1051 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1051 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
| // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
 | |
| /*
 | |
|  * Copyright (C) STMicroelectronics 2019
 | |
|  * Author: Christophe Kerello <christophe.kerello@st.com>
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <clk.h>
 | |
| #include <dm.h>
 | |
| #include <log.h>
 | |
| #include <nand.h>
 | |
| #include <reset.h>
 | |
| #include <linux/bitfield.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/iopoll.h>
 | |
| #include <linux/ioport.h>
 | |
| 
 | |
| /* Bad block marker length */
 | |
| #define FMC2_BBM_LEN			2
 | |
| 
 | |
| /* ECC step size */
 | |
| #define FMC2_ECC_STEP_SIZE		512
 | |
| 
 | |
| /* Command delay */
 | |
| #define FMC2_RB_DELAY_US		30
 | |
| 
 | |
| /* Max chip enable */
 | |
| #define FMC2_MAX_CE			2
 | |
| 
 | |
| /* Timings */
 | |
| #define FMC2_THIZ			1
 | |
| #define FMC2_TIO			8000
 | |
| #define FMC2_TSYNC			3000
 | |
| #define FMC2_PCR_TIMING_MASK		0xf
 | |
| #define FMC2_PMEM_PATT_TIMING_MASK	0xff
 | |
| 
 | |
| /* FMC2 Controller Registers */
 | |
| #define FMC2_BCR1			0x0
 | |
| #define FMC2_PCR			0x80
 | |
| #define FMC2_SR				0x84
 | |
| #define FMC2_PMEM			0x88
 | |
| #define FMC2_PATT			0x8c
 | |
| #define FMC2_HECCR			0x94
 | |
| #define FMC2_BCHISR			0x254
 | |
| #define FMC2_BCHICR			0x258
 | |
| #define FMC2_BCHPBR1			0x260
 | |
| #define FMC2_BCHPBR2			0x264
 | |
| #define FMC2_BCHPBR3			0x268
 | |
| #define FMC2_BCHPBR4			0x26c
 | |
| #define FMC2_BCHDSR0			0x27c
 | |
| #define FMC2_BCHDSR1			0x280
 | |
| #define FMC2_BCHDSR2			0x284
 | |
| #define FMC2_BCHDSR3			0x288
 | |
| #define FMC2_BCHDSR4			0x28c
 | |
| 
 | |
| /* Register: FMC2_BCR1 */
 | |
| #define FMC2_BCR1_FMC2EN		BIT(31)
 | |
| 
 | |
| /* Register: FMC2_PCR */
 | |
| #define FMC2_PCR_PWAITEN		BIT(1)
 | |
| #define FMC2_PCR_PBKEN			BIT(2)
 | |
| #define FMC2_PCR_PWID			GENMASK(5, 4)
 | |
| #define FMC2_PCR_PWID_BUSWIDTH_8	0
 | |
| #define FMC2_PCR_PWID_BUSWIDTH_16	1
 | |
| #define FMC2_PCR_ECCEN			BIT(6)
 | |
| #define FMC2_PCR_ECCALG			BIT(8)
 | |
| #define FMC2_PCR_TCLR			GENMASK(12, 9)
 | |
| #define FMC2_PCR_TCLR_DEFAULT		0xf
 | |
| #define FMC2_PCR_TAR			GENMASK(16, 13)
 | |
| #define FMC2_PCR_TAR_DEFAULT		0xf
 | |
| #define FMC2_PCR_ECCSS			GENMASK(19, 17)
 | |
| #define FMC2_PCR_ECCSS_512		1
 | |
| #define FMC2_PCR_ECCSS_2048		3
 | |
| #define FMC2_PCR_BCHECC			BIT(24)
 | |
| #define FMC2_PCR_WEN			BIT(25)
 | |
| 
 | |
| /* Register: FMC2_SR */
 | |
| #define FMC2_SR_NWRF			BIT(6)
 | |
| 
 | |
| /* Register: FMC2_PMEM */
 | |
| #define FMC2_PMEM_MEMSET		GENMASK(7, 0)
 | |
| #define FMC2_PMEM_MEMWAIT		GENMASK(15, 8)
 | |
| #define FMC2_PMEM_MEMHOLD		GENMASK(23, 16)
 | |
| #define FMC2_PMEM_MEMHIZ		GENMASK(31, 24)
 | |
| #define FMC2_PMEM_DEFAULT		0x0a0a0a0a
 | |
| 
 | |
| /* Register: FMC2_PATT */
 | |
| #define FMC2_PATT_ATTSET		GENMASK(7, 0)
 | |
| #define FMC2_PATT_ATTWAIT		GENMASK(15, 8)
 | |
| #define FMC2_PATT_ATTHOLD		GENMASK(23, 16)
 | |
| #define FMC2_PATT_ATTHIZ		GENMASK(31, 24)
 | |
| #define FMC2_PATT_DEFAULT		0x0a0a0a0a
 | |
| 
 | |
| /* Register: FMC2_BCHISR */
 | |
| #define FMC2_BCHISR_DERF		BIT(1)
 | |
| #define FMC2_BCHISR_EPBRF		BIT(4)
 | |
| 
 | |
| /* Register: FMC2_BCHICR */
 | |
| #define FMC2_BCHICR_CLEAR_IRQ		GENMASK(4, 0)
 | |
| 
 | |
| /* Register: FMC2_BCHDSR0 */
 | |
| #define FMC2_BCHDSR0_DUE		BIT(0)
 | |
| #define FMC2_BCHDSR0_DEF		BIT(1)
 | |
| #define FMC2_BCHDSR0_DEN		GENMASK(7, 4)
 | |
| 
 | |
| /* Register: FMC2_BCHDSR1 */
 | |
| #define FMC2_BCHDSR1_EBP1		GENMASK(12, 0)
 | |
| #define FMC2_BCHDSR1_EBP2		GENMASK(28, 16)
 | |
| 
 | |
| /* Register: FMC2_BCHDSR2 */
 | |
| #define FMC2_BCHDSR2_EBP3		GENMASK(12, 0)
 | |
| #define FMC2_BCHDSR2_EBP4		GENMASK(28, 16)
 | |
| 
 | |
| /* Register: FMC2_BCHDSR3 */
 | |
| #define FMC2_BCHDSR3_EBP5		GENMASK(12, 0)
 | |
| #define FMC2_BCHDSR3_EBP6		GENMASK(28, 16)
 | |
| 
 | |
| /* Register: FMC2_BCHDSR4 */
 | |
| #define FMC2_BCHDSR4_EBP7		GENMASK(12, 0)
 | |
| #define FMC2_BCHDSR4_EBP8		GENMASK(28, 16)
 | |
| 
 | |
| #define FMC2_NSEC_PER_SEC		1000000000L
 | |
| 
 | |
| #define FMC2_TIMEOUT_5S			5000000
 | |
| 
 | |
| enum stm32_fmc2_ecc {
 | |
| 	FMC2_ECC_HAM = 1,
