1641 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1641 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Driver for Disk-On-Chip 2000 and Millennium
 | |
|  * (c) 1999 Machine Vision Holdings, Inc.
 | |
|  * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
 | |
|  *
 | |
|  * $Id: doc2000.c,v 1.46 2001/10/02 15:05:13 dwmw2 Exp $
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <config.h>
 | |
| #include <command.h>
 | |
| #include <malloc.h>
 | |
| #include <asm/io.h>
 | |
| #include <linux/mtd/nftl.h>
 | |
| #include <linux/mtd/doc2000.h>
 | |
| 
 | |
| /*
 | |
|  * ! BROKEN !
 | |
|  *
 | |
|  * TODO: must be implemented and tested by someone with HW
 | |
|  */
 | |
| #if 0
 | |
| #ifdef CONFIG_SYS_DOC_SUPPORT_2000
 | |
| #define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k)
 | |
| #else
 | |
| #define DoC_is_2000(doc) (0)
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SYS_DOC_SUPPORT_MILLENNIUM
 | |
| #define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil)
 | |
| #else
 | |
| #define DoC_is_Millennium(doc) (0)
 | |
| #endif
 | |
| 
 | |
| /* CONFIG_SYS_DOC_PASSIVE_PROBE:
 | |
|    In order to ensure that the BIOS checksum is correct at boot time, and
 | |
|    hence that the onboard BIOS extension gets executed, the DiskOnChip
 | |
|    goes into reset mode when it is read sequentially: all registers
 | |
|    return 0xff until the chip is woken up again by writing to the
 | |
|    DOCControl register.
 | |
| 
 | |
|    Unfortunately, this means that the probe for the DiskOnChip is unsafe,
 | |
|    because one of the first things it does is write to where it thinks
 | |
|    the DOCControl register should be - which may well be shared memory
 | |
|    for another device. I've had machines which lock up when this is
 | |
|    attempted. Hence the possibility to do a passive probe, which will fail
 | |
|    to detect a chip in reset mode, but is at least guaranteed not to lock
 | |
|    the machine.
 | |
| 
 | |
|    If you have this problem, uncomment the following line:
 | |
| #define CONFIG_SYS_DOC_PASSIVE_PROBE
 | |
| */
 | |
| 
 | |
| #undef	DOC_DEBUG
 | |
| #undef	ECC_DEBUG
 | |
| #undef	PSYCHO_DEBUG
 | |
| #undef	NFTL_DEBUG
 | |
| 
 | |
| static struct DiskOnChip doc_dev_desc[CONFIG_SYS_MAX_DOC_DEVICE];
 | |
| 
 | |
| /* Current DOC Device	*/
 | |
| static int curr_device = -1;
 | |
| 
 | |
| /* Supported NAND flash devices */
 | |
| static struct nand_flash_dev nand_flash_ids[] = {
 | |
| 	{"Toshiba TC5816BDC",     NAND_MFR_TOSHIBA, 0x64, 21, 1, 2, 0x1000, 0},
 | |
| 	{"Toshiba TC5832DC",      NAND_MFR_TOSHIBA, 0x6b, 22, 0, 2, 0x2000, 0},
 | |
| 	{"Toshiba TH58V128DC",    NAND_MFR_TOSHIBA, 0x73, 24, 0, 2, 0x4000, 0},
 | |
| 	{"Toshiba TC58256FT/DC",  NAND_MFR_TOSHIBA, 0x75, 25, 0, 2, 0x4000, 0},
 | |
| 	{"Toshiba TH58512FT",     NAND_MFR_TOSHIBA, 0x76, 26, 0, 3, 0x4000, 0},
 | |
| 	{"Toshiba TC58V32DC",     NAND_MFR_TOSHIBA, 0xe5, 22, 0, 2, 0x2000, 0},
 | |
| 	{"Toshiba TC58V64AFT/DC", NAND_MFR_TOSHIBA, 0xe6, 23, 0, 2, 0x2000, 0},
 | |
| 	{"Toshiba TC58V16BDC",    NAND_MFR_TOSHIBA, 0xea, 21, 1, 2, 0x1000, 0},
 | |
| 	{"Toshiba TH58100FT",     NAND_MFR_TOSHIBA, 0x79, 27, 0, 3, 0x4000, 0},
 | |
| 	{"Samsung KM29N16000",    NAND_MFR_SAMSUNG, 0x64, 21, 1, 2, 0x1000, 0},
 | |
| 	{"Samsung unknown 4Mb",   NAND_MFR_SAMSUNG, 0x6b, 22, 0, 2, 0x2000, 0},
 | |
| 	{"Samsung KM29U128T",     NAND_MFR_SAMSUNG, 0x73, 24, 0, 2, 0x4000, 0},
 | |
| 	{"Samsung KM29U256T",     NAND_MFR_SAMSUNG, 0x75, 25, 0, 2, 0x4000, 0},
 | |
| 	{"Samsung unknown 64Mb",  NAND_MFR_SAMSUNG, 0x76, 26, 0, 3, 0x4000, 0},
 | |
| 	{"Samsung KM29W32000",    NAND_MFR_SAMSUNG, 0xe3, 22, 0, 2, 0x2000, 0},
 | |
| 	{"Samsung unknown 4Mb",   NAND_MFR_SAMSUNG, 0xe5, 22, 0, 2, 0x2000, 0},
 | |
| 	{"Samsung KM29U64000",    NAND_MFR_SAMSUNG, 0xe6, 23, 0, 2, 0x2000, 0},
 | |
| 	{"Samsung KM29W16000",    NAND_MFR_SAMSUNG, 0xea, 21, 1, 2, 0x1000, 0},
 | |
| 	{"Samsung K9F5616Q0C",    NAND_MFR_SAMSUNG, 0x45, 25, 0, 2, 0x4000, 1},
 | |
| 	{"Samsung K9K1216Q0C",    NAND_MFR_SAMSUNG, 0x46, 26, 0, 3, 0x4000, 1},
 | |
| 	{"Samsung K9F1G08U0M",    NAND_MFR_SAMSUNG, 0xf1, 27, 0, 2, 0, 0},
 | |
| 	{NULL,}
 | |
| };
 | |
| 
 | |
| /* ------------------------------------------------------------------------- */
 | |
| 
 | |
| int do_doc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
 | |
| {
 | |
|     int rcode = 0;
 | |
| 
 | |
|     switch (argc) {
 | |
|     case 0:
 | |
|     case 1:
 | |
| 	printf ("Usage:\n%s\n", cmdtp->usage);
 | |
| 	return 1;
 | |
|     case 2:
 | |
| 	if (strcmp(argv[1],"info") == 0) {
 | |
| 		int i;
 | |
| 
 | |
| 		putc ('\n');
 | |
| 
 | |
| 		for (i=0; i<CONFIG_SYS_MAX_DOC_DEVICE; ++i) {
 | |
| 			if(doc_dev_desc[i].ChipID == DOC_ChipID_UNKNOWN)
 | |
| 				continue; /* list only known devices */
 | |
| 			printf ("Device %d: ", i);
 | |
| 			doc_print(&doc_dev_desc[i]);
 | |
| 		}
 | |
| 		return 0;
 | |
| 
 | |
| 	} else if (strcmp(argv[1],"device") == 0) {
 | |
| 		if ((curr_device < 0) || (curr_device >= CONFIG_SYS_MAX_DOC_DEVICE)) {
 | |
| 			puts ("\nno devices available\n");
 | |
| 			return 1;
 | |
| 		}
 | |
| 		printf ("\nDevice %d: ", curr_device);
 | |
| 		doc_print(&doc_dev_desc[curr_device]);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	printf ("Usage:\n%s\n", cmdtp->usage);
 | |
| 	return 1;
 | |
|     case 3:
 | |
| 	if (strcmp(argv[1],"device") == 0) {
 | |
| 		int dev = (int)simple_strtoul(argv[2], NULL, 10);
 | |
| 
 | |
| 		printf ("\nDevice %d: ", dev);
 | |
| 		if (dev >= CONFIG_SYS_MAX_DOC_DEVICE) {
 | |
| 			puts ("unknown device\n");
 | |
| 			return 1;
 | |
| 		}
 | |
| 		doc_print(&doc_dev_desc[dev]);
 | |
| 		/*doc_print (dev);*/
 | |
| 
 | |
| 		if (doc_dev_desc[dev].ChipID == DOC_ChipID_UNKNOWN) {
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		curr_device = dev;
 | |
| 
 | |
| 		puts ("... is now current device\n");
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	printf ("Usage:\n%s\n", cmdtp->usage);
 | |
| 	return 1;
 | |
|     default:
 | |
| 	/* at least 4 args */
 | |
| 
 | |
| 	if (strcmp(argv[1],"read") == 0 || strcmp(argv[1],"write") == 0) {
 | |
| 		ulong addr = simple_strtoul(argv[2], NULL, 16);
 | |
| 		ulong off  = simple_strtoul(argv[3], NULL, 16);
 | |
| 		ulong size = simple_strtoul(argv[4], NULL, 16);
 | |
| 		int cmd    = (strcmp(argv[1],"read") == 0);
 | |
| 		int ret, total;
 | |
| 
