332 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			332 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 2008 Freescale Semiconductor, Inc.
 | |
|  *
 | |
|  * SPDX-License-Identifier:	GPL-2.0
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <fsl_ddr_sdram.h>
 | |
| 
 | |
| #include <fsl_ddr.h>
 | |
| /*
 | |
|  * Calculate the Density of each Physical Rank.
 | |
|  * Returned size is in bytes.
 | |
|  *
 | |
|  * Study these table from Byte 31 of JEDEC SPD Spec.
 | |
|  *
 | |
|  *		DDR I	DDR II
 | |
|  *	Bit	Size	Size
 | |
|  *	---	-----	------
 | |
|  *	7 high	512MB	512MB
 | |
|  *	6	256MB	256MB
 | |
|  *	5	128MB	128MB
 | |
|  *	4	 64MB	 16GB
 | |
|  *	3	 32MB	  8GB
 | |
|  *	2	 16MB	  4GB
 | |
|  *	1	  2GB	  2GB
 | |
|  *	0 low	  1GB	  1GB
 | |
|  *
 | |
|  * Reorder Table to be linear by stripping the bottom
 | |
|  * 2 or 5 bits off and shifting them up to the top.
 | |
|  *
 | |
|  */
 | |
| static unsigned long long
 | |
| compute_ranksize(unsigned int mem_type, unsigned char row_dens)
 | |
| {
 | |
| 	unsigned long long bsize;
 | |
| 
 | |
| 	/* Bottom 5 bits up to the top. */
 | |
| 	bsize = ((row_dens >> 5) | ((row_dens & 31) << 3));
 | |
| 	bsize <<= 27ULL;
 | |
| 	debug("DDR: DDR II rank density = 0x%16llx\n", bsize);
 | |
| 
 | |
| 	return bsize;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert a two-nibble BCD value into a cycle time.
 | |
|  * While the spec calls for nano-seconds, picos are returned.
 | |
|  *
 | |
|  * This implements the tables for bytes 9, 23 and 25 for both
 | |
|  * DDR I and II.  No allowance for distinguishing the invalid
 | |
|  * fields absent for DDR I yet present in DDR II is made.
 | |
|  * (That is, cycle times of .25, .33, .66 and .75 ns are
 | |
|  * allowed for both DDR II and I.)
 | |
|  */
 | |
| static unsigned int
 | |
| convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
 | |
| {
 | |
| 	/* Table look up the lower nibble, allow DDR I & II. */
 | |
| 	unsigned int tenths_ps[16] = {
 | |
| 		0,
 | |
| 		100,
 | |
| 		200,
 | |
| 		300,
 | |
| 		400,
 | |
| 		500,
 | |
| 		600,
 | |
| 		700,
 | |
| 		800,
 | |
| 		900,
 | |
| 		250,	/* This and the next 3 entries valid ... */
 | |
| 		330,	/* ...  only for tCK calculations. */
 | |
| 		660,
 | |
| 		750,
 | |
| 		0,	/* undefined */
 | |
| 		0	/* undefined */
 | |
| 	};
 | |
| 
 | |
| 	unsigned int whole_ns = (spd_val & 0xF0) >> 4;
 | |
| 	unsigned int tenth_ns = spd_val & 0x0F;
 | |
| 	unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
 | |
| 
 | |
| 	return ps;
 | |
| }
 | |
| 
 | |
| static unsigned int
 | |
| convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val)
 | |
| {
 | |
| 	unsigned int tenth_ns = (spd_val & 0xF0) >> 4;
 | |
| 	unsigned int hundredth_ns = spd_val & 0x0F;
 | |
| 	unsigned int ps = tenth_ns * 100 + hundredth_ns * 10;
 | |
| 
 | |
| 	return ps;
 | |
| }
 | |
| 
 | |
| static unsigned int byte40_table_ps[8] = {
 | |
| 	0,
 | |
| 	250,
 | |
| 	330,
 | |
| 	500,
 | |
| 	660,
 | |
| 	750,
 | |
| 	0,	/* supposed to be RFC, but not sure what that means */
 | |
| 	0	/* Undefined */
 | |
| };
 | |
| 
 | |
| static unsigned int
 | |
| compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
 | |
| {
 | |
| 	return (((trctrfc_ext & 0x1) * 256) + trfc) * 1000
 | |
| 		+ byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
 | |
| }
 | |
| 
 | |
| static unsigned int
 | |
| compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
 | |
| {
 | |
| 	return trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine Refresh Rate.  Ignore self refresh bit on DDR I.
 | |
|  * Table from SPD Spec, Byte 12, converted to picoseconds and
 | |
|  * filled in with "default" normal values.
