1541 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1541 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
| // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
 | |
| /*
 | |
|  * Copyright (C) 2019, STMicroelectronics - All Rights Reserved
 | |
|  */
 | |
| 
 | |
| #define LOG_CATEGORY UCLASS_RAM
 | |
| 
 | |
| #include <common.h>
 | |
| #include <console.h>
 | |
| #include <clk.h>
 | |
| #include <log.h>
 | |
| #include <ram.h>
 | |
| #include <rand.h>
 | |
| #include <reset.h>
 | |
| #include <asm/io.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/iopoll.h>
 | |
| 
 | |
| #include "stm32mp1_ddr_regs.h"
 | |
| #include "stm32mp1_ddr.h"
 | |
| #include "stm32mp1_tests.h"
 | |
| 
 | |
| #define MAX_DQS_PHASE_IDX _144deg
 | |
| #define MAX_DQS_UNIT_IDX 7
 | |
| #define MAX_GSL_IDX 5
 | |
| #define MAX_GPS_IDX 3
 | |
| 
 | |
| /* Number of bytes used in this SW. ( min 1--> max 4). */
 | |
| #define NUM_BYTES 4
 | |
| 
 | |
| enum dqs_phase_enum {
 | |
| 	_36deg = 0,
 | |
| 	_54deg = 1,
 | |
| 	_72deg = 2,
 | |
| 	_90deg = 3,
 | |
| 	_108deg = 4,
 | |
| 	_126deg = 5,
 | |
| 	_144deg = 6
 | |
| };
 | |
| 
 | |
| /* BIST Result struct */
 | |
| struct BIST_result {
 | |
| 	/* Overall test result:
 | |
| 	 * 0 Fail (any bit failed) ,
 | |
| 	 * 1 Success (All bits success)
 | |
| 	 */
 | |
| 	bool test_result;
 | |
| 	/* 1: true, all fail /  0: False, not all bits fail */
 | |
| 	bool all_bits_fail;
 | |
| 	bool bit_i_test_result[8];  /* 0 fail / 1 success */
 | |
| };
 | |
| 
 | |
| /* a struct that defines tuning parameters of a byte. */
 | |
| struct tuning_position {
 | |
| 	u8 phase; /* DQS phase */
 | |
| 	u8 unit; /* DQS unit delay */
 | |
| 	u32 bits_delay; /* Bits deskew in this byte */
 | |
| };
 | |
| 
 | |
| /* 36deg, 54deg, 72deg, 90deg, 108deg, 126deg, 144deg */
 | |
| const u8 dx_dll_phase[7] = {3, 2, 1, 0, 14, 13, 12};
 | |
| 
 | |
| static u8 BIST_error_max = 1;
 | |
| static u32 BIST_seed = 0x1234ABCD;
 | |
| 
 | |
| static u8 get_nb_bytes(struct stm32mp1_ddrctl *ctl)
 | |
| {
 | |
| 	u32 data_bus = readl(&ctl->mstr) & DDRCTRL_MSTR_DATA_BUS_WIDTH_MASK;
 | |
| 	u8 nb_bytes = NUM_BYTES;
 | |
| 
 | |
| 	switch (data_bus) {
 | |
| 	case DDRCTRL_MSTR_DATA_BUS_WIDTH_HALF:
 | |
| 		nb_bytes /= 2;
 | |
| 		break;
 | |
| 	case DDRCTRL_MSTR_DATA_BUS_WIDTH_QUARTER:
 | |
| 		nb_bytes /= 4;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return nb_bytes;
 | |
| }
 | |
| 
 | |
| static u8 get_nb_bank(struct stm32mp1_ddrctl *ctl)
 | |
| {
 | |
| 	/* Count bank address bits */
 | |
| 	u8 bits = 0;
 | |
| 	u32 reg, val;
 | |
| 
 | |
| 	reg = readl(&ctl->addrmap1);
 | |
| 	/* addrmap1.addrmap_bank_b1 */
 | |
| 	val = (reg & GENMASK(5, 0)) >> 0;
 | |
| 	if (val <= 31)
 | |
| 		bits++;
 | |
| 	/* addrmap1.addrmap_bank_b2 */
 | |
| 	val = (reg & GENMASK(13, 8)) >> 8;
 | |
| 	if (val <= 31)
 | |
| 		bits++;
 | |
| 	/* addrmap1.addrmap_bank_b3 */
 | |
| 	val = (reg & GENMASK(21, 16)) >> 16;
 | |
| 	if (val <= 31)
 | |
| 		bits++;
 | |
| 
 | |
| 	return bits;
 | |
| }
 | |
| 
 | |
| static u8 get_nb_col(struct stm32mp1_ddrctl *ctl)
 | |
| {
 | |
| 	u8 bits;
 | |
| 	u32 reg, val;
 | |
| 
 | |
| 	/* Count column address bits, start at 2 for b0 and b1 (fixed) */
 | |
| 	bits = 2;
 | |
| 
 | |
| 	reg = readl(&ctl->addrmap2);
 | |
| 	/* addrmap2.addrmap_col_b2 */
 | |
| 	val = (reg & GENMASK(3, 0)) >> 0;
 | |
| 	if (val <= 7)
 | |
| 		bits++;
 | |
| 	/* addrmap2.addrmap_col_b3 */
 | |
| 	val = (reg & GENMASK(11, 8)) >> 8;
 | |
| 	if (val <= 7)
 | |
| 		bits++;
 | |
| 	/* addrmap2.addrmap_col_b4 */
 | |
| 	val = (reg & GENMASK(19, 16)) >> 16;
 | |
| 	if (val <= 7)
 | |
| 		bits++;
 | |
| 	/* addrmap2.addrmap_col_b5 */
 | |
| 	val = (reg & GENMASK(27, 24)) >> 24;
 | |
| 	if (val <= 7)
 | |
| 		bits++;
 | |
| 
 | |
| 	reg = readl(&ctl->addrmap3);
 | |
| 	/* addrmap3.addrmap_col_b6 */
 | |
| 	val = (reg & GENMASK(3, 0)) >> 0;
 | |
| 	if (val <= 7)
 | |
| 		bits++;
 | |
| 	/* addrmap3.addrmap_col_b7 */
 | |
| 	val = (reg & GENMASK(11, 8)) >> 8;
 | |
| 	if (val <= 7)
 | |
| 		bits++;
 | |
| 	/* addrmap3.addrmap_col_b8 */
 | |
| 	val = (reg & GENMASK(19, 16)) >> 16;
 | |
| 	if (val <= 7)
 | |
| 		bits++;
 | |
| 	/* addrmap3.addrmap_col_b9 */
 | |
| 	val = (reg & GENMASK(27, 24)) >> 24;
 | |
| 	if (val <= 7)
 | |
| 		bits++;
 | |
| 
 | |
| 	reg = readl(&ctl->addrmap4);
 | |
| 	/* addrmap4.addrmap_col_b10 */
 | |
| 	val = (reg & GENMASK(3, 0)) >> 0;
 | |
| 	if (val <= 7)
 | |
| 		bits++;
 | |
| 	/* addrmap4.addrmap_col_b11 */
 | |
| 	val = (reg & GENMASK(11, 8)) >> 8;
 | |
| 	if (val <= 7)
 | |
| 		bits++;
 | |
| 
 | |
| 	return bits;
 | |
| }
 | |
| 
 | |
| static u8 get_nb_row(struct stm32mp1_ddrctl *ctl)
 | |
| {
 | |
| 	/* Count row address bits */
 | |
| 	u8 bits = 0;
 | |
| 	u32 reg, val;
 | |
| 
 | |
| 	reg = readl(&ctl->addrmap5);
 | |
| 	/* addrmap5.addrmap_row_b0 */
 | |
| 	val = (reg & GENMASK(3, 0)) >> 0;
 | |
| 	if (val <= 11)
 | |
| 		bits++;
 | |
| 	/* addrmap5.addrmap_row_b1 */
 | |
| 	val = (reg & GENMASK(11, 8)) >> 8;
 | |
| 	if (val <= 11)
 | |
| 		bits++;
 | |
| 	/* addrmap5.addrmap_row_b2_10 */
 | |
| 	val = (reg & GENMASK(19, 16)) >> 16;
 | |
| 	if (val <= 11)
 | |
| 		bits += 9;
 | |
| 	else
 | |
| 		printf("warning: addrmap5.addrmap_row_b2_10 not supported\n");
 | |
| 	/* addrmap5.addrmap_row_b11 */
 | |
| 	val = (reg & GENMASK(27, 24)) >> 24;
 | |
| 	if (val <= 11)
 | |
| 		bits++;
 | |
| 
 | |
| 	reg = readl(&ctl->addrmap6);
 | |
| 	/* addrmap6.addrmap_row_b12 */
 | |
| 	val = (reg & GENMASK(3, 0)) >> 0;
 | |
| 	if (val <= 7)
 | |
| 		bits++;
 | |
| 	/* addrmap6.addrmap_row_b13 */
 | |
| 	val = (reg & GENMASK(11, 8)) >> 8;
 | |
| 	if (val <= 7)
 | |
| 		bits++;
 | |
| 	/* addrmap6.addrmap_row_b14 */
 | |
| 	val = (reg & GENMASK(19, 16)) >> 16;
 | |
| 	if (val <= 7)
 | |
| 		bits++;
 | |
| 	/* addrmap6.addrmap_row_b15 */
 | |
| 	val = (reg & GENMASK(27, 24)) >> 24;
 | |
| 	if (val <= 7)
 | |
| 		bits++;
 | |
| 
 | |
| 	return bits;
 | |
| }
 | |
| 
 | |
| static void itm_soft_reset(struct stm32mp1_ddrphy *phy)
 | |
| {
 | |
| 	stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST);
 | |
| }
 | |
| 
 | |
| /* Read DQ unit delay register and provides the retrieved value for DQS
 | |
|  * We are assuming that we have the same delay when clocking
 | |
|  * by DQS and when clocking by DQSN
 | |
|  */
 | |
| static u8 DQ_unit_index(struct stm32mp1_ddrphy *phy, u8 byte, u8 bit)
 | |
| {
 | |
| 	u32 index;
 | |
| 	u32 addr = DXNDQTR(phy, byte);
 | |
| 
 | |
| 	/* We are assuming that we have the same delay when clocking by DQS
 | |
| 	 * and when clocking by DQSN : use only the low bits
 | |
| 	 */
 | |
| 	index = (readl(addr) >> DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit))
 | |
| 		& DDRPHYC_DXNDQTR_DQDLY_LOW_MASK;
 | |
| 
 | |
| 	log_debug("[%x]: %x => DQ unit index = %x\n", addr, readl(addr), index);
 | |
| 
 | |
| 	return index;
 | |
| }
 | |
| 
 | |
| /* Sets the DQS phase delay for a byte lane.