 | |
| 		printf ("\nDOC %s: device %d offset %ld, size %ld ... ",
 | |
| 			cmd ? "read" : "write", curr_device, off, size);
 | |
| 
 | |
| 		ret = doc_rw(doc_dev_desc + curr_device, cmd, off, size,
 | |
| 			     (size_t *)&total, (u_char*)addr);
 | |
| 
 | |
| 		printf ("%d bytes %s: %s\n", total, cmd ? "read" : "write",
 | |
| 			ret ? "ERROR" : "OK");
 | |
| 
 | |
| 		return ret;
 | |
| 	} else if (strcmp(argv[1],"erase") == 0) {
 | |
| 		ulong off = simple_strtoul(argv[2], NULL, 16);
 | |
| 		ulong size = simple_strtoul(argv[3], NULL, 16);
 | |
| 		int ret;
 | |
| 
 | |
| 		printf ("\nDOC erase: device %d offset %ld, size %ld ... ",
 | |
| 			curr_device, off, size);
 | |
| 
 | |
| 		ret = doc_erase (doc_dev_desc + curr_device, off, size);
 | |
| 
 | |
| 		printf("%s\n", ret ? "ERROR" : "OK");
 | |
| 
 | |
| 		return ret;
 | |
| 	} else {
 | |
| 		printf ("Usage:\n%s\n", cmdtp->usage);
 | |
| 		rcode = 1;
 | |
| 	}
 | |
| 
 | |
| 	return rcode;
 | |
|     }
 | |
| }
 | |
| U_BOOT_CMD(
 | |
| 	doc,	5,	1,	do_doc,
 | |
| 	"doc     - Disk-On-Chip sub-system\n",
 | |
| 	"info  - show available DOC devices\n"
 | |
| 	"doc device [dev] - show or set current device\n"
 | |
| 	"doc read  addr off size\n"
 | |
| 	"doc write addr off size - read/write `size'"
 | |
| 	" bytes starting at offset `off'\n"
 | |
| 	"    to/from memory address `addr'\n"
 | |
| 	"doc erase off size - erase `size' bytes of DOC from offset `off'\n"
 | |
| );
 | |
| 
 | |
| int do_docboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
 | |
| {
 | |
| 	char *boot_device = NULL;
 | |
| 	char *ep;
 | |
| 	int dev;
 | |
| 	ulong cnt;
 | |
| 	ulong addr;
 | |
| 	ulong offset = 0;
 | |
| 	image_header_t *hdr;
 | |
| 	int rcode = 0;
 | |
| #if defined(CONFIG_FIT)
 | |
| 	const void *fit_hdr = NULL;
 | |
| #endif
 | |
| 
 | |
| 	show_boot_progress (34);
 | |
| 	switch (argc) {
 | |
| 	case 1:
 | |
| 		addr = CONFIG_SYS_LOAD_ADDR;
 | |
| 		boot_device = getenv ("bootdevice");
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		addr = simple_strtoul(argv[1], NULL, 16);
 | |
| 		boot_device = getenv ("bootdevice");
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		addr = simple_strtoul(argv[1], NULL, 16);
 | |
| 		boot_device = argv[2];
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		addr = simple_strtoul(argv[1], NULL, 16);
 | |
| 		boot_device = argv[2];
 | |
| 		offset = simple_strtoul(argv[3], NULL, 16);
 | |
| 		break;
 | |
| 	default:
 | |
| 		printf ("Usage:\n%s\n", cmdtp->usage);
 | |
| 		show_boot_progress (-35);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	show_boot_progress (35);
 | |
| 	if (!boot_device) {
 | |
| 		puts ("\n** No boot device **\n");
 | |
| 		show_boot_progress (-36);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	show_boot_progress (36);
 | |
| 
 | |
| 	dev = simple_strtoul(boot_device, &ep, 16);
 | |
| 
 | |
| 	if ((dev >= CONFIG_SYS_MAX_DOC_DEVICE) ||
 | |
| 	    (doc_dev_desc[dev].ChipID == DOC_ChipID_UNKNOWN)) {
 | |
| 		printf ("\n** Device %d not available\n", dev);
 | |
| 		show_boot_progress (-37);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	show_boot_progress (37);
 | |
| 
 | |
| 	printf ("\nLoading from device %d: %s at 0x%lX (offset 0x%lX)\n",
 | |
| 		dev, doc_dev_desc[dev].name, doc_dev_desc[dev].physadr,
 | |
| 		offset);
 | |
| 
 | |
| 	if (doc_rw (doc_dev_desc + dev, 1, offset,
 | |
| 		    SECTORSIZE, NULL, (u_char *)addr)) {
 | |
| 		printf ("** Read error on %d\n", dev);
 | |
| 		show_boot_progress (-38);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	show_boot_progress (38);
 | |
| 
 | |
| 	switch (genimg_get_format ((void *)addr)) {
 | |
| 	case IMAGE_FORMAT_LEGACY:
 | |
| 		hdr = (image_header_t *)addr;
 | |
| 
 | |
| 		image_print_contents (hdr);
 | |
| 
 | |
| 		cnt = image_get_image_size (hdr);
 | |
| 		break;
 | |
| #if defined(CONFIG_FIT)
 | |
| 	case IMAGE_FORMAT_FIT:
 | |
| 		fit_hdr = (const void *)addr;
 | |
| 		puts ("Fit image detected...\n");
 | |
| 
 | |
| 		cnt = fit_get_size (fit_hdr);
 | |
| 		break;
 | |
| #endif
 | |
| 	default:
 | |
| 		show_boot_progress (-39);
 | |
| 		puts ("** Unknown image type\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 	show_boot_progress (39);
 | |
| 
 | |
| 	cnt -= SECTORSIZE;
 | |
| 	if (doc_rw (doc_dev_desc + dev, 1, offset + SECTORSIZE, cnt,
 | |
| 		    NULL, (u_char *)(addr+SECTORSIZE))) {
 | |
| 		printf ("** Read error on %d\n", dev);
 | |
| 		show_boot_progress (-40);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	show_boot_progress (40);
 | |
| 
 | |
| #if defined(CONFIG_FIT)
 | |
| 	/* This cannot be done earlier, we need complete FIT image in RAM first */
 | |
| 	if (genimg_get_format ((void *)addr) == IMAGE_FORMAT_FIT) {
 | |
| 		if (!fit_check_format (fit_hdr)) {
 | |
| 			show_boot_progress (-130);
 | |
| 			puts ("** Bad FIT image format\n");
 | |
| 			return 1;
 | |
| 		}
 | |
| 		show_boot_progress (131);
 | |
| 		fit_print_contents (fit_hdr);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* Loading ok, update default load address */
 | |
| 
 | |
| 	load_addr = addr;
 | |
| 
 | |
| 	/* Check if we should attempt an auto-start */
 | |
| 	if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) {
 | |
| 		char *local_args[2];
 | |
| 		extern int do_bootm (cmd_tbl_t *, int, int, char *[]);
 | |
| 
 | |
| 		local_args[0] = argv[0];
 | |
| 		local_args[1] = NULL;
 | |
| 
 | |
| 		printf ("Automatic boot of image at addr 0x%08lX ...\n", addr);
 | |
| 
 | |
| 		do_bootm (cmdtp, 0, 1, local_args);
 | |
| 		rcode = 1;
 | |
| 	}
 | |
| 	return rcode;
 | |
| }
 | |
| 
 | |
| U_BOOT_CMD(
 | |
| 	docboot,	4,	1,	do_docboot,
 | |
| 	"docboot - boot from DOC device\n",
 | |
| 	"loadAddr dev\n"
 | |
| );
 | |
| 
 | |
| int doc_rw (struct DiskOnChip* this, int cmd,
 | |
| 	    loff_t from, size_t len,
 | |
| 	    size_t * retlen, u_char * buf)
 | |
| {
 | |
| 	int noecc, ret = 0, n, total = 0;
 | |
| 	char eccbuf[6];
 | |
| 
 | |
| 	while(len) {
 | |
| 		/* The ECC will not be calculated correctly if
 | |
| 		   less than 512 is written or read */
 | |
| 		noecc = (from != (from | 0x1ff) + 1) ||	(len < 0x200);
 | |
| 
 | |
| 		if (cmd)
 | |
| 			ret = doc_read_ecc(this, from, len,
 | |
| 					   (size_t *)&n, (u_char*)buf,
 | |
| 					   noecc ? (uchar *)NULL : (uchar *)eccbuf);
 | |
| 		else
 | |
| 			ret = doc_write_ecc(this, from, len,
 | |