 | |
|  */
 | |
| static unsigned int
 | |
| determine_refresh_rate_ps(const unsigned int spd_refresh)
 | |
| {
 | |
| 	unsigned int refresh_time_ps[8] = {
 | |
| 		15625000,	/* 0 Normal    1.00x */
 | |
| 		3900000,	/* 1 Reduced    .25x */
 | |
| 		7800000,	/* 2 Extended   .50x */
 | |
| 		31300000,	/* 3 Extended  2.00x */
 | |
| 		62500000,	/* 4 Extended  4.00x */
 | |
| 		125000000,	/* 5 Extended  8.00x */
 | |
| 		15625000,	/* 6 Normal    1.00x  filler */
 | |
| 		15625000,	/* 7 Normal    1.00x  filler */
 | |
| 	};
 | |
| 
 | |
| 	return refresh_time_ps[spd_refresh & 0x7];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The purpose of this function is to compute a suitable
 | |
|  * CAS latency given the DRAM clock period.  The SPD only
 | |
|  * defines at most 3 CAS latencies.  Typically the slower in
 | |
|  * frequency the DIMM runs at, the shorter its CAS latency can.
 | |
|  * be.  If the DIMM is operating at a sufficiently low frequency,
 | |
|  * it may be able to run at a CAS latency shorter than the
 | |
|  * shortest SPD-defined CAS latency.
 | |
|  *
 | |
|  * If a CAS latency is not found, 0 is returned.
 | |
|  *
 | |
|  * Do this by finding in the standard speed bin table the longest
 | |
|  * tCKmin that doesn't exceed the value of mclk_ps (tCK).
 | |
|  *
 | |
|  * An assumption made is that the SDRAM device allows the
 | |
|  * CL to be programmed for a value that is lower than those
 | |
|  * advertised by the SPD.  This is not always the case,
 | |
|  * as those modes not defined in the SPD are optional.
 | |
|  *
 | |
|  * CAS latency de-rating based upon values JEDEC Standard No. 79-2C
 | |
|  * Table 40, "DDR2 SDRAM stanadard speed bins and tCK, tRCD, tRP, tRAS,
 | |
|  * and tRC for corresponding bin"
 | |
|  *
 | |
|  * ordinal 2, ddr2_speed_bins[1] contains tCK for CL=3
 | |
|  * Not certain if any good value exists for CL=2
 | |
|  */
 | |
| 				 /* CL2   CL3   CL4   CL5   CL6  CL7*/
 | |
| unsigned short ddr2_speed_bins[] = {   0, 5000, 3750, 3000, 2500, 1875 };
 | |
| 
 | |
| unsigned int
 | |
| compute_derated_DDR2_CAS_latency(unsigned int mclk_ps)
 | |
| {
 | |
| 	const unsigned int num_speed_bins = ARRAY_SIZE(ddr2_speed_bins);
 | |
| 	unsigned int lowest_tCKmin_found = 0;
 | |
| 	unsigned int lowest_tCKmin_CL = 0;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	debug("mclk_ps = %u\n", mclk_ps);
 | |
| 
 | |
| 	for (i = 0; i < num_speed_bins; i++) {
 | |
| 		unsigned int x = ddr2_speed_bins[i];
 | |
| 		debug("i=%u, x = %u, lowest_tCKmin_found = %u\n",
 | |
| 		      i, x, lowest_tCKmin_found);
 | |
| 		if (x && x <= mclk_ps && x >= lowest_tCKmin_found ) {
 | |
| 			lowest_tCKmin_found = x;
 | |
| 			lowest_tCKmin_CL = i + 2;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL);
 | |
| 
 | |
| 	return lowest_tCKmin_CL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ddr_compute_dimm_parameters for DDR2 SPD
 | |
|  *
 | |
|  * Compute DIMM parameters based upon the SPD information in spd.
 | |
|  * Writes the results to the dimm_params_t structure pointed by pdimm.
 | |
|  *
 | |
|  * FIXME: use #define for the retvals
 | |
|  */
 | |
| unsigned int ddr_compute_dimm_parameters(const unsigned int ctrl_num,
 | |
| 					 const ddr2_spd_eeprom_t *spd,
 | |
| 					 dimm_params_t *pdimm,
 | |
| 					 unsigned int dimm_number)
 | |
| {
 | |
| 	unsigned int retval;
 | |
| 
 | |
| 	if (spd->mem_type) {
 | |
| 		if (spd->mem_type != SPD_MEMTYPE_DDR2) {
 | |
| 			printf("DIMM %u: is not a DDR2 SPD.\n", dimm_number);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		memset(pdimm, 0, sizeof(dimm_params_t));
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	retval = ddr2_spd_check(spd);
 | |
| 	if (retval) {
 | |
| 		printf("DIMM %u: failed checksum\n", dimm_number);
 | |
| 		return 2;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The part name in ASCII in the SPD EEPROM is not null terminated.