 | |
|  *phase delay is specified by giving the index of the desired delay
 | |
|  * in the dx_dll_phase array.
 | |
|  */
 | |
| static void DQS_phase_delay(struct stm32mp1_ddrphy *phy, u8 byte, u8 phase_idx)
 | |
| {
 | |
| 	u8 sdphase_val = 0;
 | |
| 
 | |
| 	/*	Write DXNDLLCR.SDPHASE = dx_dll_phase(phase_index); */
 | |
| 	sdphase_val = dx_dll_phase[phase_idx];
 | |
| 	clrsetbits_le32(DXNDLLCR(phy, byte),
 | |
| 			DDRPHYC_DXNDLLCR_SDPHASE_MASK,
 | |
| 			sdphase_val << DDRPHYC_DXNDLLCR_SDPHASE_SHIFT);
 | |
| }
 | |
| 
 | |
| /* Sets the DQS unit delay for a byte lane.
 | |
|  * unit delay is specified by giving the index of the desired delay
 | |
|  * for dgsdly and dqsndly (same value).
 | |
|  */
 | |
| static void DQS_unit_delay(struct stm32mp1_ddrphy *phy,
 | |
| 			   u8 byte, u8 unit_dly_idx)
 | |
| {
 | |
| 	/* Write the same value in DXNDQSTR.DQSDLY and DXNDQSTR.DQSNDLY */
 | |
| 	clrsetbits_le32(DXNDQSTR(phy, byte),
 | |
| 			DDRPHYC_DXNDQSTR_DQSDLY_MASK |
 | |
| 			DDRPHYC_DXNDQSTR_DQSNDLY_MASK,
 | |
| 			(unit_dly_idx << DDRPHYC_DXNDQSTR_DQSDLY_SHIFT) |
 | |
| 			(unit_dly_idx << DDRPHYC_DXNDQSTR_DQSNDLY_SHIFT));
 | |
| 
 | |
| 	/* After changing this value, an ITM soft reset (PIR.ITMSRST=1,
 | |
| 	 * plus PIR.INIT=1) must be issued.
 | |
| 	 */
 | |
| 	stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST);
 | |
| }
 | |
| 
 | |
| /* Sets the DQ unit delay for a bit line in particular byte lane.
 | |
|  * unit delay is specified by giving the desired delay
 | |
|  */
 | |
| static void set_DQ_unit_delay(struct stm32mp1_ddrphy *phy,
 | |
| 			      u8 byte, u8 bit,
 | |
| 			      u8 dq_delay_index)
 | |
| {
 | |
| 	u8 dq_bit_delay_val = dq_delay_index | (dq_delay_index << 2);
 | |
| 
 | |
| 	/* same value on delay for clock DQ an DQS_b */
 | |
| 	clrsetbits_le32(DXNDQTR(phy, byte),
 | |
| 			DDRPHYC_DXNDQTR_DQDLY_MASK
 | |
| 			<< DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit),
 | |
| 			dq_bit_delay_val << DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit));
 | |
| }
 | |
| 
 | |
| static void set_r0dgsl_delay(struct stm32mp1_ddrphy *phy,
 | |
| 			     u8 byte, u8 r0dgsl_idx)
 | |
| {
 | |
| 	clrsetbits_le32(DXNDQSTR(phy, byte),
 | |
| 			DDRPHYC_DXNDQSTR_R0DGSL_MASK,
 | |
| 			r0dgsl_idx << DDRPHYC_DXNDQSTR_R0DGSL_SHIFT);
 | |
| }
 | |
| 
 | |
| static void set_r0dgps_delay(struct stm32mp1_ddrphy *phy,
 | |
| 			     u8 byte, u8 r0dgps_idx)
 | |
| {
 | |
| 	clrsetbits_le32(DXNDQSTR(phy, byte),
 | |
| 			DDRPHYC_DXNDQSTR_R0DGPS_MASK,
 | |
| 			r0dgps_idx << DDRPHYC_DXNDQSTR_R0DGPS_SHIFT);
 | |
| }
 | |
| 
 | |
| /* Basic BIST configuration for data lane tests. */
 | |
| static void config_BIST(struct stm32mp1_ddrctl *ctl,
 | |
| 			struct stm32mp1_ddrphy *phy)
 | |
| {
 | |
| 	u8 nb_bank = get_nb_bank(ctl);
 | |
| 	u8 nb_row = get_nb_row(ctl);
 | |
| 	u8 nb_col = get_nb_col(ctl);
 | |
| 
 | |
| 	/* Selects the SDRAM bank address to be used during BIST. */
 | |
| 	u32 bbank = 0;
 | |
| 	/* Selects the SDRAM row address to be used during BIST. */
 | |
| 	u32 brow = 0;
 | |
| 	/* Selects the SDRAM column address to be used during BIST. */
 | |
| 	u32 bcol = 0;
 | |
| 	/* Selects the value by which the SDRAM address is incremented
 | |
| 	 * for each write/read access.
 | |
| 	 */
 | |
| 	u32 bainc = 0x00000008;
 | |
| 	/* Specifies the maximum SDRAM rank to be used during BIST.
 | |
| 	 * The default value is set to maximum ranks minus 1.
 | |
| 	 * must be 0 with single rank
 | |
| 	 */
 | |
| 	u32 bmrank = 0;
 | |
| 	/* Selects the SDRAM rank to be used during BIST.
 | |
| 	 * must be 0 with single rank
 | |
| 	 */
 | |
| 	u32 brank = 0;
 | |
| 
 | |
| 	/* Specifies the maximum SDRAM bank address to be used during
 | |
| 	 * BIST before the address & increments to the next rank.
 | |
| 	 */
 | |
| 	u32 bmbank = (1 << nb_bank) - 1;
 | |
| 	/* Specifies the maximum SDRAM row address to be used during
 | |
| 	 * BIST before the address & increments to the next bank.
 | |
| 	 */
 | |
| 	u32 bmrow = (1 << nb_row) - 1;
 | |
| 	/* Specifies the maximum SDRAM column address to be used during
 | |
| 	 * BIST before the address & increments to the next row.