| 					    (size_t *)&n, (u_char*)buf,
 | |
| 					    noecc ? (uchar *)NULL : (uchar *)eccbuf);
 | |
| 
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		from  += n;
 | |
| 		buf   += n;
 | |
| 		total += n;
 | |
| 		len   -= n;
 | |
| 	}
 | |
| 
 | |
| 	if (retlen)
 | |
| 		*retlen = total;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void doc_print(struct DiskOnChip *this) {
 | |
| 	printf("%s at 0x%lX,\n"
 | |
| 	       "\t  %d chip%s %s, size %d MB, \n"
 | |
| 	       "\t  total size %ld MB, sector size %ld kB\n",
 | |
| 	       this->name, this->physadr, this->numchips,
 | |
| 	       this->numchips>1 ? "s" : "", this->chips_name,
 | |
| 	       1 << (this->chipshift - 20),
 | |
| 	       this->totlen >> 20, this->erasesize >> 10);
 | |
| 
 | |
| 	if (this->nftl_found) {
 | |
| 		struct NFTLrecord *nftl = &this->nftl;
 | |
| 		unsigned long bin_size, flash_size;
 | |
| 
 | |
| 		bin_size = nftl->nb_boot_blocks * this->erasesize;
 | |
| 		flash_size = (nftl->nb_blocks - nftl->nb_boot_blocks) * this->erasesize;
 | |
| 
 | |
| 		printf("\t  NFTL boot record:\n"
 | |
| 		       "\t    Binary partition: size %ld%s\n"
 | |
| 		       "\t    Flash disk partition: size %ld%s, offset 0x%lx\n",
 | |
| 		       bin_size > (1 << 20) ? bin_size >> 20 : bin_size >> 10,
 | |
| 		       bin_size > (1 << 20) ? "MB" : "kB",
 | |
| 		       flash_size > (1 << 20) ? flash_size >> 20 : flash_size >> 10,
 | |
| 		       flash_size > (1 << 20) ? "MB" : "kB", bin_size);
 | |
| 	} else {
 | |
| 		puts ("\t  No NFTL boot record found.\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* ------------------------------------------------------------------------- */
 | |
| 
 | |
| /* This function is needed to avoid calls of the __ashrdi3 function. */
 | |
| static int shr(int val, int shift) {
 | |
| 	return val >> shift;
 | |
| }
 | |
| 
 | |
| /* Perform the required delay cycles by reading from the appropriate register */
 | |
| static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles)
 | |
| {
 | |
| 	volatile char dummy;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < cycles; i++) {
 | |
| 		if (DoC_is_Millennium(doc))
 | |
| 			dummy = ReadDOC(doc->virtadr, NOP);
 | |
| 		else
 | |
| 			dummy = ReadDOC(doc->virtadr, DOCStatus);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
 | |
| static int _DoC_WaitReady(struct DiskOnChip *doc)
 | |
| {
 | |
| 	unsigned long docptr = doc->virtadr;
 | |
| 	unsigned long start = get_timer(0);
 | |
| 
 | |
| #ifdef PSYCHO_DEBUG
 | |
| 	puts ("_DoC_WaitReady called for out-of-line wait\n");
 | |
| #endif
 | |
| 
 | |
| 	/* Out-of-line routine to wait for chip response */
 | |
| 	while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
 | |
| #ifdef CONFIG_SYS_DOC_SHORT_TIMEOUT
 | |
| 		/* it seems that after a certain time the DoC deasserts
 | |
| 		 * the CDSN_CTRL_FR_B although it is not ready...
 | |
| 		 * using a short timout solve this (timer increments every ms) */
 | |
| 		if (get_timer(start) > 10) {
 | |
| 			return DOC_ETIMEOUT;
 | |
| 		}
 | |
| #else
 | |
| 		if (get_timer(start) > 10 * 1000) {
 | |
| 			puts ("_DoC_WaitReady timed out.\n");
 | |
| 			return DOC_ETIMEOUT;
 | |
| 		}
 | |
| #endif
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int DoC_WaitReady(struct DiskOnChip *doc)
 | |
| {
 | |
| 	unsigned long docptr = doc->virtadr;
 | |
| 	/* This is inline, to optimise the common case, where it's ready instantly */
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* 4 read form NOP register should be issued in prior to the read from CDSNControl
 | |
| 	   see Software Requirement 11.4 item 2. */
 | |
| 	DoC_Delay(doc, 4);
 | |
| 
 | |
| 	if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
 | |
| 		/* Call the out-of-line routine to wait */
 | |
| 		ret = _DoC_WaitReady(doc);
 | |
| 
 | |
| 	/* issue 2 read from NOP register after reading from CDSNControl register
 | |
| 	   see Software Requirement 11.4 item 2. */
 | |
| 	DoC_Delay(doc, 2);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to
 | |
|    bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
 | |
|    required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
 | |
| 
 | |
| static inline int DoC_Command(struct DiskOnChip *doc, unsigned char command,
 | |
| 			      unsigned char xtraflags)
 | |
| {
 | |
| 	unsigned long docptr = doc->virtadr;
 | |
| 
 | |
| 	if (DoC_is_2000(doc))
 | |
| 		xtraflags |= CDSN_CTRL_FLASH_IO;
 | |
| 
 | |
| 	/* Assert the CLE (Command Latch Enable) line to the flash chip */
 | |
| 	WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
 | |
| 	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
 | |
| 
 | |
| 	if (DoC_is_Millennium(doc))
 | |
| 		WriteDOC(command, docptr, CDSNSlowIO);
 | |
| 
 | |
| 	/* Send the command */
 | |
| 	WriteDOC_(command, docptr, doc->ioreg);
 | |
| 
 | |
| 	/* Lower the CLE line */
 | |
| 	WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
 | |
| 	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
 | |
| 
 | |
| 	/* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */
 | |
| 	return DoC_WaitReady(doc);
 | |
| }
 | |
| 
 | |
| /* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to
 | |
|    bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
 | |
|    required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
 | |
| 
 | |
| static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs,
 | |
| 		       unsigned char xtraflags1, unsigned char xtraflags2)
 | |
| {
 | |
| 	unsigned long docptr;
 | |
| 	int i;
 | |
| 
 | |
| 	docptr = doc->virtadr;
 | |
| 
 | |
| 	if (DoC_is_2000(doc))
 | |
| 		xtraflags1 |= CDSN_CTRL_FLASH_IO;
 | |
| 
 | |
| 	/* Assert the ALE (Address Latch Enable) line to the flash chip */
 | |
| 	WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
 | |
| 
 | |
| 	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
 | |
| 
 | |
| 	/* Send the address */
 | |
| 	/* Devices with 256-byte page are addressed as:
 | |
| 	   Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
 | |
| 	   * there is no device on the market with page256
 | |
| 	   and more than 24 bits.
 | |
| 	   Devices with 512-byte page are addressed as:
 | |
| 	   Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
 | |
| 	   * 25-31 is sent only if the chip support it.
 | |
| 	   * bit 8 changes the read command to be sent
 | |
| 	   (NAND_CMD_READ0 or NAND_CMD_READ1).
