffer(sb, super_copy, 0, sizeof(*super_copy));
 | |
| 	array_size = btrfs_super_sys_array_size(super_copy);
 | |
| 
 | |
| 	array_ptr = super_copy->sys_chunk_array;
 | |
| 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
 | |
| 	cur_offset = 0;
 | |
| 
 | |
| 	while (cur_offset < array_size) {
 | |
| 		disk_key = (struct btrfs_disk_key *)array_ptr;
 | |
| 		len = sizeof(*disk_key);
 | |
| 		if (cur_offset + len > array_size)
 | |
| 			goto out_short_read;
 | |
| 
 | |
| 		btrfs_disk_key_to_cpu(&key, disk_key);
 | |
| 
 | |
| 		array_ptr += len;
 | |
| 		sb_array_offset += len;
 | |
| 		cur_offset += len;
 | |
| 
 | |
| 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
 | |
| 			chunk = (struct btrfs_chunk *)sb_array_offset;
 | |
| 			/*
 | |
| 			 * At least one btrfs_chunk with one stripe must be
 | |
| 			 * present, exact stripe count check comes afterwards
 | |
| 			 */
 | |
| 			len = btrfs_chunk_item_size(1);
 | |
| 			if (cur_offset + len > array_size)
 | |
| 				goto out_short_read;
 | |
| 
 | |
| 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
 | |
| 			if (!num_stripes) {
 | |
| 				printk(
 | |
| 	    "ERROR: invalid number of stripes %u in sys_array at offset %u\n",
 | |
| 					num_stripes, cur_offset);
 | |
| 				ret = -EIO;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			len = btrfs_chunk_item_size(num_stripes);
 | |
| 			if (cur_offset + len > array_size)
 | |
| 				goto out_short_read;
 | |
| 
 | |
| 			ret = read_one_chunk(fs_info, &key, sb, chunk, -1);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		} else {
 | |
| 			printk(
 | |
| 		"ERROR: unexpected item type %u in sys_array at offset %u\n",
 | |
| 				(u32)key.type, cur_offset);
 | |
| 			ret = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 		array_ptr += len;
 | |
| 		sb_array_offset += len;
 | |
| 		cur_offset += len;
 | |
| 	}
 | |
| 	free_extent_buffer(sb);
 | |
| 	return ret;
 | |
| 
 | |
| out_short_read:
 | |
| 	printk("ERROR: sys_array too short to read %u bytes at offset %u\n",
 | |
| 			len, cur_offset);
 | |
| 	free_extent_buffer(sb);
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct btrfs_root *root = fs_info->chunk_root;
 | |
| 	int ret;
 | |
| 	int slot;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read all device items, and then all the chunk items. All
 | |
| 	 * device items are found before any chunk item (their object id
 | |
| 	 * is smaller than the lowest possible object id for a chunk
 | |
| 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
 | |
| 	 */
 | |
| 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
 | |
| 	key.offset = 0;
 | |
| 	key.type = 0;
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto error;
 | |
| 	while(1) {
 | |
| 		leaf = path->nodes[0];
 | |
| 		slot = path->slots[0];
 | |
| 		if (slot >= btrfs_header_nritems(leaf)) {
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret == 0)
 | |
| 				continue;
 | |
| 			if (ret < 0)
 | |
| 				goto error;
 | |
| 			break;
 | |
| 		}
 | |
| 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
 | |
| 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
 | |
| 			struct btrfs_dev_item *dev_item;
 | |
| 			dev_item = btrfs_item_ptr(leaf, slot,
 | |
| 						  struct btrfs_dev_item);
 | |
| 			ret = read_one_dev(fs_info, leaf, dev_item);
 | |
| 			if (ret < 0)
 | |
| 				goto error;
 | |
| 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
 | |
| 			struct btrfs_chunk *chunk;
 | |
| 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
 | |
| 			ret = read_one_chunk(fs_info, &found_key, leaf, chunk,
 | |
| 					     slot);
 | |
| 			if (ret < 0)
 | |
| 				goto error;
 | |
| 		}
 | |
| 		path->slots[0]++;
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| error:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get stripe length from chunk item and its stripe items
 | |
|  *
 | |
|  * Caller should only call this function after validating the chunk item
 | |
|  * by using btrfs_check_chunk_valid().
