1538 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1538 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
/*
 | 
						|
 * (C) Copyright 2007-2008
 | 
						|
 * Stelian Pop <stelian@popies.net>
 | 
						|
 * Lead Tech Design <www.leadtechdesign.com>
 | 
						|
 *
 | 
						|
 * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
 | 
						|
 *
 | 
						|
 * Add Programmable Multibit ECC support for various AT91 SoC
 | 
						|
 *     (C) Copyright 2012 ATMEL, Hong Xu
 | 
						|
 *
 | 
						|
 * SPDX-License-Identifier:	GPL-2.0+
 | 
						|
 */
 | 
						|
 | 
						|
#include <common.h>
 | 
						|
#include <asm/gpio.h>
 | 
						|
#include <asm/arch/gpio.h>
 | 
						|
 | 
						|
#include <malloc.h>
 | 
						|
#include <nand.h>
 | 
						|
#include <watchdog.h>
 | 
						|
#include <linux/mtd/nand_ecc.h>
 | 
						|
 | 
						|
#ifdef CONFIG_ATMEL_NAND_HWECC
 | 
						|
 | 
						|
/* Register access macros */
 | 
						|
#define ecc_readl(add, reg)				\
 | 
						|
	readl(AT91_BASE_SYS + add + ATMEL_ECC_##reg)
 | 
						|
#define ecc_writel(add, reg, value)			\
 | 
						|
	writel((value), AT91_BASE_SYS + add + ATMEL_ECC_##reg)
 | 
						|
 | 
						|
#include "atmel_nand_ecc.h"	/* Hardware ECC registers */
 | 
						|
 | 
						|
#ifdef CONFIG_ATMEL_NAND_HW_PMECC
 | 
						|
 | 
						|
#ifdef CONFIG_SPL_BUILD
 | 
						|
#undef CONFIG_SYS_NAND_ONFI_DETECTION
 | 
						|
#endif
 | 
						|
 | 
						|
struct atmel_nand_host {
 | 
						|
	struct pmecc_regs __iomem *pmecc;
 | 
						|
	struct pmecc_errloc_regs __iomem *pmerrloc;
 | 
						|
	void __iomem		*pmecc_rom_base;
 | 
						|
 | 
						|
	u8		pmecc_corr_cap;
 | 
						|
	u16		pmecc_sector_size;
 | 
						|
	u32		pmecc_index_table_offset;
 | 
						|
	u32		pmecc_version;
 | 
						|
 | 
						|
	int		pmecc_bytes_per_sector;
 | 
						|
	int		pmecc_sector_number;
 | 
						|
	int		pmecc_degree;	/* Degree of remainders */
 | 
						|
	int		pmecc_cw_len;	/* Length of codeword */
 | 
						|
 | 
						|
	/* lookup table for alpha_to and index_of */
 | 
						|
	void __iomem	*pmecc_alpha_to;
 | 
						|
	void __iomem	*pmecc_index_of;
 | 
						|
 | 
						|
	/* data for pmecc computation */
 | 
						|
	int16_t	*pmecc_smu;
 | 
						|
	int16_t	*pmecc_partial_syn;
 | 
						|
	int16_t	*pmecc_si;
 | 
						|
	int16_t	*pmecc_lmu; /* polynomal order */
 | 
						|
	int	*pmecc_mu;
 | 
						|
	int	*pmecc_dmu;
 | 
						|
	int	*pmecc_delta;
 | 
						|
};
 | 
						|
 | 
						|
static struct atmel_nand_host pmecc_host;
 | 
						|
static struct nand_ecclayout atmel_pmecc_oobinfo;
 | 
						|
 | 
						|
/*
 | 
						|
 * Return number of ecc bytes per sector according to sector size and
 | 
						|
 * correction capability
 | 
						|
 *
 | 
						|
 * Following table shows what at91 PMECC supported:
 | 
						|
 * Correction Capability	Sector_512_bytes	Sector_1024_bytes
 | 
						|
 * =====================	================	=================
 | 
						|
 *                2-bits                 4-bytes                  4-bytes
 | 
						|
 *                4-bits                 7-bytes                  7-bytes
 | 
						|
 *                8-bits                13-bytes                 14-bytes
 | 
						|
 *               12-bits                20-bytes                 21-bytes