 | |
| 	 */
 | |
| 	u32 bmcol = (1 << nb_col) - 1;
 | |
| 
 | |
| 	u32 bmode_conf = 0x00000001;  /* DRam mode */
 | |
| 	u32 bdxen_conf = 0x00000001;  /* BIST on Data byte */
 | |
| 	u32 bdpat_conf = 0x00000002;  /* Select LFSR pattern */
 | |
| 
 | |
| 	/*Setup BIST for DRAM mode,  and LFSR-random data pattern.*/
 | |
| 	/*Write BISTRR.BMODE = 1?b1;*/
 | |
| 	/*Write BISTRR.BDXEN = 1?b1;*/
 | |
| 	/*Write BISTRR.BDPAT = 2?b10;*/
 | |
| 
 | |
| 	/* reset BIST */
 | |
| 	writel(0x3, &phy->bistrr);
 | |
| 
 | |
| 	writel((bmode_conf << 3) | (bdxen_conf << 14) | (bdpat_conf << 17),
 | |
| 	       &phy->bistrr);
 | |
| 
 | |
| 	/*Setup BIST Word Count*/
 | |
| 	/*Write BISTWCR.BWCNT = 16?b0008;*/
 | |
| 	writel(0x00000200, &phy->bistwcr); /* A multiple of BL/2 */
 | |
| 
 | |
| 	writel(bcol | (brow << 12) | (bbank << 28), &phy->bistar0);
 | |
| 	writel(brank | (bmrank << 2) | (bainc << 4), &phy->bistar1);
 | |
| 	writel(bmcol | (bmrow << 12) | (bmbank << 28), &phy->bistar2);
 | |
| }
 | |
| 
 | |
| /* Select the Byte lane to be tested by BIST. */
 | |
| static void BIST_datx8_sel(struct stm32mp1_ddrphy *phy, u8 datx8)
 | |
| {
 | |
| 	clrsetbits_le32(&phy->bistrr,
 | |
| 			DDRPHYC_BISTRR_BDXSEL_MASK,
 | |
| 			datx8 << DDRPHYC_BISTRR_BDXSEL_SHIFT);
 | |
| 
 | |
| 	/*(For example, selecting Byte Lane 3, BISTRR.BDXSEL = 4?b0011)*/
 | |
| 	/* Write BISTRR.BDXSEL = datx8; */
 | |
| }
 | |
| 
 | |
| /* Perform BIST Write_Read test on a byte lane and return test result. */
 | |
| static void BIST_test(struct stm32mp1_ddrphy *phy, u8 byte,
 | |
| 		      struct BIST_result *bist)
 | |
| {
 | |
| 	bool result = true; /* BIST_SUCCESS */
 | |
| 	u32 cnt = 0;
 | |
| 	u32 error = 0;
 | |
| 	u32 val;
 | |
| 	int ret;
 | |
| 
 | |
| 	bist->test_result = true;
 | |
| 
 | |
| run:
 | |
| 	itm_soft_reset(phy);
 | |
| 
 | |
| 	/*Perform BIST Reset*/
 | |
| 	/* Write BISTRR.BINST = 3?b011; */
 | |
| 	clrsetbits_le32(&phy->bistrr,
 | |
| 			0x00000007,
 | |
| 			0x00000003);
 | |
| 
 | |
| 	/*Re-seed LFSR*/
 | |
| 	/* Write BISTLSR.SEED = 32'h1234ABCD; */
 | |
| 	if (BIST_seed)
 | |
| 		writel(BIST_seed, &phy->bistlsr);
 | |
| 	else
 | |
| 		writel(rand(), &phy->bistlsr);
 | |
| 
 | |
| 	/* some delay to reset BIST */
 | |
| 	udelay(10);
 | |
| 
 | |
| 	/*Perform BIST Run*/
 | |
| 	clrsetbits_le32(&phy->bistrr,
 | |
| 			0x00000007,
 | |
| 			0x00000001);
 | |
| 	/* Write BISTRR.BINST = 3?b001; */
 | |
| 
 | |
| 	/* poll on BISTGSR.BDONE and wait max 1000 us */
 | |
| 	ret = readl_poll_timeout(&phy->bistgsr, val,
 | |
| 				 val & DDRPHYC_BISTGSR_BDDONE, 1000);
 | |
| 
 | |
| 	if (ret < 0) {
 | |
| 		printf("warning: BIST timeout\n");
 | |
| 		result = false; /* BIST_FAIL; */
 | |
| 		/*Perform BIST Stop */
 | |
| 		clrsetbits_le32(&phy->bistrr, 0x00000007, 0x00000002);
 | |
| 	} else {
 | |
| 		/*Check if received correct number of words*/
 | |
| 		/* if (Read BISTWCSR.DXWCNT = Read BISTWCR.BWCNT) */
 | |
| 		if (((readl(&phy->bistwcsr)) >> DDRPHYC_BISTWCSR_DXWCNT_SHIFT)
 | |
| 		    == readl(&phy->bistwcr)) {
 | |
| 			/*Determine if there is a data comparison error*/
 | |
| 			/* if (Read BISTGSR.BDXERR = 1?b0) */
 | |
| 			if (readl(&phy->bistgsr) & DDRPHYC_BISTGSR_BDXERR)
 | |
| 				result = false; /* BIST_FAIL; */
 | |
| 			else
 | |
| 				result = true; /* BIST_SUCCESS; */
 | |
| 		} else {
 | |
| 			result = false; /* BIST_FAIL; */
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* loop while success */
 | |
| 	cnt++;
 | |
| 	if (result && cnt != 1000)
 | |
| 		goto run;
 | |
| 
 | |
| 	if (!result)
 | |
| 		error++;
 | |
| 
 | |
| 	if (error < BIST_error_max) {
 | |
| 		if (cnt != 1000)
 | |
| 			goto run;
 | |
| 		bist->test_result = true;
 | |
| 	} else {
 | |
| 		bist->test_result = false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* After running the deskew algo, this function applies the new DQ delays
 | |
|  * by reading them from the array "deskew_delay"and writing in PHY registers.
 | |
|  * The bits that are not deskewed parfectly (too much skew on them,
 | |
|  * or data eye very wide) are marked in the array deskew_non_converge.
 | |
|  */
 | |
| static void apply_deskew_results(struct stm32mp1_ddrphy *phy, u8 byte,
 | |
| 				 u8 deskew_delay[NUM_BYTES][8],
 | |
| 				 u8 deskew_non_converge[NUM_BYTES][8])
 | |
| {
 | |
| 	u8  bit_i;
 | |
| 	u8  index;
 | |
| 
 | |
| 	for (bit_i = 0; bit_i < 8; bit_i++) {
 | |
| 		set_DQ_unit_delay(phy, byte, bit_i, deskew_delay[byte][bit_i]);
 | |
| 		index = DQ_unit_index(phy, byte, bit_i);
 | |
| 		log_debug("Byte %d ; bit %d : The new DQ delay (%d) index=%d [delta=%d, 3 is the default]",
 | |
| 			  byte, bit_i, deskew_delay[byte][bit_i],
 | |
| 			  index, index - 3);
 | |
| 		printf("Byte %d, bit %d, DQ delay = %d",
 | |
| 		       byte, bit_i, deskew_delay[byte][bit_i]);
 | |
| 		if (deskew_non_converge[byte][bit_i] == 1)
 | |
| 			log_debug(" - not converged : still more skew");
 | |
| 		printf("\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* DQ Bit de-skew algorithm.
 | |
|  * Deskews data lines as much as possible.
 | |
|  * 1. Add delay to DQS line until finding the failure
 | |
|  *    (normally a hold time violation)
 | |
|  * 2. Reduce DQS line by small steps until finding the very first time
 | |
|  *    we go back to "Pass" condition.
 | |
|  * 3. For each DQ line, Reduce DQ delay until finding the very first failure
 | |
|  *    (normally a hold time fail)
 | |
|  * 4. When all bits are at their first failure delay, we can consider them
 | |
|  *    aligned.
 | |
|  * Handle conrer situation (Can't find Pass-fail, or fail-pass transitions
 | |
|  * at any step)
 | |
|  * TODO Provide a return Status. Improve doc
 | |
|  */
 | |
| static enum test_result bit_deskew(struct stm32mp1_ddrctl *ctl,
 | |
| 				   struct stm32mp1_ddrphy *phy, char *string)
 | |
| {
 | |
| 	/* New DQ delay value (index), set during Deskew algo */
 | |
| 	u8 deskew_delay[NUM_BYTES][8];
 | |
| 	/*If there is still skew on a bit, mark this bit. */
 | |
| 	u8 deskew_non_converge[NUM_BYTES][8];
 | |
| 	struct BIST_result result;
 | |
| 	s8 dqs_unit_delay_index = 0;
 | |
| 	u8 datx8 = 0;
 | |
| 	u8 bit_i = 0;
 | |
| 	s8 phase_idx = 0;
 | |
| 	s8 bit_i_delay_index = 0;
 | |
| 	u8 success = 0;
 | |
| 	struct tuning_position last_right_ok;
 | |
| 	u8 force_stop = 0;
 | |
| 	u8 fail_found;
 | |
| 	u8 error = 0;
 | |
| 	u8 nb_bytes = get_nb_bytes(ctl);
 | |
| 	/* u8 last_pass_dqs_unit = 0; */
 | |
| 
 | |
| 	memset(deskew_delay, 0, sizeof(deskew_delay));
 | |
| 	memset(deskew_non_converge, 0, sizeof(deskew_non_converge));
 | |
| 
 | |
| 	/*Disable DQS Drift Compensation*/
 | |
| 	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
 | |
| 	/*Disable all bytes*/
 | |
| 	/* Disable automatic power down of DLL and IOs when disabling
 | |
| 	 * a byte (To avoid having to add programming and  delay
 | |
| 	 * for a DLL re-lock when later re-enabling a disabled Byte Lane)
 | |
| 	 */
 | |
| 	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
 | |
| 
 | |
| 	/* Disable all data bytes */
 | |
| 	clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
 | |
| 	clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
 | |
| 	clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
 | |
| 	clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
 | |
| 
 | |
| 	/* Config the BIST block */
 | |
| 	config_BIST(ctl, phy);
 | |
| 	log_debug("BIST Config done.\n");
 | |
| 
 | |
| 	/* Train each byte */
 | |
| 	for (datx8 = 0; datx8 < nb_bytes; datx8++) {
 | |
| 		if (ctrlc()) {
 | |
| 			sprintf(string, "interrupted at byte %d/%d, error=%d",
 | |
| 				datx8 + 1, nb_bytes, error);
 | |
| 			return TEST_FAILED;
 | |
| 		}
 | |
| 		log_debug("\n======================\n");
 | |
| 		log_debug("Start deskew byte %d .\n", datx8);
 | |
| 		log_debug("======================\n");
 | |
| 		/* Enable Byte (DXNGCR, bit DXEN) */
 | |
| 		setbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN);
 | |
| 
 | |
| 		/* Select the byte lane for comparison of read data */
 | |
| 		BIST_datx8_sel(phy, datx8);
 | |
| 
 | |
| 		/* Set all DQDLYn to maximum value. All bits within the byte
 | |
| 		 * will be delayed with DQSTR = 2 instead of max = 3
 | |
| 		 * to avoid inter bits fail influence
 | |
| 		 */
 | |
| 		writel(0xAAAAAAAA, DXNDQTR(phy, datx8));
 | |
| 
 | |
| 		/* Set the DQS phase delay to 90 DEG (default).