 | |
| 	FMC2_ECC_BCH4 = 4,
 | |
| 	FMC2_ECC_BCH8 = 8
 | |
| };
 | |
| 
 | |
| struct stm32_fmc2_timings {
 | |
| 	u8 tclr;
 | |
| 	u8 tar;
 | |
| 	u8 thiz;
 | |
| 	u8 twait;
 | |
| 	u8 thold_mem;
 | |
| 	u8 tset_mem;
 | |
| 	u8 thold_att;
 | |
| 	u8 tset_att;
 | |
| };
 | |
| 
 | |
| struct stm32_fmc2_nand {
 | |
| 	struct nand_chip chip;
 | |
| 	struct stm32_fmc2_timings timings;
 | |
| 	int ncs;
 | |
| 	int cs_used[FMC2_MAX_CE];
 | |
| };
 | |
| 
 | |
| static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
 | |
| {
 | |
| 	return container_of(chip, struct stm32_fmc2_nand, chip);
 | |
| }
 | |
| 
 | |
| struct stm32_fmc2_nfc {
 | |
| 	struct nand_hw_control base;
 | |
| 	struct stm32_fmc2_nand nand;
 | |
| 	struct nand_ecclayout ecclayout;
 | |
| 	fdt_addr_t io_base;
 | |
| 	fdt_addr_t data_base[FMC2_MAX_CE];
 | |
| 	fdt_addr_t cmd_base[FMC2_MAX_CE];
 | |
| 	fdt_addr_t addr_base[FMC2_MAX_CE];
 | |
| 	struct clk clk;
 | |
| 
 | |
| 	u8 cs_assigned;
 | |
| 	int cs_sel;
 | |
| };
 | |
| 
 | |
| static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_hw_control *base)
 | |
| {
 | |
| 	return container_of(base, struct stm32_fmc2_nfc, base);
 | |
| }
 | |
| 
 | |
| static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip)
 | |
| {
 | |
| 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
 | |
| 	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
 | |
| 	struct stm32_fmc2_timings *timings = &nand->timings;
 | |
| 	u32 pmem, patt;
 | |
| 
 | |
| 	/* Set tclr/tar timings */
 | |
| 	clrsetbits_le32(nfc->io_base + FMC2_PCR,
 | |
| 			FMC2_PCR_TCLR | FMC2_PCR_TAR,
 | |
| 			FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) |
 | |
| 			FIELD_PREP(FMC2_PCR_TAR, timings->tar));
 | |
| 
 | |
| 	/* Set tset/twait/thold/thiz timings in common bank */
 | |
| 	pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem);
 | |
| 	pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait);
 | |
| 	pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem);
 | |
| 	pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz);
 | |
| 	writel(pmem, nfc->io_base + FMC2_PMEM);
 | |
| 
 | |
| 	/* Set tset/twait/thold/thiz timings in attribut bank */
 | |
| 	patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att);
 | |
| 	patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait);
 | |
| 	patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att);
 | |
| 	patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz);
 | |
| 	writel(patt, nfc->io_base + FMC2_PATT);
 | |
| }
 | |
| 
 | |
| static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
 | |
| {
 | |
| 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
 | |
| 	u32 pcr = 0, pcr_mask;
 | |
| 
 | |
| 	/* Configure ECC algorithm (default configuration is Hamming) */
 | |
| 	pcr_mask = FMC2_PCR_ECCALG;
 | |
| 	pcr_mask |= FMC2_PCR_BCHECC;
 | |
| 	if (chip->ecc.strength == FMC2_ECC_BCH8) {
 | |
| 		pcr |= FMC2_PCR_ECCALG;
 | |
| 		pcr |= FMC2_PCR_BCHECC;
 | |
| 	} else if (chip->ecc.strength == FMC2_ECC_BCH4) {
 | |
| 		pcr |= FMC2_PCR_ECCALG;
 | |
| 	}
 | |
| 
 | |
| 	/* Set buswidth */
 | |
| 	pcr_mask |= FMC2_PCR_PWID;
 | |
| 	if (chip->options & NAND_BUSWIDTH_16)
 | |
| 		pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);
 | |
| 
 | |
| 	/* Set ECC sector size */
 | |
| 	pcr_mask |= FMC2_PCR_ECCSS;
 | |
| 	pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512);
 | |
| 
 | |
| 	clrsetbits_le32(nfc->io_base + FMC2_PCR, pcr_mask, pcr);
 | |
| }
 | |
| 
 | |
| static void stm32_fmc2_nfc_select_chip(struct mtd_info *mtd, int chipnr)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
 | |
| 	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
 | |
| 
 | |
| 	if (chipnr < 0 || chipnr >= nand->ncs)
 | |
| 		return;
 | |
| 
 | |
| 	if (nand->cs_used[chipnr] == nfc->cs_sel)
 | |
| 		return;
 | |
| 
 | |
| 	nfc->cs_sel = nand->cs_used[chipnr];
 | |
| 	chip->IO_ADDR_R = (void __iomem *)nfc->data_base[nfc->cs_sel];
 | |
| 	chip->IO_ADDR_W = (void __iomem *)nfc->data_base[nfc->cs_sel];
 | |
| 
 | |
| 	stm32_fmc2_nfc_setup(chip);
 | |
| 	stm32_fmc2_nfc_timings_init(chip);
 | |
| }
 | |
| 
 | |
| static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc,
 | |
| 					   bool set)
 | |
| {
 | |
| 	u32 pcr;
 | |
| 