 | |
| 	 */
 | |
| 
 | |
| 	if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) {
 | |
| 		if (DoC_is_Millennium(doc))
 | |
| 			WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
 | |
| 		WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
 | |
| 	}
 | |
| 
 | |
| 	if (doc->page256) {
 | |
| 		ofs = ofs >> 8;
 | |
| 	} else {
 | |
| 		ofs = ofs >> 9;
 | |
| 	}
 | |
| 
 | |
| 	if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
 | |
| 		for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) {
 | |
| 			if (DoC_is_Millennium(doc))
 | |
| 				WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
 | |
| 			WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	DoC_Delay(doc, 2);	/* Needed for some slow flash chips. mf. */
 | |
| 
 | |
| 	/* FIXME: The SlowIO's for millennium could be replaced by
 | |
| 	   a single WritePipeTerm here. mf. */
 | |
| 
 | |
| 	/* Lower the ALE line */
 | |
| 	WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr,
 | |
| 		 CDSNControl);
 | |
| 
 | |
| 	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
 | |
| 
 | |
| 	/* Wait for the chip to respond - Software requirement 11.4.1 */
 | |
| 	return DoC_WaitReady(doc);
 | |
| }
 | |
| 
 | |
| /* Read a buffer from DoC, taking care of Millennium oddities */
 | |
| static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len)
 | |
| {
 | |
| 	volatile int dummy;
 | |
| 	int modulus = 0xffff;
 | |
| 	unsigned long docptr;
 | |
| 	int i;
 | |
| 
 | |
| 	docptr = doc->virtadr;
 | |
| 
 | |
| 	if (len <= 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (DoC_is_Millennium(doc)) {
 | |
| 		/* Read the data via the internal pipeline through CDSN IO register,
 | |
| 		   see Pipelined Read Operations 11.3 */
 | |
| 		dummy = ReadDOC(docptr, ReadPipeInit);
 | |
| 
 | |
| 		/* Millennium should use the LastDataRead register - Pipeline Reads */
 | |
| 		len--;
 | |
| 
 | |
| 		/* This is needed for correctly ECC calculation */
 | |
| 		modulus = 0xff;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < len; i++)
 | |
| 		buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus));
 | |
| 
 | |
| 	if (DoC_is_Millennium(doc)) {
 | |
| 		buf[i] = ReadDOC(docptr, LastDataRead);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Write a buffer to DoC, taking care of Millennium oddities */
 | |
| static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len)
 | |
| {
 | |
| 	unsigned long docptr;
 | |
| 	int i;
 | |
| 
 | |
| 	docptr = doc->virtadr;
 | |
| 
 | |
| 	if (len <= 0)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < len; i++)
 | |
| 		WriteDOC_(buf[i], docptr, doc->ioreg + i);
 | |
| 
 | |
| 	if (DoC_is_Millennium(doc)) {
 | |
| 		WriteDOC(0x00, docptr, WritePipeTerm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /* DoC_SelectChip: Select a given flash chip within the current floor */
 | |
| 
 | |
| static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip)
 | |
| {
 | |
| 	unsigned long docptr = doc->virtadr;
 | |
| 
 | |
| 	/* Software requirement 11.4.4 before writing DeviceSelect */
 | |
| 	/* Deassert the CE line to eliminate glitches on the FCE# outputs */
 | |
| 	WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl);
 | |
| 	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
 | |
| 
 | |
| 	/* Select the individual flash chip requested */
 | |
| 	WriteDOC(chip, docptr, CDSNDeviceSelect);
 | |
| 	DoC_Delay(doc, 4);
 | |
| 
 | |
| 	/* Reassert the CE line */
 | |
| 	WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr,
 | |
| 		 CDSNControl);
 | |
| 	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
 | |
| 
 | |
| 	/* Wait for it to be ready */
 | |
| 	return DoC_WaitReady(doc);
 | |
| }
 | |
| 
 | |
| /* DoC_SelectFloor: Select a given floor (bank of flash chips) */
 | |
| 
 | |
| static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor)
 | |
| {
 | |
| 	unsigned long docptr = doc->virtadr;
 | |
| 
 | |
| 	/* Select the floor (bank) of chips required */
 | |
| 	WriteDOC(floor, docptr, FloorSelect);
 | |
| 
 | |
| 	/* Wait for the chip to be ready */
 | |
| 	return DoC_WaitReady(doc);
 | |
| }
 | |
| 
 | |
| /* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
 | |
| 
 | |
| static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
 | |
| {
 | |
| 	int mfr, id, i;
 | |
| 	volatile char dummy;
 | |
| 
 | |
| 	/* Page in the required floor/chip */
 | |
| 	DoC_SelectFloor(doc, floor);
 | |
| 	DoC_SelectChip(doc, chip);
 | |
| 
 | |
| 	/* Reset the chip */
 | |
| 	if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) {
 | |
| #ifdef DOC_DEBUG
 | |
| 		printf("DoC_Command (reset) for %d,%d returned true\n",
 | |
| 		       floor, chip);
 | |
| #endif
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* Read the NAND chip ID: 1. Send ReadID command */
 | |
| 	if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) {
 | |
| #ifdef DOC_DEBUG
 | |
| 		printf("DoC_Command (ReadID) for %d,%d returned true\n",
 | |
| 		       floor, chip);
 | |
| #endif
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Read the NAND chip ID: 2. Send address byte zero */
 | |
| 	DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0);
 | |
| 
 | |
| 	/* Read the manufacturer and device id codes from the device */
 | |
| 
 | |
| 	/* CDSN Slow IO register see Software Requirement 11.4 item 5. */
 | |
| 	dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
 | |
| 	DoC_Delay(doc, 2);
 | |
| 	mfr = ReadDOC_(doc->virtadr, doc->ioreg);
 | |
| 
 | |
| 	/* CDSN Slow IO register see Software Requirement 11.4 item 5. */
 | |
| 	dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
 | |
| 	DoC_Delay(doc, 2);
 | |
| 	id = ReadDOC_(doc->virtadr, doc->ioreg);
 | |
| 
 | |
| 	/* No response - return failure */
 | |
| 	if (mfr == 0xff || mfr == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Check it's the same as the first chip we identified.
 | |
| 	 * M-Systems say that any given DiskOnChip device should only
 | |
| 	 * contain _one_ type of flash part, although that's not a
 | |
| 	 * hardware restriction. */
 | |
| 	if (doc->mfr) {
 | |
| 		if (doc->mfr == mfr && doc->id == id)
 | |
| 			return 1;	/* This is another the same the first */
 | |
| 		else
 | |
| 			printf("Flash chip at floor %d, chip %d is different:\n",
 | |
| 			       floor, chip);
 | |
| 	}
 | |
| 
 | |
| 	/* Print and store the manufacturer and ID codes. */
 | |
| 	for (i = 0; nand_flash_ids[i].name != NULL; i++) {
 | |
| 		if (mfr == nand_flash_ids[i].manufacture_id &&
 | |
| 		    id == nand_flash_ids[i].model_id) {
 | |
| #ifdef DOC_DEBUG
 | |
| 			printf("Flash chip found: Manufacturer ID: %2.2X, "
 | |
| 			       "Chip ID: %2.2X (%s)\n", mfr, id,
 | |
| 			       nand_flash_ids[i].name);
 | |
| #endif
 | |
| 			if (!doc->mfr) {
 | |
| 				doc->mfr = mfr;
 | |
| 				doc->id = id;
 | |
| 				doc->chipshift =
 | |
| 				    nand_flash_ids[i].chipshift;
 | |
| 				doc->page256 = nand_flash_ids[i].page256;
 | |
| 				doc->pageadrlen =
 | |
| 				    nand_flash_ids[i].pageadrlen;
 | |
| 				doc->erasesize =
 | |
| 				    nand_flash_ids[i].erasesize;
 | |
| 				doc->chips_name =
 | |
| 				    nand_flash_ids[i].name;
 | |
| 				return 1;
 | |
| 			}
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| #ifdef DOC_DEBUG
 | |
| 	/* We haven't fully identified the chip. Print as much as we know. */
 | |
| 	printf("Unknown flash chip found: %2.2X %2.2X\n",
 | |
| 	       id, mfr);
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
 | |
| 
 | |
| static void DoC_ScanChips(struct DiskOnChip *this)
 | |
| {
 | |