 | 
						|
 *               24-bits                39-bytes                 42-bytes
 | 
						|
 *               32-bits                52-bytes                 56-bytes
 | 
						|
 */
 | 
						|
static int pmecc_get_ecc_bytes(int cap, int sector_size)
 | 
						|
{
 | 
						|
	int m = 12 + sector_size / 512;
 | 
						|
	return (m * cap + 7) / 8;
 | 
						|
}
 | 
						|
 | 
						|
static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
 | 
						|
	int oobsize, int ecc_len)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	layout->eccbytes = ecc_len;
 | 
						|
 | 
						|
	/* ECC will occupy the last ecc_len bytes continuously */
 | 
						|
	for (i = 0; i < ecc_len; i++)
 | 
						|
		layout->eccpos[i] = oobsize - ecc_len + i;
 | 
						|
 | 
						|
	layout->oobfree[0].offset = 2;
 | 
						|
	layout->oobfree[0].length =
 | 
						|
		oobsize - ecc_len - layout->oobfree[0].offset;
 | 
						|
}
 | 
						|
 | 
						|
static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
 | 
						|
{
 | 
						|
	int table_size;
 | 
						|
 | 
						|
	table_size = host->pmecc_sector_size == 512 ?
 | 
						|
		PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
 | 
						|
 | 
						|
	/* the ALPHA lookup table is right behind the INDEX lookup table. */
 | 
						|
	return host->pmecc_rom_base + host->pmecc_index_table_offset +
 | 
						|
			table_size * sizeof(int16_t);
 | 
						|
}
 | 
						|
 | 
						|
static void pmecc_data_free(struct atmel_nand_host *host)
 | 
						|
{
 | 
						|
	free(host->pmecc_partial_syn);
 | 
						|
	free(host->pmecc_si);
 | 
						|
	free(host->pmecc_lmu);
 | 
						|
	free(host->pmecc_smu);
 | 
						|
	free(host->pmecc_mu);
 | 
						|
	free(host->pmecc_dmu);
 | 
						|
	free(host->pmecc_delta);
 | 
						|
}
 | 
						|
 | 
						|
static int pmecc_data_alloc(struct atmel_nand_host *host)
 | 
						|
{
 | 
						|
	const int cap = host->pmecc_corr_cap;
 | 
						|
	int size;
 | 
						|
 | 
						|
	size = (2 * cap + 1) * sizeof(int16_t);
 | 
						|
	host->pmecc_partial_syn = malloc(size);
 | 
						|
	host->pmecc_si = malloc(size);
 | 
						|
	host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t));
 | 
						|
	host->pmecc_smu = malloc((cap + 2) * size);
 | 
						|
 | 
						|
	size = (cap + 1) * sizeof(int);
 | 
						|
	host->pmecc_mu = malloc(size);
 | 
						|
	host->pmecc_dmu = malloc(size);
 | 
						|
	host->pmecc_delta = malloc(size);
 | 
						|
 | 
						|
	if (host->pmecc_partial_syn &&
 | 
						|
			host->pmecc_si &&
 | 
						|
			host->pmecc_lmu &&
 | 
						|
			host->pmecc_smu &&
 | 
						|
			host->pmecc_mu &&
 | 
						|
			host->pmecc_dmu &&
 | 
						|
			host->pmecc_delta)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* error happened */
 | 
						|
	pmecc_data_free(host);
 | 
						|
	return -ENOMEM;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
 | 
						|
{
 | 
						|
	struct nand_chip *nand_chip = mtd->priv;
 | 
						|
	struct atmel_nand_host *host = nand_chip->priv;
 | 
						|
	int i;
 | 
						|
	uint32_t value;
 | 
						|
 | 
						|
	/* Fill odd syndromes */
 | 
						|
	for (i = 0; i < host->pmecc_corr_cap; i++) {
 | 
						|
		value = pmecc_readl(host->pmecc, rem_port[sector].rem[i / 2]);