 | |
| 	pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) :
 | |
| 		    FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8);
 | |
| 
 | |
| 	clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_PWID, pcr);
 | |
| }
 | |
| 
 | |
| static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable)
 | |
| {
 | |
| 	clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_ECCEN,
 | |
| 			enable ? FMC2_PCR_ECCEN : 0);
 | |
| }
 | |
| 
 | |
| static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
 | |
| {
 | |
| 	writel(FMC2_BCHICR_CLEAR_IRQ, nfc->io_base + FMC2_BCHICR);
 | |
| }
 | |
| 
 | |
| static void stm32_fmc2_nfc_cmd_ctrl(struct mtd_info *mtd, int cmd,
 | |
| 				    unsigned int ctrl)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
 | |
| 
 | |
| 	if (cmd == NAND_CMD_NONE)
 | |
| 		return;
 | |
| 
 | |
| 	if (ctrl & NAND_CLE) {
 | |
| 		writeb(cmd, nfc->cmd_base[nfc->cs_sel]);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	writeb(cmd, nfc->addr_base[nfc->cs_sel]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable ECC logic and reset syndrome/parity bits previously calculated
 | |
|  * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
 | |
|  */
 | |
| static void stm32_fmc2_nfc_hwctl(struct mtd_info *mtd, int mode)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
 | |
| 
 | |
| 	stm32_fmc2_nfc_set_ecc(nfc, false);
 | |
| 
 | |
| 	if (chip->ecc.strength != FMC2_ECC_HAM) {
 | |
| 		clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_WEN,
 | |
| 				mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0);
 | |
| 
 | |
| 		stm32_fmc2_nfc_clear_bch_irq(nfc);
 | |
| 	}
 | |
| 
 | |
| 	stm32_fmc2_nfc_set_ecc(nfc, true);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ECC Hamming calculation
 | |
|  * ECC is 3 bytes for 512 bytes of data (supports error correction up to
 | |
|  * max of 1-bit)
 | |
|  */
 | |
| static int stm32_fmc2_nfc_ham_calculate(struct mtd_info *mtd, const u8 *data,
 | |
| 					u8 *ecc)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
 | |
| 	u32 heccr, sr;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = readl_poll_timeout(nfc->io_base + FMC2_SR, sr,
 | |
| 				 sr & FMC2_SR_NWRF, FMC2_TIMEOUT_5S);
 | |
| 	if (ret < 0) {
 | |
| 		pr_err("Ham timeout\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	heccr = readl(nfc->io_base + FMC2_HECCR);
 | |
| 
 | |
| 	ecc[0] = heccr;
 | |
| 	ecc[1] = heccr >> 8;
 | |
| 	ecc[2] = heccr >> 16;
 | |
| 
 | |
| 	stm32_fmc2_nfc_set_ecc(nfc, false);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_fmc2_nfc_ham_correct(struct mtd_info *mtd, u8 *dat,
 | |
| 				      u8 *read_ecc, u8 *calc_ecc)
 | |
| {
 | |
| 	u8 bit_position = 0, b0, b1, b2;
 | |
| 	u32 byte_addr = 0, b;
 | |
| 	u32 i, shifting = 1;
 | |
| 
 | |
| 	/* Indicate which bit and byte is faulty (if any) */
 | |
| 	b0 = read_ecc[0] ^ calc_ecc[0];
 | |
| 	b1 = read_ecc[1] ^ calc_ecc[1];
 | |
| 	b2 = read_ecc[2] ^ calc_ecc[2];
 | |
| 	b = b0 | (b1 << 8) | (b2 << 16);
 | |
| 
 | |
| 	/* No errors */
 | |
| 	if (likely(!b))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Calculate bit position */
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		switch (b % 4) {
 | |
| 		case 2:
 | |
| 			bit_position += shifting;
 | |
| 		case 1:
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EBADMSG;
 | |
| 		}
 | |
| 		shifting <<= 1;
 | |
| 		b >>= 2;
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate byte position */
 | |
| 	shifting = 1;
 | |
| 	for (i = 0; i < 9; i++) {
 | |
| 		switch (b % 4) {
 | |
| 		case 2:
 | |
| 			byte_addr += shifting;
 | |
| 		case 1:
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EBADMSG;
 | |
| 		}
 | |
| 		shifting <<= 1;
 | |
| 		b >>= 2;
 | |
| 	}
 | |
| 
 | |
| 	/* Flip the bit */
 | |
| 	dat[byte_addr] ^= (1 << bit_position);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ECC BCH calculation and correction
 | |
|  * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
 | |
|  * max of 4-bit/8-bit)
 | |
|  */
 | |
| 
 | |
| static int stm32_fmc2_nfc_bch_calculate(struct mtd_info *mtd, const u8 *data,
 | |
| 					u8 *ecc)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
 | |
| 	u32 bchpbr, bchisr;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Wait until the BCH code is ready */