| 	int floor, chip;
 | |
| 	int numchips[MAX_FLOORS];
 | |
| 	int maxchips = MAX_CHIPS;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	this->numchips = 0;
 | |
| 	this->mfr = 0;
 | |
| 	this->id = 0;
 | |
| 
 | |
| 	if (DoC_is_Millennium(this))
 | |
| 		maxchips = MAX_CHIPS_MIL;
 | |
| 
 | |
| 	/* For each floor, find the number of valid chips it contains */
 | |
| 	for (floor = 0; floor < MAX_FLOORS; floor++) {
 | |
| 		ret = 1;
 | |
| 		numchips[floor] = 0;
 | |
| 		for (chip = 0; chip < maxchips && ret != 0; chip++) {
 | |
| 
 | |
| 			ret = DoC_IdentChip(this, floor, chip);
 | |
| 			if (ret) {
 | |
| 				numchips[floor]++;
 | |
| 				this->numchips++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* If there are none at all that we recognise, bail */
 | |
| 	if (!this->numchips) {
 | |
| 		puts ("No flash chips recognised.\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate an array to hold the information for each chip */
 | |
| 	this->chips = malloc(sizeof(struct Nand) * this->numchips);
 | |
| 	if (!this->chips) {
 | |
| 		puts ("No memory for allocating chip info structures\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| 
 | |
| 	/* Fill out the chip array with {floor, chipno} for each
 | |
| 	 * detected chip in the device. */
 | |
| 	for (floor = 0; floor < MAX_FLOORS; floor++) {
 | |
| 		for (chip = 0; chip < numchips[floor]; chip++) {
 | |
| 			this->chips[ret].floor = floor;
 | |
| 			this->chips[ret].chip = chip;
 | |
| 			this->chips[ret].curadr = 0;
 | |
| 			this->chips[ret].curmode = 0x50;
 | |
| 			ret++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate and print the total size of the device */
 | |
| 	this->totlen = this->numchips * (1 << this->chipshift);
 | |
| 
 | |
| #ifdef DOC_DEBUG
 | |
| 	printf("%d flash chips found. Total DiskOnChip size: %ld MB\n",
 | |
| 	       this->numchips, this->totlen >> 20);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the
 | |
|  *	various device information of the NFTL partition and Bad Unit Table. Update
 | |
|  *	the ReplUnitTable[] table accroding to the Bad Unit Table. ReplUnitTable[]
 | |
|  *	is used for management of Erase Unit in other routines in nftl.c and nftlmount.c
 | |
|  */
 | |
| static int find_boot_record(struct NFTLrecord *nftl)
 | |
| {
 | |
| 	struct nftl_uci1 h1;
 | |
| 	struct nftl_oob oob;
 | |
| 	unsigned int block, boot_record_count = 0;
 | |
| 	int retlen;
 | |
| 	u8 buf[SECTORSIZE];
 | |
| 	struct NFTLMediaHeader *mh = &nftl->MediaHdr;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	nftl->MediaUnit = BLOCK_NIL;
 | |
| 	nftl->SpareMediaUnit = BLOCK_NIL;
 | |
| 
 | |
| 	/* search for a valid boot record */
 | |
| 	for (block = 0; block < nftl->nb_blocks; block++) {
 | |
| 		int ret;
 | |
| 
 | |
| 		/* Check for ANAND header first. Then can whinge if it's found but later
 | |
| 		   checks fail */
 | |
| 		if ((ret = doc_read_ecc(nftl->mtd, block * nftl->EraseSize, SECTORSIZE,
 | |
| 					(size_t *)&retlen, buf, NULL))) {
 | |
| 			static int warncount = 5;
 | |
| 
 | |
| 			if (warncount) {
 | |
| 				printf("Block read at 0x%x failed\n", block * nftl->EraseSize);
 | |
| 				if (!--warncount)
 | |
| 					puts ("Further failures for this block will not be printed\n");
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (retlen < 6 || memcmp(buf, "ANAND", 6)) {
 | |
| 			/* ANAND\0 not found. Continue */
 | |
| #ifdef PSYCHO_DEBUG
 | |
| 			printf("ANAND header not found at 0x%x\n", block * nftl->EraseSize);
 | |
| #endif
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| #ifdef NFTL_DEBUG
 | |
| 		printf("ANAND header found at 0x%x\n", block * nftl->EraseSize);
 | |
| #endif
 | |
| 
 | |
| 		/* To be safer with BIOS, also use erase mark as discriminant */
 | |
| 		if ((ret = doc_read_oob(nftl->mtd, block * nftl->EraseSize + SECTORSIZE + 8,
 | |
| 				8, (size_t *)&retlen, (uchar *)&h1) < 0)) {
 | |
| #ifdef NFTL_DEBUG
 | |
| 			printf("ANAND header found at 0x%x, but OOB data read failed\n",
 | |
| 			       block * nftl->EraseSize);
 | |
| #endif
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* OK, we like it. */
 | |
| 
 | |
| 		if (boot_record_count) {
 | |
| 			/* We've already processed one. So we just check if
 | |
| 			   this one is the same as the first one we found */
 | |
| 			if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) {
 | |
| #ifdef NFTL_DEBUG
 | |
| 				printf("NFTL Media Headers at 0x%x and 0x%x disagree.\n",
 | |
| 				       nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize);
 | |
| #endif
 | |
| 				/* if (debug) Print both side by side */
 | |
| 				return -1;
 | |
| 			}
 | |
| 			if (boot_record_count == 1)
 | |
| 				nftl->SpareMediaUnit = block;
 | |
| 
 | |
| 			boot_record_count++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* This is the first we've seen. Copy the media header structure into place */
 | |
| 		memcpy(mh, buf, sizeof(struct NFTLMediaHeader));
 | |
| 
 | |
| 		/* Do some sanity checks on it */
 | |
| 		if (mh->UnitSizeFactor == 0) {
 | |
| #ifdef NFTL_DEBUG
 | |
| 			puts ("UnitSizeFactor 0x00 detected.\n"
 | |
| 			      "This violates the spec but we think we know what it means...\n");
 | |
| #endif
 | |
| 		} else if (mh->UnitSizeFactor != 0xff) {
 | |
| 			printf ("Sorry, we don't support UnitSizeFactor "
 | |
| 			      "of != 1 yet.\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN);
 | |
| 		if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) {
 | |
| 			printf ("NFTL Media Header sanity check failed:\n"
 | |
| 				"nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n",
 | |
| 				nftl->nb_boot_blocks, nftl->nb_blocks);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize;
 | |
| 		if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) {
 | |
| 			printf ("NFTL Media Header sanity check failed:\n"
 | |
| 				"numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n",
 | |
| 				nftl->numvunits,
 | |
| 				nftl->nb_blocks,
 | |
| 				nftl->nb_boot_blocks);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		nftl->nr_sects  = nftl->numvunits * (nftl->EraseSize / SECTORSIZE);
 | |
| 
 | |
| 		/* If we're not using the last sectors in the device for some reason,
 | |
| 		   reduce nb_blocks accordingly so we forget they're there */
 | |
| 		nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN);
 | |
| 
 | |
| 		/* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */
 | |
| 		for (i = 0; i < nftl->nb_blocks; i++) {
 | |
| 			if ((i & (SECTORSIZE - 1)) == 0) {
 | |
| 				/* read one sector for every SECTORSIZE of blocks */
 | |
| 				if ((ret = doc_read_ecc(nftl->mtd, block * nftl->EraseSize +
 | |
| 						       i + SECTORSIZE, SECTORSIZE,
 | |
| 						       (size_t *)&retlen, buf, (uchar *)&oob)) < 0) {
 | |
| 					puts ("Read of bad sector table failed\n");
 | |
| 					return -1;
 | |
| 				}
 | |
| 			}
 | |
| 			/* mark the Bad Erase Unit as RESERVED in ReplUnitTable */
 | |
| 			if (buf[i & (SECTORSIZE - 1)] != 0xff)
 | |
| 				nftl->ReplUnitTable[i] = BLOCK_RESERVED;
 | |
| 		}
 | |
| 
 | |
| 		nftl->MediaUnit = block;
 | |
| 		boot_record_count++;
 | |
| 
 | |
| 	} /* foreach (block) */
 | |
| 
 | |
| 	return boot_record_count?0:-1;
 | |
| }
 | |
| 
 | |
| /* This routine is made available to other mtd code via
 | |
|  * inter_module_register.  It must only be accessed through
 | |
|  * inter_module_get which will bump the use count of this module.  The
 | |
|  * addresses passed back in mtd are valid as long as the use count of
 | |
|  * this module is non-zero, i.e. between inter_module_get and