 | |
|  */
 | |
| u64 btrfs_stripe_length(struct btrfs_fs_info *fs_info,
 | |
| 			struct extent_buffer *leaf,
 | |
| 			struct btrfs_chunk *chunk)
 | |
| {
 | |
| 	u64 stripe_len;
 | |
| 	u64 chunk_len;
 | |
| 	u32 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
 | |
| 	u64 profile = btrfs_chunk_type(leaf, chunk) &
 | |
| 		      BTRFS_BLOCK_GROUP_PROFILE_MASK;
 | |
| 
 | |
| 	chunk_len = btrfs_chunk_length(leaf, chunk);
 | |
| 
 | |
| 	switch (profile) {
 | |
| 	case 0: /* Single profile */
 | |
| 	case BTRFS_BLOCK_GROUP_RAID1:
 | |
| 	case BTRFS_BLOCK_GROUP_RAID1C3:
 | |
| 	case BTRFS_BLOCK_GROUP_RAID1C4:
 | |
| 	case BTRFS_BLOCK_GROUP_DUP:
 | |
| 		stripe_len = chunk_len;
 | |
| 		break;
 | |
| 	case BTRFS_BLOCK_GROUP_RAID0:
 | |
| 		stripe_len = chunk_len / num_stripes;
 | |
| 		break;
 | |
| 	case BTRFS_BLOCK_GROUP_RAID5:
 | |
| 		stripe_len = chunk_len / (num_stripes - 1);
 | |
| 		break;
 | |
| 	case BTRFS_BLOCK_GROUP_RAID6:
 | |
| 		stripe_len = chunk_len / (num_stripes - 2);
 | |
| 		break;
 | |
| 	case BTRFS_BLOCK_GROUP_RAID10:
 | |
| 		stripe_len = chunk_len / (num_stripes /
 | |
| 				btrfs_chunk_sub_stripes(leaf, chunk));
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* Invalid chunk profile found */
 | |
| 		BUG_ON(1);
 | |
| 	}
 | |
| 	return stripe_len;
 | |
| }
 | |
| 
 | |
| int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
 | |
| {
 | |
| 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
 | |
| 	struct cache_extent *ce;
 | |
| 	struct map_lookup *map;
 | |
| 	int ret;
 | |
| 
 | |
| 	ce = search_cache_extent(&map_tree->cache_tree, logical);
 | |
| 	if (!ce) {
 | |
| 		fprintf(stderr, "No mapping for %llu-%llu\n",
 | |
| 			(unsigned long long)logical,
 | |
| 			(unsigned long long)logical+len);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	if (ce->start > logical || ce->start + ce->size < logical) {
 | |
| 		fprintf(stderr, "Invalid mapping for %llu-%llu, got "
 | |
| 			"%llu-%llu\n", (unsigned long long)logical,
 | |
| 			(unsigned long long)logical+len,
 | |
| 			(unsigned long long)ce->start,
 | |
| 			(unsigned long long)ce->start + ce->size);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	map = container_of(ce, struct map_lookup, ce);
 | |
| 
 | |
| 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
 | |
| 			 BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))
 | |
| 		ret = map->num_stripes;
 | |
| 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
 | |
| 		ret = map->sub_stripes;
 | |
| 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
 | |
| 		ret = 2;
 | |
| 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
 | |
| 		ret = 3;
 | |
| 	else
 | |
| 		ret = 1;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_next_bg(struct btrfs_fs_info *fs_info, u64 *logical,
 | |
| 		  u64 *size, u64 type)
 | |
| {
 | |
| 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
 | |
| 	struct cache_extent *ce;
 | |
| 	struct map_lookup *map;
 | |
| 	u64 cur = *logical;
 | |
| 
 | |
| 	ce = search_cache_extent(&map_tree->cache_tree, cur);
 | |
| 
 | |
| 	while (ce) {
 | |
| 		/*
 | |
| 		 * only jump to next bg if our cur is not 0
 | |
| 		 * As the initial logical for btrfs_next_bg() is 0, and
 | |
| 		 * if we jump to next bg, we skipped a valid bg.