 | |
| 	ret = readl_poll_timeout(nfc->io_base + FMC2_BCHISR, bchisr,
 | |
| 				 bchisr & FMC2_BCHISR_EPBRF, FMC2_TIMEOUT_5S);
 | |
| 	if (ret < 0) {
 | |
| 		pr_err("Bch timeout\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Read parity bits */
 | |
| 	bchpbr = readl(nfc->io_base + FMC2_BCHPBR1);
 | |
| 	ecc[0] = bchpbr;
 | |
| 	ecc[1] = bchpbr >> 8;
 | |
| 	ecc[2] = bchpbr >> 16;
 | |
| 	ecc[3] = bchpbr >> 24;
 | |
| 
 | |
| 	bchpbr = readl(nfc->io_base + FMC2_BCHPBR2);
 | |
| 	ecc[4] = bchpbr;
 | |
| 	ecc[5] = bchpbr >> 8;
 | |
| 	ecc[6] = bchpbr >> 16;
 | |
| 
 | |
| 	if (chip->ecc.strength == FMC2_ECC_BCH8) {
 | |
| 		ecc[7] = bchpbr >> 24;
 | |
| 
 | |
| 		bchpbr = readl(nfc->io_base + FMC2_BCHPBR3);
 | |
| 		ecc[8] = bchpbr;
 | |
| 		ecc[9] = bchpbr >> 8;
 | |
| 		ecc[10] = bchpbr >> 16;
 | |
| 		ecc[11] = bchpbr >> 24;
 | |
| 
 | |
| 		bchpbr = readl(nfc->io_base + FMC2_BCHPBR4);
 | |
| 		ecc[12] = bchpbr;
 | |
| 	}
 | |
| 
 | |
| 	stm32_fmc2_nfc_set_ecc(nfc, false);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_fmc2_nfc_bch_correct(struct mtd_info *mtd, u8 *dat,
 | |
| 				      u8 *read_ecc, u8 *calc_ecc)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
 | |
| 	u32 bchdsr0, bchdsr1, bchdsr2, bchdsr3, bchdsr4, bchisr;
 | |
| 	u16 pos[8];
 | |
| 	int i, ret, den, eccsize = chip->ecc.size;
 | |
| 	unsigned int nb_errs = 0;
 | |
| 
 | |
| 	/* Wait until the decoding error is ready */
 | |
| 	ret = readl_poll_timeout(nfc->io_base + FMC2_BCHISR, bchisr,
 | |
| 				 bchisr & FMC2_BCHISR_DERF, FMC2_TIMEOUT_5S);
 | |
| 	if (ret < 0) {
 | |
| 		pr_err("Bch timeout\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	bchdsr0 = readl(nfc->io_base + FMC2_BCHDSR0);
 | |
| 	bchdsr1 = readl(nfc->io_base + FMC2_BCHDSR1);
 | |
| 	bchdsr2 = readl(nfc->io_base + FMC2_BCHDSR2);
 | |
| 	bchdsr3 = readl(nfc->io_base + FMC2_BCHDSR3);
 | |
| 	bchdsr4 = readl(nfc->io_base + FMC2_BCHDSR4);
 | |
| 
 | |
| 	stm32_fmc2_nfc_set_ecc(nfc, false);
 | |
| 
 | |
| 	/* No errors found */
 | |
| 	if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Too many errors detected */
 | |
| 	if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
 | |
| 		return -EBADMSG;
 | |
| 
 | |
| 	pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1);
 | |
| 	pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1);
 | |
| 	pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2);
 | |
| 	pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2);
 | |
| 	pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3);
 | |
| 	pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3);
 | |
| 	pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4);
 | |
| 	pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4);
 | |
| 
 | |
| 	den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0);
 | |
| 	for (i = 0; i < den; i++) {
 | |
| 		if (pos[i] < eccsize * 8) {
 | |
| 			__change_bit(pos[i], (unsigned long *)dat);
 | |
| 			nb_errs++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return nb_errs;
 | |
| }
 | |
| 
 | |
| static int stm32_fmc2_nfc_read_page(struct mtd_info *mtd,
 | |
| 				    struct nand_chip *chip, u8 *buf,
 | |
| 				    int oob_required, int page)
 | |
| {
 | |
| 	int i, s, stat, eccsize = chip->ecc.size;
 | |
| 	int eccbytes = chip->ecc.bytes;
 | |
| 	int eccsteps = chip->ecc.steps;
 | |
| 	int eccstrength = chip->ecc.strength;
 | |
| 	u8 *p = buf;
 | |
| 	u8 *ecc_calc = chip->buffers->ecccalc;
 | |
| 	u8 *ecc_code = chip->buffers->ecccode;
 | |
| 	unsigned int max_bitflips = 0;
 | |
| 
 | |
| 	for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
 | |
| 	     s++, i += eccbytes, p += eccsize) {
 | |
| 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
 | |
| 
 | |
| 		/* Read the nand page sector (512 bytes) */
 | |
| 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, s * eccsize, -1);
 | |
| 		chip->read_buf(mtd, p, eccsize);
 | |
| 
 | |
| 		/* Read the corresponding ECC bytes */
 | |
| 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i, -1);
 | |
| 		chip->read_buf(mtd, ecc_code, eccbytes);
 | |
| 
 | |
| 		/* Correct the data */
 | |
| 		stat = chip->ecc.correct(mtd, p, ecc_code, ecc_calc);
 | |
| 		if (stat == -EBADMSG)
 | |