 | |
|  * inter_module_put.  Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
 | |
|  */
 | |
| static void DoC2k_init(struct DiskOnChip* this)
 | |
| {
 | |
| 	struct NFTLrecord *nftl;
 | |
| 
 | |
| 	switch (this->ChipID) {
 | |
| 	case DOC_ChipID_Doc2k:
 | |
| 		this->name = "DiskOnChip 2000";
 | |
| 		this->ioreg = DoC_2k_CDSN_IO;
 | |
| 		break;
 | |
| 	case DOC_ChipID_DocMil:
 | |
| 		this->name = "DiskOnChip Millennium";
 | |
| 		this->ioreg = DoC_Mil_CDSN_IO;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| #ifdef DOC_DEBUG
 | |
| 	printf("%s found at address 0x%lX\n", this->name,
 | |
| 	       this->physadr);
 | |
| #endif
 | |
| 
 | |
| 	this->totlen = 0;
 | |
| 	this->numchips = 0;
 | |
| 
 | |
| 	this->curfloor = -1;
 | |
| 	this->curchip = -1;
 | |
| 
 | |
| 	/* Ident all the chips present. */
 | |
| 	DoC_ScanChips(this);
 | |
| 	if ((!this->numchips) || (!this->chips))
 | |
| 		return;
 | |
| 
 | |
| 	nftl = &this->nftl;
 | |
| 
 | |
| 	/* Get physical parameters */
 | |
| 	nftl->EraseSize = this->erasesize;
 | |
| 	nftl->nb_blocks = this->totlen / this->erasesize;
 | |
| 	nftl->mtd = this;
 | |
| 
 | |
| 	if (find_boot_record(nftl) != 0)
 | |
| 		this->nftl_found = 0;
 | |
| 	else
 | |
| 		this->nftl_found = 1;
 | |
| 
 | |
| 	printf("%s @ 0x%lX, %ld MB\n", this->name, this->physadr, this->totlen >> 20);
 | |
| }
 | |
| 
 | |
| int doc_read_ecc(struct DiskOnChip* this, loff_t from, size_t len,
 | |
| 		 size_t * retlen, u_char * buf, u_char * eccbuf)
 | |
| {
 | |
| 	unsigned long docptr;
 | |
| 	struct Nand *mychip;
 | |
| 	unsigned char syndrome[6];
 | |
| 	volatile char dummy;
 | |
| 	int i, len256 = 0, ret=0;
 | |
| 
 | |
| 	docptr = this->virtadr;
 | |
| 
 | |
| 	/* Don't allow read past end of device */
 | |
| 	if (from >= this->totlen) {
 | |
| 		puts ("Out of flash\n");
 | |
| 		return DOC_EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Don't allow a single read to cross a 512-byte block boundary */
 | |
| 	if (from + len > ((from | 0x1ff) + 1))
 | |
| 		len = ((from | 0x1ff) + 1) - from;
 | |
| 
 | |
| 	/* The ECC will not be calculated correctly if less than 512 is read */
 | |
| 	if (len != 0x200 && eccbuf)
 | |
| 		printf("ECC needs a full sector read (adr: %lx size %lx)\n",
 | |
| 		       (long) from, (long) len);
 | |
| 
 | |
| #ifdef PSYCHO_DEBUG
 | |
| 	printf("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len);
 | |
| #endif
 | |
| 
 | |
| 	/* Find the chip which is to be used and select it */
 | |
| 	mychip = &this->chips[shr(from, this->chipshift)];
 | |
| 
 | |
| 	if (this->curfloor != mychip->floor) {
 | |
| 		DoC_SelectFloor(this, mychip->floor);
 | |
| 		DoC_SelectChip(this, mychip->chip);
 | |
| 	} else if (this->curchip != mychip->chip) {
 | |
| 		DoC_SelectChip(this, mychip->chip);
 | |
| 	}
 | |
| 
 | |
| 	this->curfloor = mychip->floor;
 | |
| 	this->curchip = mychip->chip;
 | |
| 
 | |
| 	DoC_Command(this,
 | |
| 		    (!this->page256
 | |
| 		     && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
 | |
| 		    CDSN_CTRL_WP);
 | |
| 	DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP,
 | |
| 		    CDSN_CTRL_ECC_IO);
 | |
| 
 | |
| 	if (eccbuf) {
 | |
| 		/* Prime the ECC engine */
 | |
| 		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 | |
| 		WriteDOC(DOC_ECC_EN, docptr, ECCConf);
 | |
| 	} else {
 | |
| 		/* disable the ECC engine */
 | |
| 		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 | |
| 		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
 | |
| 	}
 | |
| 
 | |
| 	/* treat crossing 256-byte sector for 2M x 8bits devices */
 | |
| 	if (this->page256 && from + len > (from | 0xff) + 1) {
 | |
| 		len256 = (from | 0xff) + 1 - from;
 | |
| 		DoC_ReadBuf(this, buf, len256);
 | |
| 
 | |
| 		DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP);
 | |
| 		DoC_Address(this, ADDR_COLUMN_PAGE, from + len256,
 | |
| 			    CDSN_CTRL_WP, CDSN_CTRL_ECC_IO);
 | |
| 	}
 | |
| 
 | |
| 	DoC_ReadBuf(this, &buf[len256], len - len256);
 | |
| 
 | |
| 	/* Let the caller know we completed it */
 | |
| 	*retlen = len;
 | |
| 
 | |
| 	if (eccbuf) {
 | |
| 		/* Read the ECC data through the DiskOnChip ECC logic */
 | |
| 		/* Note: this will work even with 2M x 8bit devices as   */
 | |
| 		/*       they have 8 bytes of OOB per 256 page. mf.      */
 | |
| 		DoC_ReadBuf(this, eccbuf, 6);
 | |
| 
 | |
| 		/* Flush the pipeline */
 | |
| 		if (DoC_is_Millennium(this)) {
 | |
| 			dummy = ReadDOC(docptr, ECCConf);
 | |
| 			dummy = ReadDOC(docptr, ECCConf);
 | |
| 			i = ReadDOC(docptr, ECCConf);
 | |
| 		} else {
 | |
| 			dummy = ReadDOC(docptr, 2k_ECCStatus);
 | |
| 			dummy = ReadDOC(docptr, 2k_ECCStatus);
 | |
| 			i = ReadDOC(docptr, 2k_ECCStatus);
 | |
| 		}
 | |
| 
 | |
| 		/* Check the ECC Status */
 | |
| 		if (i & 0x80) {
 | |
| 			int nb_errors;
 | |
| 			/* There was an ECC error */
 | |
| #ifdef ECC_DEBUG
 | |
| 			printf("DiskOnChip ECC Error: Read at %lx\n", (long)from);
 | |
| #endif
 | |
| 			/* Read the ECC syndrom through the DiskOnChip ECC logic.
 | |
| 			   These syndrome will be all ZERO when there is no error */
 | |
| 			for (i = 0; i < 6; i++) {
 | |
| 				syndrome[i] =
 | |
| 				    ReadDOC(docptr, ECCSyndrome0 + i);
 | |
| 			}
 | |
| 			nb_errors = doc_decode_ecc(buf, syndrome);
 | |
| 
 | |
| #ifdef ECC_DEBUG
 | |
| 			printf("Errors corrected: %x\n", nb_errors);
 | |
| #endif
 | |
| 			if (nb_errors < 0) {
 | |
| 				/* We return error, but have actually done the read. Not that
 | |
| 				   this can be told to user-space, via sys_read(), but at least
 | |
| 				   MTD-aware stuff can know about it by checking *retlen */
 | |
| 				printf("ECC Errors at %lx\n", (long)from);
 | |
| 				ret = DOC_EECC;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| #ifdef PSYCHO_DEBUG
 | |
| 		printf("ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
 | |
| 			     (long)from, eccbuf[0], eccbuf[1], eccbuf[2],
 | |
| 			     eccbuf[3], eccbuf[4], eccbuf[5]);
 | |
| #endif
 | |
| 
 | |
| 		/* disable the ECC engine */
 | |
| 		WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
 | |
| 	}
 | |
| 
 | |
| 	/* according to 11.4.1, we need to wait for the busy line
 | |
| 	 * drop if we read to the end of the page.  */
 | |
| 	if(0 == ((from + *retlen) & 0x1ff))
 | |
| 	{
 | |
| 	    DoC_WaitReady(this);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int doc_write_ecc(struct DiskOnChip* this, loff_t to, size_t len,
 | |
| 		  size_t * retlen, const u_char * buf,
 | |
| 		  u_char * eccbuf)
 | |
| {
 | |
| 	int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */
 | |
| 	unsigned long docptr;
 | |
| 	volatile char dummy;
 | |
| 	int len256 = 0;
 | |
| 	struct Nand *mychip;
 | |
| 
 | |
| 	docptr = this->virtadr;
 | |
| 
 | |
| 	/* Don't allow write past end of device */
 | |
| 	if (to >= this->totlen) {
 | |
| 		puts ("Out of flash\n");
 | |
| 		return DOC_EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Don't allow a single write to cross a 512-byte block boundary */
 | |
| 	if (to + len > ((to | 0x1ff) + 1))
 | |
| 		len = ((to | 0x1ff) + 1) - to;
 | |
| 
 | |
| 	/* The ECC will not be calculated correctly if less than 512 is written */
 | |
| 	if (len != 0x200 && eccbuf)
 | |
| 		printf("ECC needs a full sector write (adr: %lx size %lx)\n",
 | |
| 		       (long) to, (long) len);
 | |
| 
 | |
| 	/* printf("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */
 | |
| 
 | |
| 	/* Find the chip which is to be used and select it */
 | |
| 	mychip = &this->chips[shr(to, this->chipshift)];