 | |
| 		 * What is defined here is the index of the desired config
 | |
| 		 * in the PHASE array.
 | |
| 		 */
 | |
| 		phase_idx = _90deg;
 | |
| 
 | |
| 		/* Set DQS unit delay to the max value. */
 | |
| 		dqs_unit_delay_index = MAX_DQS_UNIT_IDX;
 | |
| 		DQS_unit_delay(phy, datx8, dqs_unit_delay_index);
 | |
| 		DQS_phase_delay(phy, datx8, phase_idx);
 | |
| 
 | |
| 		/* Issue a DLL soft reset */
 | |
| 		clrbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST);
 | |
| 		setbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST);
 | |
| 
 | |
| 		/* Test this typical init condition */
 | |
| 		BIST_test(phy, datx8, &result);
 | |
| 		success = result.test_result;
 | |
| 
 | |
| 		/* If the test pass in this typical condition,
 | |
| 		 * start the algo with it.
 | |
| 		 * Else, look for Pass init condition
 | |
| 		 */
 | |
| 		if (!success) {
 | |
| 			log_debug("Fail at init condtion. Let's look for a good init condition.\n");
 | |
| 			success = 0; /* init */
 | |
| 			/* Make sure we start with a PASS condition before
 | |
| 			 * looking for a fail condition.
 | |
| 			 * Find the first PASS PHASE condition
 | |
| 			 */
 | |
| 
 | |
| 			/* escape if we find a PASS */
 | |
| 			log_debug("increase Phase idx\n");
 | |
| 			while (!success && (phase_idx <= MAX_DQS_PHASE_IDX)) {
 | |
| 				DQS_phase_delay(phy, datx8, phase_idx);
 | |
| 				BIST_test(phy, datx8, &result);
 | |
| 				success = result.test_result;
 | |
| 				phase_idx++;
 | |
| 			}
 | |
| 			/* if ended with success
 | |
| 			 * ==>> Restore the fist success condition
 | |
| 			 */
 | |
| 			if (success)
 | |
| 				phase_idx--; /* because it ended with ++ */
 | |
| 		}
 | |
| 		if (ctrlc()) {
 | |
| 			sprintf(string, "interrupted at byte %d/%d, error=%d",
 | |
| 				datx8 + 1, nb_bytes, error);
 | |
| 			return TEST_FAILED;
 | |
| 		}
 | |
| 		/* We couldn't find a successful condition, its seems
 | |
| 		 * we have hold violation, lets try reduce DQS_unit Delay
 | |
| 		 */
 | |
| 		if (!success) {
 | |
| 			/* We couldn't find a successful condition, its seems
 | |
| 			 * we have hold violation, lets try reduce DQS_unit
 | |
| 			 * Delay
 | |
| 			 */
 | |
| 			log_debug("Still fail. Try decrease DQS Unit delay\n");
 | |
| 
 | |
| 			phase_idx = 0;
 | |
| 			dqs_unit_delay_index = 0;
 | |
| 			DQS_phase_delay(phy, datx8, phase_idx);
 | |
| 
 | |
| 			/* escape if we find a PASS */
 | |
| 			while (!success &&
 | |
| 			       (dqs_unit_delay_index <=
 | |
| 				MAX_DQS_UNIT_IDX)) {
 | |
| 				DQS_unit_delay(phy, datx8,
 | |
| 					       dqs_unit_delay_index);
 | |
| 				BIST_test(phy, datx8, &result);
 | |
| 				success = result.test_result;
 | |
| 				dqs_unit_delay_index++;
 | |
| 			}
 | |
| 			if (success) {
 | |
| 				/* Restore the first success condition*/
 | |
| 				dqs_unit_delay_index--;
 | |
| 				/* last_pass_dqs_unit = dqs_unit_delay_index;*/
 | |
| 				DQS_unit_delay(phy, datx8,
 | |
| 					       dqs_unit_delay_index);
 | |
| 			} else {
 | |
| 				/* No need to continue,
 | |
| 				 * there is no pass region.
 | |
| 				 */
 | |
| 				force_stop = 1;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* There is an initial PASS condition
 | |
| 		 * Look for the first failing condition by PHASE stepping.
 | |
| 		 * This part of the algo can finish without converging.
 | |
| 		 */
 | |
| 		if (force_stop) {
 | |
| 			printf("Result: Failed ");
 | |
| 			printf("[Cannot Deskew lines, ");
 | |
| 			printf("there is no PASS region]\n");
 | |
| 			error++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (ctrlc()) {
 | |
| 			sprintf(string, "interrupted at byte %d/%d, error=%d",
 | |
| 				datx8 + 1, nb_bytes, error);
 | |
| 			return TEST_FAILED;
 | |
| 		}
 | |
| 
 | |
| 		log_debug("there is a pass region for phase idx %d\n",
 | |
| 			  phase_idx);
 | |
| 		log_debug("Step1: Find the first failing condition\n");
 | |
| 		/* Look for the first failing condition by PHASE stepping.
 | |
| 		 * This part of the algo can finish without converging.
 | |
| 		 */
 | |
| 
 | |
| 		/* escape if we find a fail (hold time violation)
 | |
| 		 * condition at any bit or if out of delay range.
 | |
| 		 */
 | |
| 		while (success && (phase_idx <= MAX_DQS_PHASE_IDX)) {
 | |
| 			DQS_phase_delay(phy, datx8, phase_idx);
 | |
| 			BIST_test(phy, datx8, &result);
 | |
| 			success = result.test_result;
 | |
| 			phase_idx++;
 | |
| 		}
 | |
| 		if (ctrlc()) {
 | |
| 			sprintf(string, "interrupted at byte %d/%d, error=%d",
 | |
| 				datx8 + 1, nb_bytes, error);
 | |
| 			return TEST_FAILED;
 | |
| 		}
 | |
| 
 | |
| 		/* if the loop ended with a failing condition at any bit,
 | |
| 		 * lets look for the first previous success condition by unit
 | |
| 		 * stepping (minimal delay)
 | |
| 		 */
 | |
| 		if (!success) {
 | |
| 			log_debug("Fail region (PHASE) found phase idx %d\n",
 | |
| 				  phase_idx);
 | |
| 			log_debug("Let's look for first success by DQS Unit steps\n");
 | |
| 			/* This part, the algo always converge */
 | |
| 			phase_idx--;
 | |
| 
 | |
| 			/* escape if we find a success condition
 | |
| 			 * or if out of delay range.
 | |
| 			 */
 | |
| 			while (!success && dqs_unit_delay_index >= 0) {
 | |
| 				DQS_unit_delay(phy, datx8,
 | |
| 					       dqs_unit_delay_index);
 | |
| 				BIST_test(phy, datx8, &result);
 | |
| 				success = result.test_result;
 | |
| 				dqs_unit_delay_index--;
 | |
| 			}
 | |
| 			/* if the loop ended with a success condition,
 | |
| 			 * the last delay Right OK (before hold violation)
 | |
| 			 *  condition is then defined as following:
 | |
| 			 */
 | |
| 			if (success) {
 | |
| 				/* Hold the dely parameters of the the last
 | |
| 				 * delay Right OK condition.
 | |
| 				 * -1 to get back to current condition
 | |
| 				 */
 | |
| 				last_right_ok.phase = phase_idx;
 | |
| 				/*+1 to get back to current condition */
 | |
| 				last_right_ok.unit = dqs_unit_delay_index + 1;
 | |
| 				last_right_ok.bits_delay = 0xFFFFFFFF;
 | |
| 				log_debug("Found %d\n", dqs_unit_delay_index);
 | |
| 			} else {
 | |
| 				/* the last OK condition is then with the
 | |
| 				 * previous phase_idx.
 | |
| 				 * -2 instead of -1 because at the last
 | |
| 				 * iteration of the while(),
 | |
| 				 * we incremented phase_idx
 | |
| 				 */
 | |
| 				last_right_ok.phase = phase_idx - 1;
 | |
| 				/* Nominal+1. Because we want the previous
 | |
| 				 * delay after reducing the phase delay.
 | |
| 				 */
 | |
| 				last_right_ok.unit = 1;
 | |
| 				last_right_ok.bits_delay = 0xFFFFFFFF;
 | |
| 				log_debug("Not Found : try previous phase %d\n",
 | |
| 					  phase_idx - 1);
 | |
| 
 | |
| 				DQS_phase_delay(phy, datx8, phase_idx - 1);
 | |
| 				dqs_unit_delay_index = 0;
 | |
| 				success = true;
 | |
| 				while (success &&
 | |
| 				       (dqs_unit_delay_index <
 | |
| 					MAX_DQS_UNIT_IDX)) {
 | |
| 					DQS_unit_delay(phy, datx8,
 | |
| 						       dqs_unit_delay_index);
 | |
| 					BIST_test(phy, datx8, &result);
 | |
| 					success = result.test_result;
 | |
| 					dqs_unit_delay_index++;
 | |
| 					log_debug("dqs_unit_delay_index = %d, result = %d\n",
 | |
| 						  dqs_unit_delay_index, success);
 | |
| 				}
 | |
| 
 | |
| 				if (!success) {
 | |
| 					last_right_ok.unit =
 | |
| 						 dqs_unit_delay_index - 1;
 | |
| 				} else {
 | |
| 					last_right_ok.unit = 0;
 | |
| 					log_debug("ERROR: failed region not FOUND");
 | |
| 				}
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* we can't find a failing  condition at all bits
 | |
| 			 * ==> Just hold the last test condition
 | |
| 			 * (the max DQS delay)
 | |
| 			 * which is the most likely,
 | |
| 			 * the closest to a hold violation
 | |
| 			 * If we can't find a Fail condition after
 | |
| 			 * the Pass region, stick at this position
 | |
| 			 * In order to have max chances to find a fail
 | |
| 			 * when reducing DQ delays.