 | |
| 		 */
 | |
| 		if (cur) {
 | |
| 			ce = next_cache_extent(ce);
 | |
| 			if (!ce)
 | |
| 				return -ENOENT;
 | |
| 		}
 | |
| 
 | |
| 		cur = ce->start;
 | |
| 		map = container_of(ce, struct map_lookup, ce);
 | |
| 		if (map->type & type) {
 | |
| 			*logical = ce->start;
 | |
| 			*size = ce->size;
 | |
| 			return 0;
 | |
| 		}
 | |
| 		if (!cur)
 | |
| 			ce = next_cache_extent(ce);
 | |
| 	}
 | |
| 
 | |
| 	return -ENOENT;
 | |
| }
 | |
| 
 | |
| static inline int parity_smaller(u64 a, u64 b)
 | |
| {
 | |
| 	return a > b;
 | |
| }
 | |
| 
 | |
| /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
 | |
| static void sort_parity_stripes(struct btrfs_multi_bio *bbio, u64 *raid_map)
 | |
| {
 | |
| 	struct btrfs_bio_stripe s;
 | |
| 	int i;
 | |
| 	u64 l;
 | |
| 	int again = 1;
 | |
| 
 | |
| 	while (again) {
 | |
| 		again = 0;
 | |
| 		for (i = 0; i < bbio->num_stripes - 1; i++) {
 | |
| 			if (parity_smaller(raid_map[i], raid_map[i+1])) {
 | |
| 				s = bbio->stripes[i];
 | |
| 				l = raid_map[i];
 | |
| 				bbio->stripes[i] = bbio->stripes[i+1];
 | |
| 				raid_map[i] = raid_map[i+1];
 | |
| 				bbio->stripes[i+1] = s;
 | |
| 				raid_map[i+1] = l;
 | |
| 				again = 1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
 | |
| 		      u64 logical, u64 *length, u64 *type,
 | |
| 		      struct btrfs_multi_bio **multi_ret, int mirror_num,
 | |
| 		      u64 **raid_map_ret)
 | |
| {
 | |
| 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
 | |
| 	struct cache_extent *ce;
 | |
| 	struct map_lookup *map;
 | |
| 	u64 orig_len = *length;
 | |
| 	u64 offset;
 | |
| 	u64 stripe_offset;
 | |
| 	u64 *raid_map = NULL;
 | |
| 	int stripe_nr;
 | |
| 	int stripes_allocated = 8;
 | |
| 	int stripes_required = 1;
 | |
| 	int stripe_index;
 | |
| 	int i;
 | |
| 	struct btrfs_multi_bio *multi = NULL;
 | |
| 
 | |
| 	if (multi_ret && rw == READ) {
 | |
| 		stripes_allocated = 1;
 | |
| 	}
 | |
| again:
 | |
| 	ce = search_cache_extent(&map_tree->cache_tree, logical);
 | |
| 	if (!ce) {
 | |
| 		kfree(multi);
 | |
| 		*length = (u64)-1;
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 	if (ce->start > logical) {
 | |
| 		kfree(multi);
 | |
| 		*length = ce->start - logical;
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	if (multi_ret) {
 | |
| 		multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
 | |
| 				GFP_NOFS);
 | |
| 		if (!multi)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 	map = container_of(ce, struct map_lookup, ce);
 | |
| 	offset = logical - ce->start;
 | |
| 
 | |
| 	if (rw == WRITE) {
 | |
| 		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
 | |
| 				 BTRFS_BLOCK_GROUP_RAID1C3 |
 | |
| 				 BTRFS_BLOCK_GROUP_RAID1C4 |
 | |
| 				 BTRFS_BLOCK_GROUP_DUP)) {
 | |
| 			stripes_required = map->num_stripes;
 | |
| 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
 | |
| 			stripes_required = map->sub_stripes;
 | |
| 		}
 | |
| 	}
 | |
| 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)
 | |
| 	    && multi_ret && ((rw & WRITE) || mirror_num > 1) && raid_map_ret) {