 | |
| 
 | |
| 	if (this->curfloor != mychip->floor) {
 | |
| 		DoC_SelectFloor(this, mychip->floor);
 | |
| 		DoC_SelectChip(this, mychip->chip);
 | |
| 	} else if (this->curchip != mychip->chip) {
 | |
| 		DoC_SelectChip(this, mychip->chip);
 | |
| 	}
 | |
| 
 | |
| 	this->curfloor = mychip->floor;
 | |
| 	this->curchip = mychip->chip;
 | |
| 
 | |
| 	/* Set device to main plane of flash */
 | |
| 	DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
 | |
| 	DoC_Command(this,
 | |
| 		    (!this->page256
 | |
| 		     && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
 | |
| 		    CDSN_CTRL_WP);
 | |
| 
 | |
| 	DoC_Command(this, NAND_CMD_SEQIN, 0);
 | |
| 	DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO);
 | |
| 
 | |
| 	if (eccbuf) {
 | |
| 		/* Prime the ECC engine */
 | |
| 		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 | |
| 		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
 | |
| 	} else {
 | |
| 		/* disable the ECC engine */
 | |
| 		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 | |
| 		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
 | |
| 	}
 | |
| 
 | |
| 	/* treat crossing 256-byte sector for 2M x 8bits devices */
 | |
| 	if (this->page256 && to + len > (to | 0xff) + 1) {
 | |
| 		len256 = (to | 0xff) + 1 - to;
 | |
| 		DoC_WriteBuf(this, buf, len256);
 | |
| 
 | |
| 		DoC_Command(this, NAND_CMD_PAGEPROG, 0);
 | |
| 
 | |
| 		DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
 | |
| 		/* There's an implicit DoC_WaitReady() in DoC_Command */
 | |
| 
 | |
| 		dummy = ReadDOC(docptr, CDSNSlowIO);
 | |
| 		DoC_Delay(this, 2);
 | |
| 
 | |
| 		if (ReadDOC_(docptr, this->ioreg) & 1) {
 | |
| 			puts ("Error programming flash\n");
 | |
| 			/* Error in programming */
 | |
| 			*retlen = 0;
 | |
| 			return DOC_EIO;
 | |
| 		}
 | |
| 
 | |
| 		DoC_Command(this, NAND_CMD_SEQIN, 0);
 | |
| 		DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0,
 | |
| 			    CDSN_CTRL_ECC_IO);
 | |
| 	}
 | |
| 
 | |
| 	DoC_WriteBuf(this, &buf[len256], len - len256);
 | |
| 
 | |
| 	if (eccbuf) {
 | |
| 		WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr,
 | |
| 			 CDSNControl);
 | |
| 
 | |
| 		if (DoC_is_Millennium(this)) {
 | |
| 			WriteDOC(0, docptr, NOP);
 | |
| 			WriteDOC(0, docptr, NOP);
 | |
| 			WriteDOC(0, docptr, NOP);
 | |
| 		} else {
 | |
| 			WriteDOC_(0, docptr, this->ioreg);
 | |
| 			WriteDOC_(0, docptr, this->ioreg);
 | |
| 			WriteDOC_(0, docptr, this->ioreg);
 | |
| 		}
 | |
| 
 | |
| 		/* Read the ECC data through the DiskOnChip ECC logic */
 | |
| 		for (di = 0; di < 6; di++) {
 | |
| 			eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di);
 | |
| 		}
 | |
| 
 | |
| 		/* Reset the ECC engine */
 | |
| 		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
 | |
| 
 | |
| #ifdef PSYCHO_DEBUG
 | |
| 		printf
 | |
| 		    ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
 | |
| 		     (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
 | |
| 		     eccbuf[4], eccbuf[5]);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	DoC_Command(this, NAND_CMD_PAGEPROG, 0);
 | |
| 
 | |
| 	DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
 | |
| 	/* There's an implicit DoC_WaitReady() in DoC_Command */
 | |
| 
 | |
| 	dummy = ReadDOC(docptr, CDSNSlowIO);
 | |
| 	DoC_Delay(this, 2);
 | |
| 
 | |
| 	if (ReadDOC_(docptr, this->ioreg) & 1) {
 | |
| 		puts ("Error programming flash\n");
 | |
| 		/* Error in programming */
 | |
| 		*retlen = 0;
 | |
| 		return DOC_EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* Let the caller know we completed it */
 | |
| 	*retlen = len;
 | |
| 
 | |
| 	if (eccbuf) {
 | |
| 		unsigned char x[8];
 | |
| 		size_t dummy;
 | |
| 		int ret;
 | |
| 
 | |
| 		/* Write the ECC data to flash */
 | |
| 		for (di=0; di<6; di++)
 | |
| 			x[di] = eccbuf[di];
 | |
| 
 | |
| 		x[6]=0x55;
 | |
| 		x[7]=0x55;
 | |
| 
 | |
| 		ret = doc_write_oob(this, to, 8, &dummy, x);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int doc_read_oob(struct DiskOnChip* this, loff_t ofs, size_t len,
 | |
| 		 size_t * retlen, u_char * buf)
 | |
| {
 | |
| 	int len256 = 0, ret;
 | |
| 	unsigned long docptr;
 | |
| 	struct Nand *mychip;
 | |
| 
 | |
| 	docptr = this->virtadr;
 | |
| 
 | |
| 	mychip = &this->chips[shr(ofs, this->chipshift)];
 | |
| 
 | |
| 	if (this->curfloor != mychip->floor) {
 | |
| 		DoC_SelectFloor(this, mychip->floor);
 | |
| 		DoC_SelectChip(this, mychip->chip);
 | |
| 	} else if (this->curchip != mychip->chip) {
 | |
| 		DoC_SelectChip(this, mychip->chip);
 | |
| 	}
 | |
| 	this->curfloor = mychip->floor;
 | |
| 	this->curchip = mychip->chip;
 | |
| 
 | |
| 	/* update address for 2M x 8bit devices. OOB starts on the second */
 | |
| 	/* page to maintain compatibility with doc_read_ecc. */
 | |
| 	if (this->page256) {
 | |
| 		if (!(ofs & 0x8))
 | |
| 			ofs += 0x100;
 | |
| 		else
 | |
| 			ofs -= 0x8;
 | |
| 	}
 | |
| 
 | |
| 	DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
 | |
| 	DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0);
 | |
| 
 | |
| 	/* treat crossing 8-byte OOB data for 2M x 8bit devices */
 | |
| 	/* Note: datasheet says it should automaticaly wrap to the */
 | |
| 	/*       next OOB block, but it didn't work here. mf.      */
 | |
| 	if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
 | |
| 		len256 = (ofs | 0x7) + 1 - ofs;
 | |
| 		DoC_ReadBuf(this, buf, len256);
 | |
| 
 | |
| 		DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
 | |
| 		DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff),
 | |
| 			    CDSN_CTRL_WP, 0);
 | |
| 	}
 | |
| 
 | |
| 	DoC_ReadBuf(this, &buf[len256], len - len256);
 | |
| 
 | |
| 	*retlen = len;
 | |
| 	/* Reading the full OOB data drops us off of the end of the page,
 | |
| 	 * causing the flash device to go into busy mode, so we need
 | |
| 	 * to wait until ready 11.4.1 and Toshiba TC58256FT docs */
 | |
| 
 | |
| 	ret = DoC_WaitReady(this);
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| 
 | |
| int doc_write_oob(struct DiskOnChip* this, loff_t ofs, size_t len,
 | |
| 		  size_t * retlen, const u_char * buf)
 | |
| {
 | |
| 	int len256 = 0;
 | |
| 	unsigned long docptr = this->virtadr;
 | |
| 	struct Nand *mychip = &this->chips[shr(ofs, this->chipshift)];
 | |
| 	volatile int dummy;
 | |
| 
 | |
| #ifdef PSYCHO_DEBUG
 | |
| 	printf("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",
 | |
| 	       (long)ofs, len, buf[0], buf[1], buf[2], buf[3],
 | |
| 	       buf[8], buf[9], buf[14],buf[15]);
 | |
| #endif
 | |
| 
 | |
| 	/* Find the chip which is to be used and select it */
 | |
| 	if (this->curfloor != mychip->floor) {
 | |
| 		DoC_SelectFloor(this, mychip->floor);
 | |
| 		DoC_SelectChip(this, mychip->chip);
 | |
| 	} else if (this->curchip != mychip->chip) {
 | |
| 		DoC_SelectChip(this, mychip->chip);
 | |
| 	}
 | |
| 	this->curfloor = mychip->floor;
 | |
| 	this->curchip = mychip->chip;
 | |
| 
 | |
| 	/* disable the ECC engine */
 | |
| 	WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
 | |
| 	WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
 | |
| 
 | |
| 	/* Reset the chip, see Software Requirement 11.4 item 1. */
 | |
| 	DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
 | |
| 
 | |
| 	/* issue the Read2 command to set the pointer to the Spare Data Area. */
 | |
| 	DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
 | |
| 
 | |
| 	/* update address for 2M x 8bit devices. OOB starts on the second */
 | |
| 	/* page to maintain compatibility with doc_read_ecc. */