 | |
| 			 */
 | |
| 			last_right_ok.phase = MAX_DQS_PHASE_IDX;
 | |
| 			last_right_ok.unit = MAX_DQS_UNIT_IDX;
 | |
| 			last_right_ok.bits_delay = 0xFFFFFFFF;
 | |
| 			log_debug("Can't find the a fail condition\n");
 | |
| 		}
 | |
| 
 | |
| 		/* step 2:
 | |
| 		 * if we arrive at this stage, it means that we found the last
 | |
| 		 * Right OK condition (by tweeking the DQS delay). Or we simply
 | |
| 		 * pushed DQS delay to the max
 | |
| 		 * This means that by reducing the delay on some DQ bits,
 | |
| 		 * we should find a failing condition.
 | |
| 		 */
 | |
| 		printf("Byte %d, DQS unit = %d, phase = %d\n",
 | |
| 		       datx8, last_right_ok.unit, last_right_ok.phase);
 | |
| 		log_debug("Step2, unit = %d, phase = %d, bits delay=%x\n",
 | |
| 			  last_right_ok.unit, last_right_ok.phase,
 | |
| 			  last_right_ok.bits_delay);
 | |
| 
 | |
| 		/* Restore the last_right_ok condtion. */
 | |
| 		DQS_unit_delay(phy, datx8, last_right_ok.unit);
 | |
| 		DQS_phase_delay(phy, datx8, last_right_ok.phase);
 | |
| 		writel(last_right_ok.bits_delay, DXNDQTR(phy, datx8));
 | |
| 
 | |
| 		/* train each bit
 | |
| 		 * reduce delay on each bit, and perform a write/read test
 | |
| 		 * and stop at the very first time it fails.
 | |
| 		 * the goal is the find the first failing condition
 | |
| 		 * for each bit.
 | |
| 		 * When we achieve this condition<  for all the bits,
 | |
| 		 * we are sure they are aligned (+/- step resolution)
 | |
| 		 */
 | |
| 		fail_found = 0;
 | |
| 		for (bit_i = 0; bit_i < 8; bit_i++) {
 | |
| 			if (ctrlc()) {
 | |
| 				sprintf(string,
 | |
| 					"interrupted at byte %d/%d, error=%d",
 | |
| 					datx8 + 1, nb_bytes, error);
 | |
| 				return error;
 | |
| 			}
 | |
| 			log_debug("deskewing bit %d:\n", bit_i);
 | |
| 			success = 1; /* init */
 | |
| 			/* Set all DQDLYn to maximum value.
 | |
| 			 * Only bit_i will be down-delayed
 | |
| 			 * ==> if we have a fail, it will be definitely
 | |
| 			 *     from bit_i
 | |
| 			 */
 | |
| 			writel(0xFFFFFFFF, DXNDQTR(phy, datx8));
 | |
| 			/* Arriving at this stage,
 | |
| 			 * we have a success condition with delay = 3;
 | |
| 			 */
 | |
| 			bit_i_delay_index = 3;
 | |
| 
 | |
| 			/* escape if bit delay is out of range or
 | |
| 			 * if a fatil occurs
 | |
| 			 */
 | |
| 			while ((bit_i_delay_index >= 0) && success) {
 | |
| 				set_DQ_unit_delay(phy, datx8,
 | |
| 						  bit_i,
 | |
| 						  bit_i_delay_index);
 | |
| 				BIST_test(phy, datx8, &result);
 | |
| 				success = result.test_result;
 | |
| 				bit_i_delay_index--;
 | |
| 			}
 | |
| 
 | |
| 			/* if escape with a fail condition
 | |
| 			 * ==> save this position for bit_i
 | |
| 			 */
 | |
| 			if (!success) {
 | |
| 				/* save the delay position.
 | |
| 				 * Add 1 because the while loop ended with a --,
 | |
| 				 * and that we need to hold the last success
 | |
| 				 *  delay
 | |
| 				 */
 | |
| 				deskew_delay[datx8][bit_i] =
 | |
| 					bit_i_delay_index + 2;
 | |
| 				if (deskew_delay[datx8][bit_i] > 3)
 | |
| 					deskew_delay[datx8][bit_i] = 3;
 | |
| 
 | |
| 				/* A flag that states we found at least a fail
 | |
| 				 * at one bit.
 | |
| 				 */
 | |
| 				fail_found = 1;
 | |
| 				log_debug("Fail found on bit %d, for delay = %d => deskew[%d][%d] = %d\n",
 | |
| 					  bit_i, bit_i_delay_index + 1,
 | |
| 					  datx8, bit_i,
 | |
| 					  deskew_delay[datx8][bit_i]);
 | |
| 			} else {
 | |
| 				/* if we can find a success condition by
 | |
| 				 * back-delaying this bit, just set the delay
 | |
| 				 * to 0 (the best deskew
 | |
| 				 * possible) and mark the bit.
 | |
| 				 */
 | |
| 				deskew_delay[datx8][bit_i] = 0;
 | |
| 				/* set a flag that will be used later
 | |
| 				 * in the report.
 | |
| 				 */
 | |
| 				deskew_non_converge[datx8][bit_i] = 1;
 | |
| 				log_debug("Fail not found on bit %d => deskew[%d][%d] = %d\n",
 | |
| 					  bit_i, datx8, bit_i,
 | |
| 					  deskew_delay[datx8][bit_i]);
 | |
| 			}
 | |
| 		}
 | |
| 		log_debug("**********byte %d tuning complete************\n",
 | |
| 			  datx8);
 | |
| 		/* If we can't find any failure by back delaying DQ lines,
 | |
| 		 * hold the default values
 | |
| 		 */
 | |
| 		if (!fail_found) {
 | |
| 			for (bit_i = 0; bit_i < 8; bit_i++)
 | |
| 				deskew_delay[datx8][bit_i] = 0;
 | |
| 			log_debug("The Deskew algorithm can't converge, there is too much margin in your design. Good job!\n");
 | |
| 		}
 | |
| 
 | |
| 		apply_deskew_results(phy, datx8, deskew_delay,
 | |
| 				     deskew_non_converge);
 | |
| 		/* Restore nominal value for DQS delay */
 | |
| 		DQS_phase_delay(phy, datx8, 3);
 | |
| 		DQS_unit_delay(phy, datx8, 3);
 | |
| 		/* disable byte after byte bits deskew */
 | |
| 		clrbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN);
 | |
| 	}  /* end of byte deskew */
 | |
| 
 | |
| 	/* re-enable all data bytes */
 | |
| 	setbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
 | |
| 	setbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
 | |
| 	setbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
 | |
| 	setbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
 | |
| 
 | |
| 	if (error) {
 | |
| 		sprintf(string, "error = %d", error);
 | |
| 		return TEST_FAILED;
 | |
| 	}
 | |
| 
 | |
| 	return TEST_PASSED;
 | |
| } /* end function */
 | |
| 
 | |
| /* Trim DQS timings and set it in the centre of data eye.