 | |
| 		    /* RAID[56] write or recovery. Return all stripes */
 | |
| 		    stripes_required = map->num_stripes;
 | |
| 
 | |
| 		    /* Only allocate the map if we've already got a large enough multi_ret */
 | |
| 		    if (stripes_allocated >= stripes_required) {
 | |
| 			    raid_map = kmalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
 | |
| 			    if (!raid_map) {
 | |
| 				    kfree(multi);
 | |
| 				    return -ENOMEM;
 | |
| 			    }
 | |
| 		    }
 | |
| 	}
 | |
| 
 | |
| 	/* if our multi bio struct is too small, back off and try again */
 | |
| 	if (multi_ret && stripes_allocated < stripes_required) {
 | |
| 		stripes_allocated = stripes_required;
 | |
| 		kfree(multi);
 | |
| 		multi = NULL;
 | |
| 		goto again;
 | |
| 	}
 | |
| 	stripe_nr = offset;
 | |
| 	/*
 | |
| 	 * stripe_nr counts the total number of stripes we have to stride
 | |
| 	 * to get to this block
 | |
| 	 */
 | |
| 	stripe_nr = stripe_nr / map->stripe_len;
 | |
| 
 | |
| 	stripe_offset = stripe_nr * (u64)map->stripe_len;
 | |
| 	BUG_ON(offset < stripe_offset);
 | |
| 
 | |
| 	/* stripe_offset is the offset of this block in its stripe*/
 | |
| 	stripe_offset = offset - stripe_offset;
 | |
| 
 | |
| 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
 | |
| 			 BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4 |
 | |
| 			 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
 | |
| 			 BTRFS_BLOCK_GROUP_RAID10 |
 | |
| 			 BTRFS_BLOCK_GROUP_DUP)) {
 | |
| 		/* we limit the length of each bio to what fits in a stripe */
 | |
| 		*length = min_t(u64, ce->size - offset,
 | |
| 			      map->stripe_len - stripe_offset);
 | |
| 	} else {
 | |
| 		*length = ce->size - offset;
 | |
| 	}
 | |
| 	*length = min_t(u64, *length, orig_len);
 | |
| 
 | |
| 	if (!multi_ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	multi->num_stripes = 1;
 | |
| 	stripe_index = 0;
 | |
| 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
 | |
| 			 BTRFS_BLOCK_GROUP_RAID1C3 |
 | |
| 			 BTRFS_BLOCK_GROUP_RAID1C4)) {
 | |
| 		if (rw == WRITE)
 | |
| 			multi->num_stripes = map->num_stripes;
 | |
| 		else if (mirror_num)
 | |
| 			stripe_index = mirror_num - 1;
 | |
| 		else
 | |
| 			stripe_index = stripe_nr % map->num_stripes;
 | |
| 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
 | |
| 		int factor = map->num_stripes / map->sub_stripes;
 | |
| 
 | |
| 		stripe_index = stripe_nr % factor;
 | |
| 		stripe_index *= map->sub_stripes;
 | |
| 
 | |
| 		if (rw == WRITE)
 | |
| 			multi->num_stripes = map->sub_stripes;
 | |
| 		else if (mirror_num)
 | |
| 			stripe_index += mirror_num - 1;
 | |
| 
 | |
| 		stripe_nr = stripe_nr / factor;
 | |
| 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
 | |
| 		if (rw == WRITE)
 | |
| 			multi->num_stripes = map->num_stripes;
 | |
| 		else if (mirror_num)
 | |
| 			stripe_index = mirror_num - 1;
 | |
| 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
 | |
| 				BTRFS_BLOCK_GROUP_RAID6)) {
 | |
| 
 | |
| 		if (raid_map) {
 | |
| 			int rot;
 | |
| 			u64 tmp;