 | 
						|
		if (i & 1)
 | 
						|
			value >>= 16;
 | 
						|
		value &= 0xffff;
 | 
						|
		host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void pmecc_substitute(struct mtd_info *mtd)
 | 
						|
{
 | 
						|
	struct nand_chip *nand_chip = mtd->priv;
 | 
						|
	struct atmel_nand_host *host = nand_chip->priv;
 | 
						|
	int16_t __iomem *alpha_to = host->pmecc_alpha_to;
 | 
						|
	int16_t __iomem *index_of = host->pmecc_index_of;
 | 
						|
	int16_t *partial_syn = host->pmecc_partial_syn;
 | 
						|
	const int cap = host->pmecc_corr_cap;
 | 
						|
	int16_t *si;
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	/* si[] is a table that holds the current syndrome value,
 | 
						|
	 * an element of that table belongs to the field
 | 
						|
	 */
 | 
						|
	si = host->pmecc_si;
 | 
						|
 | 
						|
	memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
 | 
						|
 | 
						|
	/* Computation 2t syndromes based on S(x) */
 | 
						|
	/* Odd syndromes */
 | 
						|
	for (i = 1; i < 2 * cap; i += 2) {
 | 
						|
		for (j = 0; j < host->pmecc_degree; j++) {
 | 
						|
			if (partial_syn[i] & (0x1 << j))
 | 
						|
				si[i] = readw(alpha_to + i * j) ^ si[i];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/* Even syndrome = (Odd syndrome) ** 2 */
 | 
						|
	for (i = 2, j = 1; j <= cap; i = ++j << 1) {
 | 
						|
		if (si[j] == 0) {
 | 
						|
			si[i] = 0;
 | 
						|
		} else {
 | 
						|
			int16_t tmp;
 | 
						|
 | 
						|
			tmp = readw(index_of + si[j]);
 | 
						|
			tmp = (tmp * 2) % host->pmecc_cw_len;
 | 
						|
			si[i] = readw(alpha_to + tmp);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function defines a Berlekamp iterative procedure for
 | 
						|
 * finding the value of the error location polynomial.
 | 
						|
 * The input is si[], initialize by pmecc_substitute().
 | 
						|
 * The output is smu[][].
 | 
						|
 *
 | 
						|
 * This function is written according to chip datasheet Chapter:
 | 
						|
 * Find the Error Location Polynomial Sigma(x) of Section:
 | 
						|
 * Programmable Multibit ECC Control (PMECC).
 | 
						|
 */
 | 
						|
static void pmecc_get_sigma(struct mtd_info *mtd)
 | 
						|
{
 | 
						|
	struct nand_chip *nand_chip = mtd->priv;
 | 
						|
	struct atmel_nand_host *host = nand_chip->priv;
 | 
						|
 | 
						|
	int16_t *lmu = host->pmecc_lmu;
 | 
						|
	int16_t *si = host->pmecc_si;
 | 
						|
	int *mu = host->pmecc_mu;
 | 
						|
	int *dmu = host->pmecc_dmu;	/* Discrepancy */
 | 
						|
	int *delta = host->pmecc_delta; /* Delta order */
 | 
						|
	int cw_len = host->pmecc_cw_len;
 | 
						|
	const int16_t cap = host->pmecc_corr_cap;
 | 
						|
	const int num = 2 * cap + 1;
 | 
						|
	int16_t __iomem	*index_of = host->pmecc_index_of;
 | 
						|
	int16_t __iomem	*alpha_to = host->pmecc_alpha_to;
 | 
						|
	int i, j, k;
 | 
						|
	uint32_t dmu_0_count, tmp;
 | 
						|
	int16_t *smu = host->pmecc_smu;
 | 
						|
 | 
						|
	/* index of largest delta */
 | 
						|
	int ro;
 | 
						|
	int largest;
 | 
						|
	int diff;
 | 
						|
 | 
						|
	/* Init the Sigma(x) */
 | 
						|
	memset(smu, 0, sizeof(int16_t) * ARRAY_SIZE(smu));
 | 
						|
 | 
						|
	dmu_0_count = 0;