 | |
|  * Look for a PPPPF region, then look for a FPPP region and finally select
 | |
|  * the mid of the FPPPPPF region
 | |
|  */
 | |
| static enum test_result eye_training(struct stm32mp1_ddrctl *ctl,
 | |
| 				     struct stm32mp1_ddrphy *phy, char *string)
 | |
| {
 | |
| 	/*Stores the DQS trim values (PHASE index, unit index) */
 | |
| 	u8 eye_training_val[NUM_BYTES][2];
 | |
| 	u8 byte = 0;
 | |
| 	struct BIST_result result;
 | |
| 	s8 dqs_unit_delay_index = 0;
 | |
| 	s8 phase_idx = 0;
 | |
| 	s8 dqs_unit_delay_index_pass = 0;
 | |
| 	s8 phase_idx_pass = 0;
 | |
| 	u8 success = 0;
 | |
| 	u8 left_phase_bound_found, right_phase_bound_found;
 | |
| 	u8 left_unit_bound_found, right_unit_bound_found;
 | |
| 	u8 left_bound_found, right_bound_found;
 | |
| 	struct tuning_position left_bound, right_bound;
 | |
| 	u8 error = 0;
 | |
| 	u8 nb_bytes = get_nb_bytes(ctl);
 | |
| 
 | |
| 	/*Disable DQS Drift Compensation*/
 | |
| 	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
 | |
| 	/*Disable all bytes*/
 | |
| 	/* Disable automatic power down of DLL and IOs when disabling a byte
 | |
| 	 * (To avoid having to add programming and  delay
 | |
| 	 * for a DLL re-lock when later re-enabling a disabled Byte Lane)
 | |
| 	 */
 | |
| 	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
 | |
| 
 | |
| 	/*Disable all data bytes */
 | |
| 	clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
 | |
| 	clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
 | |
| 	clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
 | |
| 	clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
 | |
| 
 | |
| 	/* Config the BIST block */
 | |
| 	config_BIST(ctl, phy);
 | |
| 
 | |
| 	for (byte = 0; byte < nb_bytes; byte++) {
 | |
| 		if (ctrlc()) {
 | |
| 			sprintf(string, "interrupted at byte %d/%d, error=%d",
 | |
| 				byte + 1, nb_bytes, error);
 | |
| 			return TEST_FAILED;
 | |
| 		}
 | |
| 		right_bound.phase = 0;
 | |
| 		right_bound.unit = 0;
 | |
| 
 | |
| 		left_bound.phase = 0;
 | |
| 		left_bound.unit = 0;
 | |
| 
 | |
| 		left_phase_bound_found = 0;
 | |
| 		right_phase_bound_found = 0;
 | |
| 
 | |
| 		left_unit_bound_found = 0;
 | |
| 		right_unit_bound_found = 0;
 | |
| 
 | |
| 		left_bound_found = 0;
 | |
| 		right_bound_found = 0;
 | |
| 
 | |
| 		/* Enable Byte (DXNGCR, bit DXEN) */
 | |
| 		setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN);
 | |
| 
 | |
| 		/* Select the byte lane for comparison of read data */
 | |
| 		BIST_datx8_sel(phy, byte);
 | |
| 
 | |
| 		/* Set DQS phase delay to the nominal value. */
 | |
| 		phase_idx = _90deg;
 | |
| 		phase_idx_pass = phase_idx;
 | |
| 
 | |
| 		/* Set DQS unit delay to the nominal value. */
 | |
| 		dqs_unit_delay_index = 3;
 | |
| 		dqs_unit_delay_index_pass = dqs_unit_delay_index;
 | |
| 		success = 0;
 | |
| 
 | |
| 		log_debug("STEP0: Find Init delay\n");
 | |
| 		/* STEP0: Find Init delay: a delay that put the system
 | |
| 		 * in a "Pass" condition then (TODO) update
 | |
| 		 * dqs_unit_delay_index_pass & phase_idx_pass
 | |
| 		 */
 | |
| 		DQS_unit_delay(phy, byte, dqs_unit_delay_index);
 | |
| 		DQS_phase_delay(phy, byte, phase_idx);
 | |
| 		BIST_test(phy, byte, &result);
 | |
| 		success = result.test_result;
 | |
| 		/* If we have a fail in the nominal condition */
 | |
| 		if (!success) {
 | |
| 			/* Look at the left */
 | |
| 			while (phase_idx >= 0 && !success) {
 | |
| 				phase_idx--;
 | |
| 				DQS_phase_delay(phy, byte, phase_idx);
 | |
| 				BIST_test(phy, byte, &result);
 | |
| 				success = result.test_result;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!success) {
 | |
| 			/* if we can't find pass condition,
 | |
| 			 * then look at the right
 | |
| 			 */
 | |
| 			phase_idx = _90deg;
 | |
| 			while (phase_idx <= MAX_DQS_PHASE_IDX &&
 | |
| 			       !success) {
 | |
| 				phase_idx++;
 | |
| 				DQS_phase_delay(phy, byte,
 | |
| 						phase_idx);
 | |
| 				BIST_test(phy, byte, &result);
 | |
| 				success = result.test_result;
 | |
| 			}
 | |
| 		}
 | |
| 		/* save the pass condition */
 | |
| 		if (success) {
 | |
| 			phase_idx_pass = phase_idx;
 | |
| 		} else {
 | |
| 			printf("Result: Failed ");
 | |
| 			printf("[Cannot DQS timings, ");
 | |
| 			printf("there is no PASS region]\n");
 | |
| 			error++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (ctrlc()) {
 | |
| 			sprintf(string, "interrupted at byte %d/%d, error=%d",
 | |
| 				byte + 1, nb_bytes, error);
 | |
| 			return TEST_FAILED;
 | |
| 		}
 | |
| 		log_debug("STEP1: Find LEFT PHASE DQS Bound\n");
 | |
| 		/* STEP1: Find LEFT PHASE DQS Bound */
 | |
| 		while ((phase_idx >= 0) &&
 | |
| 		       (phase_idx <= MAX_DQS_PHASE_IDX) &&
 | |
| 		       !left_phase_bound_found) {
 | |
| 			DQS_unit_delay(phy, byte,
 | |
| 				       dqs_unit_delay_index);
 | |
| 			DQS_phase_delay(phy, byte,
 | |
| 					phase_idx);
 | |
| 			BIST_test(phy, byte, &result);
 | |
| 			success = result.test_result;
 | |
| 
 | |
| 			/*TODO: Manage the case were at the beginning
 | |
| 			 * there is already a fail
 | |
| 			 */
 | |
| 			if (!success) {
 | |
| 				/* the last pass condition */
 | |
| 				left_bound.phase = ++phase_idx;
 | |
| 				left_phase_bound_found = 1;
 | |
| 			} else if (success) {
 | |
| 				phase_idx--;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!left_phase_bound_found) {
 | |
| 			left_bound.phase = 0;
 | |
| 			phase_idx = 0;
 | |
| 		}
 | |
| 		/* If not found, lets take 0 */
 | |
| 
 | |
| 		if (ctrlc()) {
 | |
| 			sprintf(string, "interrupted at byte %d/%d, error=%d",
 | |
| 				byte + 1, nb_bytes, error);
 | |
| 			return TEST_FAILED;
 | |
| 		}
 | |
| 		log_debug("STEP2: Find UNIT left bound\n");
 | |
| 		/* STEP2: Find UNIT left bound */
 | |
| 		while ((dqs_unit_delay_index >= 0) &&
 | |
| 		       !left_unit_bound_found) {
 | |
| 			DQS_unit_delay(phy, byte,
 | |
| 				       dqs_unit_delay_index);
 | |
| 			DQS_phase_delay(phy, byte, phase_idx);
 | |
| 			BIST_test(phy, byte, &result);
 | |
| 			success = result.test_result;
 | |
| 			if (!success) {
 | |
| 				left_bound.unit =
 | |
| 					++dqs_unit_delay_index;
 | |
| 				left_unit_bound_found = 1;
 | |
| 				left_bound_found = 1;
 | |
| 			} else if (success) {
 | |
| 				dqs_unit_delay_index--;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* If not found, lets take 0 */
 | |
| 		if (!left_unit_bound_found)
 | |
| 			left_bound.unit = 0;
 | |
| 
 | |
| 		if (ctrlc()) {
 | |
| 			sprintf(string, "interrupted at byte %d/%d, error=%d",
 | |
| 				byte + 1, nb_bytes, error);
 | |
| 			return TEST_FAILED;
 | |
| 		}
 | |
| 		log_debug("STEP3: Find PHase right bound\n");
 | |
| 		/* STEP3: Find PHase right bound, start with "pass"
 | |
| 		 * condition
 | |
| 		 */
 | |
| 
 | |
| 		/* Set DQS phase delay to the pass value. */
 | |
| 		phase_idx = phase_idx_pass;
 | |
| 
 | |
| 		/* Set DQS unit delay to the pass value. */
 | |
| 		dqs_unit_delay_index = dqs_unit_delay_index_pass;
 | |
| 
 | |
| 		while ((phase_idx <= MAX_DQS_PHASE_IDX) &&
 | |
| 		       !right_phase_bound_found) {
 | |
| 			DQS_unit_delay(phy, byte,
 | |
| 				       dqs_unit_delay_index);
 | |
| 			DQS_phase_delay(phy, byte, phase_idx);
 | |
| 			BIST_test(phy, byte, &result);
 | |
| 			success = result.test_result;
 | |
| 			if (!success) {
 | |
| 				/* the last pass condition */
 | |
| 				right_bound.phase = --phase_idx;
 | |
| 				right_phase_bound_found = 1;
 | |
| 			} else if (success) {
 | |
| 				phase_idx++;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* If not found, lets take the max value */
 | |
| 		if (!right_phase_bound_found) {
 | |
| 			right_bound.phase = MAX_DQS_PHASE_IDX;
 | |
| 			phase_idx = MAX_DQS_PHASE_IDX;
 | |
| 		}
 | |
| 
 | |
| 		if (ctrlc()) {
 | |
| 			sprintf(string, "interrupted at byte %d/%d, error=%d",
 | |
| 				byte + 1, nb_bytes, error);
 | |
| 			return TEST_FAILED;
 | |
| 		}
 | |
| 		log_debug("STEP4: Find UNIT right bound\n");
 | |
| 		/* STEP4: Find UNIT right bound */
 | |
| 		while ((dqs_unit_delay_index <= MAX_DQS_UNIT_IDX) &&
 | |
| 		       !right_unit_bound_found) {
 | |
| 			DQS_unit_delay(phy, byte,
 | |
| 				       dqs_unit_delay_index);
 | |
| 			DQS_phase_delay(phy, byte, phase_idx);
 | |
| 			BIST_test(phy, byte, &result);
 | |
| 			success = result.test_result;
 | |
| 			if (!success) {
 | |
| 				right_bound.unit =
 | |
| 					--dqs_unit_delay_index;
 | |
| 				right_unit_bound_found = 1;
 | |
| 				right_bound_found = 1;
 | |
| 			} else if (success) {
 | |
| 				dqs_unit_delay_index++;
 | |
| 			}
 | |
| 		}
 | |
| 		/* If not found, lets take the max value */
 | |
| 		if (!right_unit_bound_found)
 | |
| 			right_bound.unit = MAX_DQS_UNIT_IDX;
 | |
| 
 | |
| 		/* If we found a regular FAil Pass FAil pattern
 | |
| 		 * FFPPPPPPFF
 | |
| 		 * OR PPPPPFF  Or FFPPPPP
 | |
| 		 */
 | |
| 
 | |
| 		if (left_bound_found || right_bound_found) {
 | |
| 			eye_training_val[byte][0] = (right_bound.phase +
 | |
| 						 left_bound.phase) / 2;
 | |
| 			eye_training_val[byte][1] = (right_bound.unit +
 | |
| 						 left_bound.unit) / 2;
 | |
| 
 | |
| 			/* If we already lost 1/2PHASE Tuning,
 | |
| 			 * let's try to recover by ++ on unit
 | |
| 			 */
 | |
| 			if (((right_bound.phase + left_bound.phase) % 2 == 1) &&
 | |
| 			    eye_training_val[byte][1] != MAX_DQS_UNIT_IDX)
 | |
| 				eye_training_val[byte][1]++;
 | |
| 			log_debug("** found phase : %d -  %d & unit %d - %d\n",
 | |
| 				  right_bound.phase, left_bound.phase,
 | |
| 				  right_bound.unit, left_bound.unit);
 | |
| 			log_debug("** calculating mid region: phase: %d  unit: %d (nominal is 3)\n",
 | |
| 				  eye_training_val[byte][0],
 | |
| 				  eye_training_val[byte][1]);
 | |
| 		} else {
 | |
| 			/* PPPPPPPPPP, we're already good.