 | |
| 			u64 raid56_full_stripe_start;
 | |
| 			u64 full_stripe_len = nr_data_stripes(map) * map->stripe_len;
 | |
| 
 | |
| 			/*
 | |
| 			 * align the start of our data stripe in the logical
 | |
| 			 * address space
 | |
| 			 */
 | |
| 			raid56_full_stripe_start = offset / full_stripe_len;
 | |
| 			raid56_full_stripe_start *= full_stripe_len;
 | |
| 
 | |
| 			/* get the data stripe number */
 | |
| 			stripe_nr = raid56_full_stripe_start / map->stripe_len;
 | |
| 			stripe_nr = stripe_nr / nr_data_stripes(map);
 | |
| 
 | |
| 			/* Work out the disk rotation on this stripe-set */
 | |
| 			rot = stripe_nr % map->num_stripes;
 | |
| 
 | |
| 			/* Fill in the logical address of each stripe */
 | |
| 			tmp = (u64)stripe_nr * nr_data_stripes(map);
 | |
| 
 | |
| 			for (i = 0; i < nr_data_stripes(map); i++)
 | |
| 				raid_map[(i+rot) % map->num_stripes] =
 | |
| 					ce->start + (tmp + i) * map->stripe_len;
 | |
| 
 | |
| 			raid_map[(i+rot) % map->num_stripes] = BTRFS_RAID5_P_STRIPE;
 | |
| 			if (map->type & BTRFS_BLOCK_GROUP_RAID6)
 | |
| 				raid_map[(i+rot+1) % map->num_stripes] = BTRFS_RAID6_Q_STRIPE;
 | |
| 
 | |
| 			*length = map->stripe_len;
 | |
| 			stripe_index = 0;
 | |
| 			stripe_offset = 0;
 | |
| 			multi->num_stripes = map->num_stripes;
 | |
| 		} else {
 | |
| 			stripe_index = stripe_nr % nr_data_stripes(map);
 | |
| 			stripe_nr = stripe_nr / nr_data_stripes(map);
 | |
| 
 | |
| 			/*
 | |
| 			 * Mirror #0 or #1 means the original data block.
 | |
| 			 * Mirror #2 is RAID5 parity block.
 | |
| 			 * Mirror #3 is RAID6 Q block.
 | |
| 			 */
 | |
| 			if (mirror_num > 1)
 | |
| 				stripe_index = nr_data_stripes(map) + mirror_num - 2;
 | |
| 
 | |
| 			/* We distribute the parity blocks across stripes */
 | |
| 			stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * after this do_div call, stripe_nr is the number of stripes
 | |
| 		 * on this device we have to walk to find the data, and
 | |
| 		 * stripe_index is the number of our device in the stripe array
 | |
| 		 */
 | |
| 		stripe_index = stripe_nr % map->num_stripes;
 | |
| 		stripe_nr = stripe_nr / map->num_stripes;
 | |
| 	}
 | |
| 	BUG_ON(stripe_index >= map->num_stripes);
 | |
| 
 | |
| 	for (i = 0; i < multi->num_stripes; i++) {
 | |
| 		multi->stripes[i].physical =
 | |
| 			map->stripes[stripe_index].physical + stripe_offset +
 | |
| 			stripe_nr * map->stripe_len;
 | |
| 		multi->stripes[i].dev = map->stripes[stripe_index].dev;
 | |
| 		stripe_index++;
 | |
| 	}
 | |
| 	*multi_ret = multi;
 | |
| 
 | |
| 	if (type)
 | |
| 		*type = map->type;
 | |
| 
 | |
| 	if (raid_map) {
 | |
| 		sort_parity_stripes(multi, raid_map);
 | |
| 		*raid_map_ret = raid_map;
 | |
| 	}
 | |
| out:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
 | |
| 		    u64 logical, u64 *length,
 | |
| 		    struct btrfs_multi_bio **multi_ret, int mirror_num,
 | |
| 		    u64 **raid_map_ret)
 | |
| {
 | |
| 	return __btrfs_map_block(fs_info, rw, logical, length, NULL,
 | |
| 				 multi_ret, mirror_num, raid_map_ret);
 | |
| }
 |