 | 
						|
 | 
						|
	/* First Row */
 | 
						|
 | 
						|
	/* Mu */
 | 
						|
	mu[0] = -1;
 | 
						|
 | 
						|
	smu[0] = 1;
 | 
						|
 | 
						|
	/* discrepancy set to 1 */
 | 
						|
	dmu[0] = 1;
 | 
						|
	/* polynom order set to 0 */
 | 
						|
	lmu[0] = 0;
 | 
						|
	/* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
 | 
						|
	delta[0] = -1;
 | 
						|
 | 
						|
	/* Second Row */
 | 
						|
 | 
						|
	/* Mu */
 | 
						|
	mu[1] = 0;
 | 
						|
	/* Sigma(x) set to 1 */
 | 
						|
	smu[num] = 1;
 | 
						|
 | 
						|
	/* discrepancy set to S1 */
 | 
						|
	dmu[1] = si[1];
 | 
						|
 | 
						|
	/* polynom order set to 0 */
 | 
						|
	lmu[1] = 0;
 | 
						|
 | 
						|
	/* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
 | 
						|
	delta[1] = 0;
 | 
						|
 | 
						|
	for (i = 1; i <= cap; i++) {
 | 
						|
		mu[i + 1] = i << 1;
 | 
						|
		/* Begin Computing Sigma (Mu+1) and L(mu) */
 | 
						|
		/* check if discrepancy is set to 0 */
 | 
						|
		if (dmu[i] == 0) {
 | 
						|
			dmu_0_count++;
 | 
						|
 | 
						|
			tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
 | 
						|
			if ((cap - (lmu[i] >> 1) - 1) & 0x1)
 | 
						|
				tmp += 2;
 | 
						|
			else
 | 
						|
				tmp += 1;
 | 
						|
 | 
						|
			if (dmu_0_count == tmp) {
 | 
						|
				for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
 | 
						|
					smu[(cap + 1) * num + j] =
 | 
						|
							smu[i * num + j];
 | 
						|
 | 
						|
				lmu[cap + 1] = lmu[i];
 | 
						|
				return;
 | 
						|
			}
 | 
						|
 | 
						|
			/* copy polynom */
 | 
						|
			for (j = 0; j <= lmu[i] >> 1; j++)
 | 
						|
				smu[(i + 1) * num + j] = smu[i * num + j];
 | 
						|
 | 
						|
			/* copy previous polynom order to the next */
 | 
						|
			lmu[i + 1] = lmu[i];
 | 
						|
		} else {
 | 
						|
			ro = 0;
 | 
						|
			largest = -1;
 | 
						|
			/* find largest delta with dmu != 0 */
 | 
						|
			for (j = 0; j < i; j++) {
 | 
						|
				if ((dmu[j]) && (delta[j] > largest)) {
 | 
						|
					largest = delta[j];
 | 
						|
					ro = j;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			/* compute difference */
 | 
						|
			diff = (mu[i] - mu[ro]);
 | 
						|
 | 
						|
			/* Compute degree of the new smu polynomial */
 | 
						|
			if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
 | 
						|
				lmu[i + 1] = lmu[i];
 | 
						|
			else
 | 
						|
				lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
 | 
						|
 | 
						|
			/* Init smu[i+1] with 0 */
 | 
						|
			for (k = 0; k < num; k++)
 | 
						|
				smu[(i + 1) * num + k] = 0;
 | 
						|
 | 
						|
			/* Compute smu[i+1] */
 | 
						|
			for (k = 0; k <= lmu[ro] >> 1; k++) {
 | 
						|
				int16_t a, b, c;
 | 
						|
 | 
						|
				if (!(smu[ro * num + k] && dmu[i]))
 | 
						|
					continue;
 | 
						|
				a = readw(index_of + dmu[i]);
 | 
						|
				b = readw(index_of + dmu[ro]);
 | 
						|
				c = readw(index_of + smu[ro * num + k]);
 | 
						|
				tmp = a + (cw_len - b) + c;
 | 
						|
				a = readw(alpha_to + tmp % cw_len);
 | 
						|
				smu[(i + 1) * num + (k + diff)] = a;
 | 
						|
			}
 | 
						|
 | 
						|
			for (k = 0; k <= lmu[i] >> 1; k++)
 | 
						|