| 			/* Check for empty pages with bitflips */
 | |
| 			stat = nand_check_erased_ecc_chunk(p, eccsize,
 | |
| 							   ecc_code, eccbytes,
 | |
| 							   NULL, 0,
 | |
| 							   eccstrength);
 | |
| 
 | |
| 		if (stat < 0) {
 | |
| 			mtd->ecc_stats.failed++;
 | |
| 		} else {
 | |
| 			mtd->ecc_stats.corrected += stat;
 | |
| 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Read oob */
 | |
| 	if (oob_required) {
 | |
| 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
 | |
| 		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 | |
| 	}
 | |
| 
 | |
| 	return max_bitflips;
 | |
| }
 | |
| 
 | |
| static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc, bool has_parent)
 | |
| {
 | |
| 	u32 pcr = readl(nfc->io_base + FMC2_PCR);
 | |
| 
 | |
| 	/* Set CS used to undefined */
 | |
| 	nfc->cs_sel = -1;
 | |
| 
 | |
| 	/* Enable wait feature and nand flash memory bank */
 | |
| 	pcr |= FMC2_PCR_PWAITEN;
 | |
| 	pcr |= FMC2_PCR_PBKEN;
 | |
| 
 | |
| 	/* Set buswidth to 8 bits mode for identification */
 | |
| 	pcr &= ~FMC2_PCR_PWID;
 | |
| 
 | |
| 	/* ECC logic is disabled */
 | |
| 	pcr &= ~FMC2_PCR_ECCEN;
 | |
| 
 | |
| 	/* Default mode */
 | |
| 	pcr &= ~FMC2_PCR_ECCALG;
 | |
| 	pcr &= ~FMC2_PCR_BCHECC;
 | |
| 	pcr &= ~FMC2_PCR_WEN;
 | |
| 
 | |
| 	/* Set default ECC sector size */
 | |
| 	pcr &= ~FMC2_PCR_ECCSS;
 | |
| 	pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048);
 | |
| 
 | |
| 	/* Set default tclr/tar timings */
 | |
| 	pcr &= ~FMC2_PCR_TCLR;
 | |
| 	pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT);
 | |
| 	pcr &= ~FMC2_PCR_TAR;
 | |
| 	pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT);
 | |
| 
 | |
| 	/* Enable FMC2 controller */
 | |
| 	if (!has_parent)
 | |
| 		setbits_le32(nfc->io_base + FMC2_BCR1, FMC2_BCR1_FMC2EN);
 | |
| 
 | |
| 	writel(pcr, nfc->io_base + FMC2_PCR);
 | |
| 	writel(FMC2_PMEM_DEFAULT, nfc->io_base + FMC2_PMEM);
 | |
| 	writel(FMC2_PATT_DEFAULT, nfc->io_base + FMC2_PATT);
 | |
| }
 | |
| 
 | |
| static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip,
 | |
| 					const struct nand_sdr_timings *sdrt)
 | |
| {
 | |
| 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
 | |
| 	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
 | |
| 	struct stm32_fmc2_timings *tims = &nand->timings;
 | |
| 	unsigned long hclk = clk_get_rate(&nfc->clk);
 | |
| 	unsigned long hclkp = FMC2_NSEC_PER_SEC / (hclk / 1000);
 | |
| 	unsigned long timing, tar, tclr, thiz, twait;
 | |
| 	unsigned long tset_mem, tset_att, thold_mem, thold_att;
 | |
| 
 | |
| 	tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
 | |
| 	timing = DIV_ROUND_UP(tar, hclkp) - 1;
 | |
| 	tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
 | |
| 
 | |
| 	tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
 | |
| 	timing = DIV_ROUND_UP(tclr, hclkp) - 1;
 | |
| 	tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
 | |
| 
 | |
| 	tims->thiz = FMC2_THIZ;
 | |
| 	thiz = (tims->thiz + 1) * hclkp;
 | |
| 
 | |
| 	/*
 | |
| 	 * tWAIT > tRP
 | |
| 	 * tWAIT > tWP
 | |
| 	 * tWAIT > tREA + tIO
 | |
| 	 */
 | |
| 	twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
 | |
| 	twait = max_t(unsigned long, twait, sdrt->tWP_min);
 | |
| 	twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
 | |
| 	timing = DIV_ROUND_UP(twait, hclkp);
 | |
| 	tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
 | |
| 
 | |
| 	/*
 | |
| 	 * tSETUP_MEM > tCS - tWAIT
 | |
| 	 * tSETUP_MEM > tALS - tWAIT
 | |
| 	 * tSETUP_MEM > tDS - (tWAIT - tHIZ)
 | |
| 	 */
 | |
| 	tset_mem = hclkp;
 | |
| 	if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
 | |
| 		tset_mem = sdrt->tCS_min - twait;
 | |
| 	if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
 | |
| 		tset_mem = sdrt->tALS_min - twait;
 | |
| 	if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
 | |
| 	    (tset_mem < sdrt->tDS_min - (twait - thiz)))
 | |
| 		tset_mem = sdrt->tDS_min - (twait - thiz);
 | |
| 	timing = DIV_ROUND_UP(tset_mem, hclkp);
 | |
| 	tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
 | |
| 
 | |
| 	/*
 | |
| 	 * tHOLD_MEM > tCH
 | |
| 	 * tHOLD_MEM > tREH - tSETUP_MEM
 | |
| 	 * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
 | |
| 	 */
 | |
| 	thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