 | |
| 			 * Set nominal values.
 | |
| 			 */
 | |
| 			eye_training_val[byte][0] = 3;
 | |
| 			eye_training_val[byte][1] = 3;
 | |
| 		}
 | |
| 		DQS_phase_delay(phy, byte, eye_training_val[byte][0]);
 | |
| 		DQS_unit_delay(phy, byte, eye_training_val[byte][1]);
 | |
| 
 | |
| 		printf("Byte %d, DQS unit = %d, phase = %d\n",
 | |
| 		       byte,
 | |
| 		       eye_training_val[byte][1],
 | |
| 		       eye_training_val[byte][0]);
 | |
| 	}
 | |
| 
 | |
| 	if (error) {
 | |
| 		sprintf(string, "error = %d", error);
 | |
| 		return TEST_FAILED;
 | |
| 	}
 | |
| 
 | |
| 	return TEST_PASSED;
 | |
| }
 | |
| 
 | |
| static void display_reg_results(struct stm32mp1_ddrphy *phy, u8 byte)
 | |
| {
 | |
| 	u8 i = 0;
 | |
| 
 | |
| 	printf("Byte %d Dekew result, bit0 delay, bit1 delay...bit8 delay\n  ",
 | |
| 	       byte);
 | |
| 
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 		printf("%d ", DQ_unit_index(phy, byte, i));
 | |
| 	printf("\n");
 | |
| 
 | |
| 	printf("dxndllcr: [%08x] val:%08x\n",
 | |
| 	       DXNDLLCR(phy, byte),
 | |
| 	       readl(DXNDLLCR(phy, byte)));
 | |
| 	printf("dxnqdstr: [%08x] val:%08x\n",
 | |
| 	       DXNDQSTR(phy, byte),
 | |
| 	       readl(DXNDQSTR(phy, byte)));
 | |
| 	printf("dxndqtr: [%08x] val:%08x\n",
 | |
| 	       DXNDQTR(phy, byte),
 | |
| 	       readl(DXNDQTR(phy, byte)));
 | |
| }
 | |
| 
 | |
| /* analyse the dgs gating log table, and determine the midpoint.*/
 | |
| static u8 set_midpoint_read_dqs_gating(struct stm32mp1_ddrphy *phy, u8 byte,
 | |
| 				       u8 dqs_gating[NUM_BYTES]
 | |
| 						    [MAX_GSL_IDX + 1]
 | |
| 						    [MAX_GPS_IDX + 1])
 | |
| {
 | |
| 	/* stores the dqs gate values (gsl index, gps index) */
 | |
| 	u8 dqs_gate_values[NUM_BYTES][2];
 | |
| 	u8 gsl_idx, gps_idx = 0;
 | |
| 	u8 left_bound_idx[2] = {0, 0};
 | |
| 	u8 right_bound_idx[2] = {0, 0};
 | |
| 	u8 left_bound_found = 0;
 | |
| 	u8 right_bound_found = 0;
 | |
| 	u8 intermittent = 0;
 | |
| 	u8 value;
 | |
| 
 | |
| 	for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) {
 | |
| 		for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) {
 | |
| 			value = dqs_gating[byte][gsl_idx][gps_idx];
 | |
| 			if (value == 1 && left_bound_found == 0) {
 | |
| 				left_bound_idx[0] = gsl_idx;
 | |
| 				left_bound_idx[1] = gps_idx;
 | |
| 				left_bound_found = 1;
 | |
| 			} else if (value == 0 &&
 | |
| 				   left_bound_found == 1 &&
 | |
| 				   !right_bound_found) {
 | |
| 				if (gps_idx == 0) {
 | |
| 					right_bound_idx[0] = gsl_idx - 1;
 | |
| 					right_bound_idx[1] = MAX_GPS_IDX;
 | |
| 				} else {
 | |
| 					right_bound_idx[0] = gsl_idx;
 | |
| 					right_bound_idx[1] = gps_idx - 1;
 | |
| 				}
 | |
| 				right_bound_found = 1;
 | |
| 			} else if (value == 1 &&
 | |
| 				   right_bound_found == 1) {
 | |
| 				intermittent = 1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* if only ppppppp is found, there is no mid region. */
 | |
| 	if (left_bound_idx[0] == 0 && left_bound_idx[1] == 0 &&
 | |
| 	    right_bound_idx[0] == 0 && right_bound_idx[1] == 0)
 | |
| 		intermittent = 1;
 | |
| 
 | |
| 	/*if we found a regular fail pass fail pattern ffppppppff
 | |
| 	 * or pppppff  or ffppppp
 | |
| 	 */
 | |
| 	if (!intermittent) {
 | |
| 		/*if we found a regular fail pass fail pattern ffppppppff
 | |
| 		 * or pppppff  or ffppppp
 | |
| 		 */
 | |
| 		if (left_bound_found || right_bound_found) {
 | |
| 			log_debug("idx0(%d): %d %d      idx1(%d) : %d %d\n",
 | |
| 				  left_bound_found,
 | |
| 				  right_bound_idx[0], left_bound_idx[0],
 | |
| 				  right_bound_found,
 | |
| 				  right_bound_idx[1], left_bound_idx[1]);
 | |
| 			dqs_gate_values[byte][0] =
 | |
| 				(right_bound_idx[0] + left_bound_idx[0]) / 2;
 | |
| 			dqs_gate_values[byte][1] =
 | |
| 				(right_bound_idx[1] + left_bound_idx[1]) / 2;
 | |
| 			/* if we already lost 1/2gsl tuning,
 | |
| 			 * let's try to recover by ++ on gps
 | |
| 			 */
 | |
| 			if (((right_bound_idx[0] +
 | |
| 			      left_bound_idx[0]) % 2 == 1) &&
 | |
| 			    dqs_gate_values[byte][1] != MAX_GPS_IDX)
 | |
| 				dqs_gate_values[byte][1]++;
 | |
| 			/* if we already lost 1/2gsl tuning and gps is on max*/
 | |
| 			else if (((right_bound_idx[0] +
 | |
| 				   left_bound_idx[0]) % 2 == 1) &&
 | |
| 				 dqs_gate_values[byte][1] == MAX_GPS_IDX) {
 | |
| 				dqs_gate_values[byte][1] = 0;
 | |
| 				dqs_gate_values[byte][0]++;
 | |
| 			}
 | |
| 			/* if we have gsl left and write limit too close
 | |
| 			 * (difference=1)
 | |
| 			 */
 | |
| 			if (((right_bound_idx[0] - left_bound_idx[0]) == 1)) {
 | |
| 				dqs_gate_values[byte][1] = (left_bound_idx[1] +
 | |
| 							    right_bound_idx[1] +
 | |
| 							    4) / 2;
 | |
| 				if (dqs_gate_values[byte][1] >= 4) {
 | |
| 					dqs_gate_values[byte][0] =
 | |
| 						right_bound_idx[0];
 | |
| 					dqs_gate_values[byte][1] -= 4;
 | |
| 				} else {
 | |
| 					dqs_gate_values[byte][0] =
 | |
| 						left_bound_idx[0];
 | |
| 				}
 | |
| 			}
 | |
| 			log_debug("*******calculating mid region: system latency: %d  phase: %d********\n",
 | |
| 				  dqs_gate_values[byte][0],
 | |
| 				  dqs_gate_values[byte][1]);
 | |
| 			log_debug("*******the nominal values were system latency: 0  phase: 2*******\n");
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* if intermitant, restore defaut values */
 | |
| 		log_debug("dqs gating:no regular fail/pass/fail found. defaults values restored.\n");
 | |
| 		dqs_gate_values[byte][0] = 0;
 | |
| 		dqs_gate_values[byte][1] = 2;
 | |
| 	}
 | |
| 	set_r0dgsl_delay(phy, byte, dqs_gate_values[byte][0]);
 | |
| 	set_r0dgps_delay(phy, byte, dqs_gate_values[byte][1]);
 | |
| 	printf("Byte %d, R0DGSL = %d, R0DGPS = %d\n",
 | |
| 	       byte, dqs_gate_values[byte][0], dqs_gate_values[byte][1]);
 | |
| 
 | |
| 	/* return 0 if intermittent or if both left_bound
 | |
| 	 * and right_bound are not found
 | |
| 	 */
 | |
| 	return !(intermittent || (left_bound_found && right_bound_found));
 | |
| }
 | |
| 
 | |
| static enum test_result read_dqs_gating(struct stm32mp1_ddrctl *ctl,
 | |
| 					struct stm32mp1_ddrphy *phy,
 | |
| 					char *string)
 | |
| {
 | |
| 	/* stores the log of pass/fail */
 | |
| 	u8 dqs_gating[NUM_BYTES][MAX_GSL_IDX + 1][MAX_GPS_IDX + 1];
 | |
| 	u8 byte, gsl_idx, gps_idx = 0;
 | |
| 	struct BIST_result result;
 | |
| 	u8 success = 0;
 | |