 | |
| 	if (this->page256) {
 | |
| 		if (!(ofs & 0x8))
 | |
| 			ofs += 0x100;
 | |
| 		else
 | |
| 			ofs -= 0x8;
 | |
| 	}
 | |
| 
 | |
| 	/* issue the Serial Data In command to initial the Page Program process */
 | |
| 	DoC_Command(this, NAND_CMD_SEQIN, 0);
 | |
| 	DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0);
 | |
| 
 | |
| 	/* treat crossing 8-byte OOB data for 2M x 8bit devices */
 | |
| 	/* Note: datasheet says it should automaticaly wrap to the */
 | |
| 	/*       next OOB block, but it didn't work here. mf.      */
 | |
| 	if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
 | |
| 		len256 = (ofs | 0x7) + 1 - ofs;
 | |
| 		DoC_WriteBuf(this, buf, len256);
 | |
| 
 | |
| 		DoC_Command(this, NAND_CMD_PAGEPROG, 0);
 | |
| 		DoC_Command(this, NAND_CMD_STATUS, 0);
 | |
| 		/* DoC_WaitReady() is implicit in DoC_Command */
 | |
| 
 | |
| 		dummy = ReadDOC(docptr, CDSNSlowIO);
 | |
| 		DoC_Delay(this, 2);
 | |
| 
 | |
| 		if (ReadDOC_(docptr, this->ioreg) & 1) {
 | |
| 			puts ("Error programming oob data\n");
 | |
| 			/* There was an error */
 | |
| 			*retlen = 0;
 | |
| 			return DOC_EIO;
 | |
| 		}
 | |
| 		DoC_Command(this, NAND_CMD_SEQIN, 0);
 | |
| 		DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0);
 | |
| 	}
 | |
| 
 | |
| 	DoC_WriteBuf(this, &buf[len256], len - len256);
 | |
| 
 | |
| 	DoC_Command(this, NAND_CMD_PAGEPROG, 0);
 | |
| 	DoC_Command(this, NAND_CMD_STATUS, 0);
 | |
| 	/* DoC_WaitReady() is implicit in DoC_Command */
 | |
| 
 | |
| 	dummy = ReadDOC(docptr, CDSNSlowIO);
 | |
| 	DoC_Delay(this, 2);
 | |
| 
 | |
| 	if (ReadDOC_(docptr, this->ioreg) & 1) {
 | |
| 		puts ("Error programming oob data\n");
 | |
| 		/* There was an error */
 | |
| 		*retlen = 0;
 | |
| 		return DOC_EIO;
 | |
| 	}
 | |
| 
 | |
| 	*retlen = len;
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| int doc_erase(struct DiskOnChip* this, loff_t ofs, size_t len)
 | |
| {
 | |
| 	volatile int dummy;
 | |
| 	unsigned long docptr;
 | |
| 	struct Nand *mychip;
 | |
| 
 | |
| 	if (ofs & (this->erasesize-1) || len & (this->erasesize-1)) {
 | |
| 		puts ("Offset and size must be sector aligned\n");
 | |
| 		return DOC_EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	docptr = this->virtadr;
 | |
| 
 | |
| 	/* FIXME: Do this in the background. Use timers or schedule_task() */
 | |
| 	while(len) {
 | |
| 		mychip = &this->chips[shr(ofs, this->chipshift)];
 | |
| 
 | |
| 		if (this->curfloor != mychip->floor) {
 | |
| 			DoC_SelectFloor(this, mychip->floor);
 | |
| 			DoC_SelectChip(this, mychip->chip);
 | |
| 		} else if (this->curchip != mychip->chip) {
 | |
| 			DoC_SelectChip(this, mychip->chip);
 | |
| 		}
 | |
| 		this->curfloor = mychip->floor;
 | |
| 		this->curchip = mychip->chip;
 | |
| 
 | |
| 		DoC_Command(this, NAND_CMD_ERASE1, 0);
 | |
| 		DoC_Address(this, ADDR_PAGE, ofs, 0, 0);
 | |
| 		DoC_Command(this, NAND_CMD_ERASE2, 0);
 | |
| 
 | |
| 		DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
 | |
| 
 | |
| 		dummy = ReadDOC(docptr, CDSNSlowIO);
 | |
| 		DoC_Delay(this, 2);
 | |
| 
 | |
| 		if (ReadDOC_(docptr, this->ioreg) & 1) {
 | |
| 			printf("Error erasing at 0x%lx\n", (long)ofs);
 | |
| 			/* There was an error */
 | |
| 			goto callback;
 | |
| 		}
 | |
| 		ofs += this->erasesize;
 | |
| 		len -= this->erasesize;
 | |
| 	}
 | |
| 
 | |
|  callback:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int doccheck(unsigned long potential, unsigned long physadr)
 | |
| {
 | |
| 	unsigned long window=potential;
 | |
| 	unsigned char tmp, ChipID;
 | |
| #ifndef DOC_PASSIVE_PROBE
 | |
| 	unsigned char tmp2;
 | |
| #endif
 | |
| 
 | |
| 	/* Routine copied from the Linux DOC driver */
 | |
| 
 | |
| #ifdef CONFIG_SYS_DOCPROBE_55AA
 | |
| 	/* Check for 0x55 0xAA signature at beginning of window,
 | |
| 	   this is no longer true once we remove the IPL (for Millennium */
 | |
| 	if (ReadDOC(window, Sig1) != 0x55 || ReadDOC(window, Sig2) != 0xaa)
 | |
| 		return 0;
 | |
| #endif /* CONFIG_SYS_DOCPROBE_55AA */
 | |
| 
 | |
| #ifndef DOC_PASSIVE_PROBE
 | |
| 	/* It's not possible to cleanly detect the DiskOnChip - the
 | |
| 	 * bootup procedure will put the device into reset mode, and
 | |
| 	 * it's not possible to talk to it without actually writing
 | |
| 	 * to the DOCControl register. So we store the current contents
 | |
| 	 * of the DOCControl register's location, in case we later decide
 | |
| 	 * that it's not a DiskOnChip, and want to put it back how we
 | |
| 	 * found it.
 | |
| 	 */
 | |
| 	tmp2 = ReadDOC(window, DOCControl);
 | |
| 
 | |
| 	/* Reset the DiskOnChip ASIC */
 | |
| 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
 | |
| 		 window, DOCControl);
 | |
| 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
 | |
| 		 window, DOCControl);
 | |
| 
 | |
| 	/* Enable the DiskOnChip ASIC */
 | |
| 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
 | |
| 		 window, DOCControl);
 | |
| 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
 | |
| 		 window, DOCControl);
 | |
| #endif /* !DOC_PASSIVE_PROBE */
 | |
| 
 | |
| 	ChipID = ReadDOC(window, ChipID);
 | |
| 
 | |
| 	switch (ChipID) {
 | |
| 	case DOC_ChipID_Doc2k:
 | |
| 		/* Check the TOGGLE bit in the ECC register */
 | |
| 		tmp = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT;
 | |
| 		if ((ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT) != tmp)
 | |
| 				return ChipID;
 | |
| 		break;
 | |
| 
 | |
| 	case DOC_ChipID_DocMil:
 | |
| 		/* Check the TOGGLE bit in the ECC register */
 | |
| 		tmp = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT;
 | |
| 		if ((ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT) != tmp)
 | |
| 				return ChipID;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| #ifndef CONFIG_SYS_DOCPROBE_55AA
 | |
| /*
 | |
|  * if the ID isn't the DoC2000 or DoCMillenium ID, so we can assume
 | |
|  * the DOC is missing
 | |
|  */
 | |
| # if 0
 | |
| 		printf("Possible DiskOnChip with unknown ChipID %2.2X found at 0x%lx\n",
 | |
| 		       ChipID, physadr);
 | |
| # endif
 | |
| #endif
 | |
| #ifndef DOC_PASSIVE_PROBE
 | |
| 		/* Put back the contents of the DOCControl register, in case it's not
 | |
| 		 * actually a DiskOnChip.
 | |
| 		 */
 | |
| 		WriteDOC(tmp2, window, DOCControl);
 | |
| #endif
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	puts ("DiskOnChip failed TOGGLE test, dropping.\n");
 | |
| 
 | |
| #ifndef DOC_PASSIVE_PROBE
 | |
| 	/* Put back the contents of the DOCControl register: it's not a DiskOnChip */
 | |
| 	WriteDOC(tmp2, window, DOCControl);
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void doc_probe(unsigned long physadr)
 | |
| {
 | |
| 	struct DiskOnChip *this = NULL;
 | |
| 	int i=0, ChipID;
 | |
| 
 | |
| 	if ((ChipID = doccheck(physadr, physadr))) {
 | |
| 
 | |
| 		for (i=0; i<CONFIG_SYS_MAX_DOC_DEVICE; i++) {
 | |
| 			if (doc_dev_desc[i].ChipID == DOC_ChipID_UNKNOWN) {
 | |
| 				this = doc_dev_desc + i;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!this) {
 | |
| 			puts ("Cannot allocate memory for data structures.\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (curr_device == -1)
 | |
| 			curr_device = i;
 | |
| 
 | |
| 		memset((char *)this, 0, sizeof(struct DiskOnChip));
 | |
| 
 | |
| 		this->virtadr = physadr;
 | |
| 		this->physadr = physadr;
 | |
| 		this->ChipID = ChipID;
 | |
| 
 | |
| 		DoC2k_init(this);
 | |
| 	} else {
 | |
| 		puts ("No DiskOnChip found\n");
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| void doc_probe(unsigned long physadr) {}
 | |
| #endif
 |