 | |
| 	if (sdrt->tREH_min > tset_mem &&
 | |
| 	    (thold_mem < sdrt->tREH_min - tset_mem))
 | |
| 		thold_mem = sdrt->tREH_min - tset_mem;
 | |
| 	if ((sdrt->tRC_min > tset_mem + twait) &&
 | |
| 	    (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
 | |
| 		thold_mem = sdrt->tRC_min - (tset_mem + twait);
 | |
| 	if ((sdrt->tWC_min > tset_mem + twait) &&
 | |
| 	    (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
 | |
| 		thold_mem = sdrt->tWC_min - (tset_mem + twait);
 | |
| 	timing = DIV_ROUND_UP(thold_mem, hclkp);
 | |
| 	tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
 | |
| 
 | |
| 	/*
 | |
| 	 * tSETUP_ATT > tCS - tWAIT
 | |
| 	 * tSETUP_ATT > tCLS - tWAIT
 | |
| 	 * tSETUP_ATT > tALS - tWAIT
 | |
| 	 * tSETUP_ATT > tRHW - tHOLD_MEM
 | |
| 	 * tSETUP_ATT > tDS - (tWAIT - tHIZ)
 | |
| 	 */
 | |
| 	tset_att = hclkp;
 | |
| 	if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
 | |
| 		tset_att = sdrt->tCS_min - twait;
 | |
| 	if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
 | |
| 		tset_att = sdrt->tCLS_min - twait;
 | |
| 	if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
 | |
| 		tset_att = sdrt->tALS_min - twait;
 | |
| 	if (sdrt->tRHW_min > thold_mem &&
 | |
| 	    (tset_att < sdrt->tRHW_min - thold_mem))
 | |
| 		tset_att = sdrt->tRHW_min - thold_mem;
 | |
| 	if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
 | |
| 	    (tset_att < sdrt->tDS_min - (twait - thiz)))
 | |
| 		tset_att = sdrt->tDS_min - (twait - thiz);
 | |
| 	timing = DIV_ROUND_UP(tset_att, hclkp);
 | |
| 	tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
 | |
| 
 | |
| 	/*
 | |
| 	 * tHOLD_ATT > tALH
 | |
| 	 * tHOLD_ATT > tCH
 | |
| 	 * tHOLD_ATT > tCLH
 | |
| 	 * tHOLD_ATT > tCOH
 | |
| 	 * tHOLD_ATT > tDH
 | |
| 	 * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
 | |
| 	 * tHOLD_ATT > tADL - tSETUP_MEM
 | |
| 	 * tHOLD_ATT > tWH - tSETUP_MEM
 | |
| 	 * tHOLD_ATT > tWHR - tSETUP_MEM
 | |
| 	 * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
 | |
| 	 * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
 | |
| 	 */
 | |
| 	thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
 | |
| 	thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
 | |
| 	thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
 | |
| 	thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
 | |
| 	thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
 | |
| 	if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
 | |
| 	    (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
 | |
| 		thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
 | |
| 	if (sdrt->tADL_min > tset_mem &&
 | |
| 	    (thold_att < sdrt->tADL_min - tset_mem))
 | |
| 		thold_att = sdrt->tADL_min - tset_mem;
 | |
| 	if (sdrt->tWH_min > tset_mem &&
 | |
| 	    (thold_att < sdrt->tWH_min - tset_mem))
 | |
| 		thold_att = sdrt->tWH_min - tset_mem;
 | |
| 	if (sdrt->tWHR_min > tset_mem &&
 | |
| 	    (thold_att < sdrt->tWHR_min - tset_mem))
 | |
| 		thold_att = sdrt->tWHR_min - tset_mem;
 | |
| 	if ((sdrt->tRC_min > tset_att + twait) &&
 | |
| 	    (thold_att < sdrt->tRC_min - (tset_att + twait)))
 | |
| 		thold_att = sdrt->tRC_min - (tset_att + twait);
 | |
| 	if ((sdrt->tWC_min > tset_att + twait) &&
 | |
| 	    (thold_att < sdrt->tWC_min - (tset_att + twait)))
 | |
| 		thold_att = sdrt->tWC_min - (tset_att + twait);
 | |
| 	timing = DIV_ROUND_UP(thold_att, hclkp);
 | |
| 	tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
 | |
| }
 | |
| 
 | |
| static int stm32_fmc2_nfc_setup_interface(struct mtd_info *mtd, int chipnr,
 | |
| 					  const struct nand_data_interface *cf)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	const struct nand_sdr_timings *sdrt;
 | |
| 
 | |
| 	sdrt = nand_get_sdr_timings(cf);
 | |
| 	if (IS_ERR(sdrt))
 | |
| 		return PTR_ERR(sdrt);
 | |
| 
 | |
| 	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
 | |
| 		return 0;
 | |
| 
 | |
| 	stm32_fmc2_nfc_calc_timings(chip, sdrt);
 | |
| 	stm32_fmc2_nfc_timings_init(chip);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip)
 | |
| {
 | |
| 	chip->ecc.hwctl = stm32_fmc2_nfc_hwctl;
 | |
| 
 | |
| 	/*
 | |
| 	 * Specific callbacks to read/write a page depending on
 | |
| 	 * the algo used (Hamming, BCH).