 | |
| 	 * Guarantee null termination here by presetting all bytes to 0
 | |
| 	 * and copying the part name in ASCII from the SPD onto it
 | |
| 	 */
 | |
| 	memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
 | |
| 	memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
 | |
| 
 | |
| 	/* DIMM organization parameters */
 | |
| 	pdimm->n_ranks = (spd->mod_ranks & 0x7) + 1;
 | |
| 	pdimm->rank_density = compute_ranksize(spd->mem_type, spd->rank_dens);
 | |
| 	pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
 | |
| 	pdimm->data_width = spd->dataw;
 | |
| 	pdimm->primary_sdram_width = spd->primw;
 | |
| 	pdimm->ec_sdram_width = spd->ecw;
 | |
| 
 | |
| 	/* These are all the types defined by the JEDEC DDR2 SPD 1.3 spec */
 | |
| 	switch (spd->dimm_type) {
 | |
| 	case DDR2_SPD_DIMMTYPE_RDIMM:
 | |
| 	case DDR2_SPD_DIMMTYPE_72B_SO_RDIMM:
 | |
| 	case DDR2_SPD_DIMMTYPE_MINI_RDIMM:
 | |
| 		/* Registered/buffered DIMMs */
 | |
| 		pdimm->registered_dimm = 1;
 | |
| 		break;
 | |
| 
 | |
| 	case DDR2_SPD_DIMMTYPE_UDIMM:
 | |
| 	case DDR2_SPD_DIMMTYPE_SO_DIMM:
 | |
| 	case DDR2_SPD_DIMMTYPE_MICRO_DIMM:
 | |
| 	case DDR2_SPD_DIMMTYPE_MINI_UDIMM:
 | |
| 		/* Unbuffered DIMMs */
 | |
| 		pdimm->registered_dimm = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case DDR2_SPD_DIMMTYPE_72B_SO_CDIMM:
 | |
| 	default:
 | |
| 		printf("unknown dimm_type 0x%02X\n", spd->dimm_type);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* SDRAM device parameters */
 | |
| 	pdimm->n_row_addr = spd->nrow_addr;
 | |
| 	pdimm->n_col_addr = spd->ncol_addr;
 | |
| 	pdimm->n_banks_per_sdram_device = spd->nbanks;
 | |
| 	pdimm->edc_config = spd->config;
 | |
| 	pdimm->burst_lengths_bitmask = spd->burstl;
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
 | |
| 	 * The SPD clk_cycle field (tCKmin) is measured in tenths of
 | |
| 	 * nanoseconds and represented as BCD.
 | |
| 	 */
 | |
| 	pdimm->tckmin_x_ps
 | |
| 		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
 | |
| 	pdimm->tckmin_x_minus_1_ps
 | |
| 		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
 | |
| 	pdimm->tckmin_x_minus_2_ps
 | |
| 		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
 | |
| 
 | |
| 	pdimm->tckmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd->tckmax);
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute CAS latencies defined by SPD
 | |
| 	 * The SPD caslat_x should have at least 1 and at most 3 bits set.
 | |
| 	 *
 | |
| 	 * If cas_lat after masking is 0, the __ilog2 function returns
 | |
| 	 * 255 into the variable.   This behavior is abused once.
 | |
| 	 */
 | |
| 	pdimm->caslat_x  = __ilog2(spd->cas_lat);
 | |
| 	pdimm->caslat_x_minus_1 = __ilog2(spd->cas_lat
 | |
| 					  & ~(1 << pdimm->caslat_x));
 | |
| 	pdimm->caslat_x_minus_2 = __ilog2(spd->cas_lat
 | |
| 					  & ~(1 << pdimm->caslat_x)
 | |
| 					  & ~(1 << pdimm->caslat_x_minus_1));
 | |
| 
 | |
| 	/* Compute CAS latencies below that defined by SPD */
 | |
| 	pdimm->caslat_lowest_derated = compute_derated_DDR2_CAS_latency(
 | |
| 					get_memory_clk_period_ps(ctrl_num));
 | |
| 
 | |
| 	/* Compute timing parameters */
 | |
| 	pdimm->trcd_ps = spd->trcd * 250;
 | |
| 	pdimm->trp_ps = spd->trp * 250;
 | |
| 	pdimm->tras_ps = spd->tras * 1000;
 | |
| 
 | |
| 	pdimm->twr_ps = spd->twr * 250;
 | |
| 	pdimm->twtr_ps = spd->twtr * 250;
 | |
| 	pdimm->trfc_ps = compute_trfc_ps_from_spd(spd->trctrfc_ext, spd->trfc);
 | |
| 
 | |
| 	pdimm->trrd_ps = spd->trrd * 250;
 | |
| 	pdimm->trc_ps = compute_trc_ps_from_spd(spd->trctrfc_ext, spd->trc);
 | |
| 
 | |
| 	pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
 | |
| 
 | |
| 	pdimm->tis_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
 | |
| 	pdimm->tih_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
 | |
| 	pdimm->tds_ps
 | |
| 		= convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
 | |
| 	pdimm->tdh_ps
 | |
| 		= convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
 | |
| 
 | |
| 	pdimm->trtp_ps = spd->trtp * 250;
 | |
| 	pdimm->tdqsq_max_ps = spd->tdqsq * 10;
 | |
| 	pdimm->tqhs_ps = spd->tqhs * 10;
 | |
| 
 | |
| 	return 0;
 | |
| }
 |