| 	u8 nb_bytes = get_nb_bytes(ctl);
 | |
| 
 | |
| 	memset(dqs_gating, 0x0, sizeof(dqs_gating));
 | |
| 
 | |
| 	/*disable dqs drift compensation*/
 | |
| 	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
 | |
| 	/*disable all bytes*/
 | |
| 	/* disable automatic power down of dll and ios when disabling a byte
 | |
| 	 * (to avoid having to add programming and  delay
 | |
| 	 * for a dll re-lock when later re-enabling a disabled byte lane)
 | |
| 	 */
 | |
| 	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
 | |
| 
 | |
| 	/* disable all data bytes */
 | |
| 	clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
 | |
| 	clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
 | |
| 	clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
 | |
| 	clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
 | |
| 
 | |
| 	/* config the bist block */
 | |
| 	config_BIST(ctl, phy);
 | |
| 
 | |
| 	for (byte = 0; byte < nb_bytes; byte++) {
 | |
| 		if (ctrlc()) {
 | |
| 			sprintf(string, "interrupted at byte %d/%d",
 | |
| 				byte + 1, nb_bytes);
 | |
| 			return TEST_FAILED;
 | |
| 		}
 | |
| 		/* enable byte x (dxngcr, bit dxen) */
 | |
| 		setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN);
 | |
| 
 | |
| 		/* select the byte lane for comparison of read data */
 | |
| 		BIST_datx8_sel(phy, byte);
 | |
| 		for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) {
 | |
| 			for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) {
 | |
| 				if (ctrlc()) {
 | |
| 					sprintf(string,
 | |
| 						"interrupted at byte %d/%d",
 | |
| 						byte + 1, nb_bytes);
 | |
| 					return TEST_FAILED;
 | |
| 				}
 | |
| 				/* write cfg to dxndqstr */
 | |
| 				set_r0dgsl_delay(phy, byte, gsl_idx);
 | |
| 				set_r0dgps_delay(phy, byte, gps_idx);
 | |
| 
 | |
| 				BIST_test(phy, byte, &result);
 | |
| 				success = result.test_result;
 | |
| 				if (success)
 | |
| 					dqs_gating[byte][gsl_idx][gps_idx] = 1;
 | |
| 				itm_soft_reset(phy);
 | |
| 			}
 | |
| 		}
 | |
| 		set_midpoint_read_dqs_gating(phy, byte, dqs_gating);
 | |
| 		/* dummy reads */
 | |
| 		readl(0xc0000000);
 | |
| 		readl(0xc0000000);
 | |
| 	}
 | |
| 
 | |
| 	/* re-enable drift compensation */
 | |
| 	/* setbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); */
 | |
| 	return TEST_PASSED;
 | |
| }
 | |
| 
 | |
| /****************************************************************
 | |
|  * TEST
 | |
|  ****************************************************************
 | |
|  */
 | |
| static enum test_result do_read_dqs_gating(struct stm32mp1_ddrctl *ctl,
 | |
| 					   struct stm32mp1_ddrphy *phy,
 | |
| 					   char *string, int argc,
 | |
| 					   char *argv[])
 | |
| {
 | |
| 	u32 rfshctl3 = readl(&ctl->rfshctl3);
 | |
| 	u32 pwrctl = readl(&ctl->pwrctl);
 | |
| 	u32 derateen = readl(&ctl->derateen);
 | |
| 	enum test_result res;
 | |
| 
 | |
| 	writel(0x0, &ctl->derateen);
 | |
| 	stm32mp1_refresh_disable(ctl);
 | |
| 
 | |
| 	res = read_dqs_gating(ctl, phy, string);
 | |
| 
 | |
| 	stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
 | |
| 	writel(derateen, &ctl->derateen);
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static enum test_result do_bit_deskew(struct stm32mp1_ddrctl *ctl,
 | |
| 				      struct stm32mp1_ddrphy *phy,
 | |
| 				      char *string, int argc, char *argv[])
 | |
| {
 | |
| 	u32 rfshctl3 = readl(&ctl->rfshctl3);
 | |
| 	u32 pwrctl = readl(&ctl->pwrctl);
 | |
| 	u32 derateen = readl(&ctl->derateen);
 | |
| 	enum test_result res;
 | |
| 
 | |
| 	writel(0x0, &ctl->derateen);
 | |
| 	stm32mp1_refresh_disable(ctl);
 | |
| 
 | |
| 	res = bit_deskew(ctl, phy, string);
 | |
| 
 | |
| 	stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
 | |
| 	writel(derateen, &ctl->derateen);
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static enum test_result do_eye_training(struct stm32mp1_ddrctl *ctl,
 | |
| 					struct stm32mp1_ddrphy *phy,
 | |
| 					char *string, int argc, char *argv[])
 | |
| {
 | |
| 	u32 rfshctl3 = readl(&ctl->rfshctl3);
 | |
| 	u32 pwrctl = readl(&ctl->pwrctl);
 | |
| 	u32 derateen = readl(&ctl->derateen);
 | |
| 	enum test_result res;
 | |
| 
 | |
| 	writel(0x0, &ctl->derateen);
 | |
| 	stm32mp1_refresh_disable(ctl);
 | |
| 
 | |
| 	res = eye_training(ctl, phy, string);
 | |
| 
 | |
| 	stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
 | |
| 	writel(derateen, &ctl->derateen);
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static enum test_result do_display(struct stm32mp1_ddrctl *ctl,
 | |
| 				   struct stm32mp1_ddrphy *phy,
 | |
| 				   char *string, int argc, char *argv[])
 | |
| {
 | |
| 	int byte;
 | |
| 	u8 nb_bytes = get_nb_bytes(ctl);
 | |
| 
 | |
| 	for (byte = 0; byte < nb_bytes; byte++)
 | |
| 		display_reg_results(phy, byte);
 | |
| 
 | |
| 	return TEST_PASSED;
 | |
| }
 | |
| 
 | |
| static enum test_result do_bist_config(struct stm32mp1_ddrctl *ctl,
 | |
| 				       struct stm32mp1_ddrphy *phy,
 | |
| 				       char *string, int argc, char *argv[])
 | |
| {
 | |
| 	unsigned long value;
 | |
| 
 | |
| 	if (argc > 0) {
 | |
| 		if (strict_strtoul(argv[0], 0, &value) < 0) {
 | |
| 			sprintf(string, "invalid nbErr %s", argv[0]);
 | |
| 			return TEST_FAILED;
 | |
| 		}
 | |
| 		BIST_error_max = value;
 | |
| 	}
 | |
| 	if (argc > 1) {
 | |
| 		if (strict_strtoul(argv[1], 0, &value) < 0) {
 | |
| 			sprintf(string, "invalid Seed %s", argv[1]);
 | |
| 			return TEST_FAILED;
 | |
| 		}
 | |
| 		BIST_seed = value;
 | |
| 	}
 | |
| 	printf("Bist.nbErr = %d\n", BIST_error_max);
 | |
| 	if (BIST_seed)
 | |
| 		printf("Bist.Seed = 0x%x\n", BIST_seed);
 | |
| 	else
 | |
| 		printf("Bist.Seed = random\n");
 | |
| 
 | |
| 	return TEST_PASSED;
 | |
| }
 | |
| 
 | |
| /****************************************************************
 | |
|  * TEST Description
 | |
|  ****************************************************************
 | |
|  */
 | |
| 
 | |
| const struct test_desc tuning[] = {
 | |
| 	{do_read_dqs_gating, "Read DQS gating",
 | |
| 		"software read DQS Gating", "", 0 },
 | |
| 	{do_bit_deskew, "Bit de-skew", "", "", 0 },
 | |
| 	{do_eye_training, "Eye Training", "or DQS training", "", 0 },
 | |
| 	{do_display, "Display registers", "", "", 0 },
 | |
| 	{do_bist_config, "Bist config", "[nbErr] [seed]",
 | |
| 	 "configure Bist test", 2},
 | |
| };
 | |
| 
 | |
| const int tuning_nb = ARRAY_SIZE(tuning);
 |