 | |
| 	 */
 | |
| 	if (chip->ecc.strength == FMC2_ECC_HAM) {
 | |
| 		/* Hamming is used */
 | |
| 		chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate;
 | |
| 		chip->ecc.correct = stm32_fmc2_nfc_ham_correct;
 | |
| 		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
 | |
| 		chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* BCH is used */
 | |
| 	chip->ecc.read_page = stm32_fmc2_nfc_read_page;
 | |
| 	chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate;
 | |
| 	chip->ecc.correct = stm32_fmc2_nfc_bch_correct;
 | |
| 
 | |
| 	if (chip->ecc.strength == FMC2_ECC_BCH8)
 | |
| 		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
 | |
| 	else
 | |
| 		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
 | |
| }
 | |
| 
 | |
| static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength)
 | |
| {
 | |
| 	/* Hamming */
 | |
| 	if (strength == FMC2_ECC_HAM)
 | |
| 		return 4;
 | |
| 
 | |
| 	/* BCH8 */
 | |
| 	if (strength == FMC2_ECC_BCH8)
 | |
| 		return 14;
 | |
| 
 | |
| 	/* BCH4 */
 | |
| 	return 8;
 | |
| }
 | |
| 
 | |
| NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes,
 | |
| 		     FMC2_ECC_STEP_SIZE,
 | |
| 		     FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
 | |
| 
 | |
| static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc, ofnode node)
 | |
| {
 | |
| 	struct stm32_fmc2_nand *nand = &nfc->nand;
 | |
| 	u32 cs[FMC2_MAX_CE];
 | |
| 	int ret, i;
 | |
| 
 | |
| 	if (!ofnode_get_property(node, "reg", &nand->ncs))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	nand->ncs /= sizeof(u32);
 | |
| 	if (!nand->ncs) {
 | |
| 		pr_err("Invalid reg property size\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ret = ofnode_read_u32_array(node, "reg", cs, nand->ncs);
 | |
| 	if (ret < 0) {
 | |
| 		pr_err("Could not retrieve reg property\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nand->ncs; i++) {
 | |
| 		if (cs[i] >= FMC2_MAX_CE) {
 | |
| 			pr_err("Invalid reg value: %d\n",
 | |
| 			       nand->cs_used[i]);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (nfc->cs_assigned & BIT(cs[i])) {
 | |
| 			pr_err("Cs already assigned: %d\n",
 | |
| 			       nand->cs_used[i]);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		nfc->cs_assigned |= BIT(cs[i]);
 | |
| 		nand->cs_used[i] = cs[i];
 | |
| 	}
 | |
| 
 | |
| 	nand->chip.flash_node = ofnode_to_offset(node);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_fmc2_nfc_parse_dt(struct udevice *dev,
 | |
| 				   struct stm32_fmc2_nfc *nfc)
 | |
| {
 | |
| 	ofnode child;
 | |
| 	int ret, nchips = 0;
 | |
| 
 | |
| 	dev_for_each_subnode(child, dev)
 | |
| 		nchips++;
 | |
| 
 | |
| 	if (!nchips) {
 | |
| 		pr_err("NAND chip not defined\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (nchips > 1) {
 | |
| 		pr_err("Too many NAND chips defined\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	dev_for_each_subnode(child, dev) {
 | |
| 		ret = stm32_fmc2_nfc_parse_child(nfc, child);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct udevice *stm32_fmc2_nfc_get_cdev(struct udevice *dev)
 | |
| {
 | |
| 	struct udevice *pdev = dev_get_parent(dev);
 | |
| 	struct udevice *cdev = NULL;
 | |
| 	bool ebi_found = false;
 | |
| 
 | |
| 	if (pdev && ofnode_device_is_compatible(dev_ofnode(pdev),
 | |
| 						"st,stm32mp1-fmc2-ebi"))
 | |
| 		ebi_found = true;
 | |
| 
 | |
| 	if (ofnode_device_is_compatible(dev_ofnode(dev),
 | |
| 					"st,stm32mp1-fmc2-nfc")) {
 | |
| 		if (ebi_found)
 | |
| 			cdev = pdev;
 | |
| 
 | |
| 		return cdev;
 | |
| 	}
 | |
| 
 | |
| 	if (!ebi_found)
 | |
| 		cdev = dev;
 | |
| 
 | |
| 	return cdev;
 | |
| }
 | |
| 
 | |
| static int stm32_fmc2_nfc_probe(struct udevice *dev)
 | |
| {
 | |
| 	struct stm32_fmc2_nfc *nfc = dev_get_priv(dev);
 | |
| 	struct stm32_fmc2_nand *nand = &nfc->nand;
 | |
| 	struct nand_chip *chip = &nand->chip;
 | |
| 	struct mtd_info *mtd = &chip->mtd;
 | |
| 	struct nand_ecclayout *ecclayout;
 | |
| 	struct udevice *cdev;
 | |
| 	struct reset_ctl reset;
 | |
| 	int oob_index, chip_cs, mem_region, ret;
 | |
| 	unsigned int i;
 | |
| 	int start_region = 0;
 | |
| 	fdt_addr_t addr;
 | |
| 
 | |
| 	spin_lock_init(&nfc->controller.lock);
 | |
| 	init_waitqueue_head(&nfc->controller.wq);
 | |
| 
 | |
| 	cdev = stm32_fmc2_nfc_get_cdev(dev);
 | |
| 	if (!cdev)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = stm32_fmc2_nfc_parse_dt(dev, nfc);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	nfc->io_base = dev_read_addr(cdev);
 | |
| 	if (nfc->io_base == FDT_ADDR_T_NONE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (dev == cdev)
 | |
| 		start_region = 1;
 | |
| 
 | |
| 	for (chip_cs = 0, mem_region = start_region; chip_cs < FMC2_MAX_CE;
 | |
| 	     chip_cs++, mem_region += 3) {
 | |
| 		if (!(nfc->cs_assigned & BIT(chip_cs)))
 | |
| 			continue;
 | |
| 
 | |
| 		addr = dev_read_addr_index(dev, mem_region);
 | |
| 		if (addr == FDT_ADDR_T_NONE) {
 | |
| 			pr_err("Resource data_base not found for cs%d",
 | |
| 			       chip_cs);
 | |
| 			return ret;
 | |
| 		}
 | |
| 		nfc->data_base[chip_cs] = addr;
 | |
| 
 | |
| 		addr = dev_read_addr_index(dev, mem_region + 1);
 | |
| 		if (addr == FDT_ADDR_T_NONE) {
 | |
| 			pr_err("Resource cmd_base not found for cs%d",
 | |
| 			       chip_cs);
 | |
| 			return ret;
 | |
| 		}
 | |
| 		nfc->cmd_base[chip_cs] = addr;
 | |
| 
 | |
| 		addr = dev_read_addr_index(dev, mem_region + 2);
 | |
| 		if (addr == FDT_ADDR_T_NONE) {
 | |
| 			pr_err("Resource addr_base not found for cs%d",
 | |
| 			       chip_cs);
 | |
| 			return ret;
 | |
| 		}
 | |
| 		nfc->addr_base[chip_cs] = addr;
 | |
| 	}
 | |
| 
 | |
| 	/* Enable the clock */
 | |
| 	ret = clk_get_by_index(cdev, 0, &nfc->clk);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = clk_enable(&nfc->clk);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Reset */
 | |
| 	ret = reset_get_by_index(dev, 0, &reset);
 | |
| 	if (!ret) {
 | |
| 		reset_assert(&reset);
 | |
| 		udelay(2);
 | |
| 		reset_deassert(&reset);
 | |
| 	}
 | |
| 
 | |
| 	stm32_fmc2_nfc_init(nfc, dev != cdev);
 | |
| 
 | |
| 	chip->controller = &nfc->base;
 | |
| 	chip->select_chip = stm32_fmc2_nfc_select_chip;
 | |
| 	chip->setup_data_interface = stm32_fmc2_nfc_setup_interface;
 | |
| 	chip->cmd_ctrl = stm32_fmc2_nfc_cmd_ctrl;
 | |
| 	chip->chip_delay = FMC2_RB_DELAY_US;
 | |
| 	chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
 | |
| 			 NAND_USE_BOUNCE_BUFFER;
 | |
| 
 | |
| 	/* Default ECC settings */
 | |
| 	chip->ecc.mode = NAND_ECC_HW;
 | |
| 	chip->ecc.size = FMC2_ECC_STEP_SIZE;
 | |
| 	chip->ecc.strength = FMC2_ECC_BCH8;
 | |
| 
 | |
| 	ret = nand_scan_ident(mtd, nand->ncs, NULL);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only NAND_ECC_HW mode is actually supported
 | |
| 	 * Hamming => ecc.strength = 1
 | |
| 	 * BCH4 => ecc.strength = 4
 | |
| 	 * BCH8 => ecc.strength = 8
 | |
| 	 * ECC sector size = 512
 | |
| 	 */
 | |
| 	if (chip->ecc.mode != NAND_ECC_HW) {
 | |
| 		pr_err("Nand_ecc_mode is not well defined in the DT\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ret = nand_check_ecc_caps(chip, &stm32_fmc2_nfc_ecc_caps,
 | |
| 				  mtd->oobsize - FMC2_BBM_LEN);
 | |
| 	if (ret) {
 | |
| 		pr_err("No valid ECC settings set\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
 | |
| 		chip->bbt_options |= NAND_BBT_NO_OOB;
 | |
| 
 | |
| 	stm32_fmc2_nfc_nand_callbacks_setup(chip);
 | |
| 
 | |
| 	/* Define ECC layout */
 | |
| 	ecclayout = &nfc->ecclayout;
 | |
| 	ecclayout->eccbytes = chip->ecc.bytes *
 | |
| 			      (mtd->writesize / chip->ecc.size);
 | |
| 	oob_index = FMC2_BBM_LEN;
 | |
| 	for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
 | |
| 		ecclayout->eccpos[i] = oob_index;
 | |
| 	ecclayout->oobfree->offset = oob_index;
 | |
| 	ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
 | |
| 	chip->ecc.layout = ecclayout;
 | |
| 
 | |
| 	if (chip->options & NAND_BUSWIDTH_16)
 | |
| 		stm32_fmc2_nfc_set_buswidth_16(nfc, true);
 | |
| 
 | |
| 	ret = nand_scan_tail(mtd);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return nand_register(0, mtd);
 | |
| }
 | |
| 
 | |
| static const struct udevice_id stm32_fmc2_nfc_match[] = {
 | |
| 	{ .compatible = "st,stm32mp15-fmc2" },
 | |
| 	{ .compatible = "st,stm32mp1-fmc2-nfc" },
 | |
| 	{ /* Sentinel */ }
 | |
| };
 | |
| 
 | |
| U_BOOT_DRIVER(stm32_fmc2_nfc) = {
 | |
| 	.name = "stm32_fmc2_nfc",
 | |
| 	.id = UCLASS_MTD,
 | |
| 	.of_match = stm32_fmc2_nfc_match,
 | |
| 	.probe = stm32_fmc2_nfc_probe,
 | |
| 	.priv_auto_alloc_size = sizeof(struct stm32_fmc2_nfc),
 | |
| };
 | |
| 
 | |
| void board_nand_init(void)
 | |
| {
 | |
| 	struct udevice *dev;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = uclass_get_device_by_driver(UCLASS_MTD,
 | |
| 					  DM_GET_DRIVER(stm32_fmc2_nfc),
 | |
| 					  &dev);
 | |
| 	if (ret && ret != -ENODEV)
 | |
| 		pr_err("Failed to initialize STM32 FMC2 NFC controller. (error %d)\n",
 | |
| 		       ret);
 | |
| }
 |