				smu[(i + 1) * num + k] ^= smu[i * num + k];
 | 
						|
		}
 | 
						|
 | 
						|
		/* End Computing Sigma (Mu+1) and L(mu) */
 | 
						|
		/* In either case compute delta */
 | 
						|
		delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
 | 
						|
 | 
						|
		/* Do not compute discrepancy for the last iteration */
 | 
						|
		if (i >= cap)
 | 
						|
			continue;
 | 
						|
 | 
						|
		for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
 | 
						|
			tmp = 2 * (i - 1);
 | 
						|
			if (k == 0) {
 | 
						|
				dmu[i + 1] = si[tmp + 3];
 | 
						|
			} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
 | 
						|
				int16_t a, b, c;
 | 
						|
				a = readw(index_of +
 | 
						|
						smu[(i + 1) * num + k]);
 | 
						|
				b = si[2 * (i - 1) + 3 - k];
 | 
						|
				c = readw(index_of + b);
 | 
						|
				tmp = a + c;
 | 
						|
				tmp %= cw_len;
 | 
						|
				dmu[i + 1] = readw(alpha_to + tmp) ^
 | 
						|
					dmu[i + 1];
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int pmecc_err_location(struct mtd_info *mtd)
 | 
						|
{
 | 
						|
	struct nand_chip *nand_chip = mtd->priv;
 | 
						|
	struct atmel_nand_host *host = nand_chip->priv;
 | 
						|
	const int cap = host->pmecc_corr_cap;
 | 
						|
	const int num = 2 * cap + 1;
 | 
						|
	int sector_size = host->pmecc_sector_size;
 | 
						|
	int err_nbr = 0;	/* number of error */
 | 
						|
	int roots_nbr;		/* number of roots */
 | 
						|
	int i;
 | 
						|
	uint32_t val;
 | 
						|
	int16_t *smu = host->pmecc_smu;
 | 
						|
	int timeout = PMECC_MAX_TIMEOUT_US;
 | 
						|
 | 
						|
	pmecc_writel(host->pmerrloc, eldis, PMERRLOC_DISABLE);
 | 
						|
 | 
						|
	for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
 | 
						|
		pmecc_writel(host->pmerrloc, sigma[i],
 | 
						|
			     smu[(cap + 1) * num + i]);
 | 
						|
		err_nbr++;
 | 
						|
	}
 | 
						|
 | 
						|
	val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
 | 
						|
	if (sector_size == 1024)
 | 
						|
		val |= PMERRLOC_ELCFG_SECTOR_1024;
 | 
						|
 | 
						|
	pmecc_writel(host->pmerrloc, elcfg, val);
 | 
						|
	pmecc_writel(host->pmerrloc, elen,
 | 
						|
		     sector_size * 8 + host->pmecc_degree * cap);
 | 
						|
 | 
						|
	while (--timeout) {
 | 
						|
		if (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_CALC_DONE)
 | 
						|
			break;
 | 
						|
		WATCHDOG_RESET();
 | 
						|
		udelay(1);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!timeout) {
 | 
						|
		dev_err(host->dev, "atmel_nand : Timeout to calculate PMECC error location\n");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	roots_nbr = (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_ERR_NUM_MASK)
 | 
						|
			>> 8;
 | 
						|
	/* Number of roots == degree of smu hence <= cap */
 | 
						|
	if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
 | 
						|
		return err_nbr - 1;
 | 
						|
 | 
						|
	/* Number of roots does not match the degree of smu
 | 
						|
	 * unable to correct error */
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
 | 
						|
		int sector_num, int extra_bytes, int err_nbr)
 | 
						|
{
 | 
						|
	struct nand_chip *nand_chip = mtd->priv;
 | 
						|
	struct atmel_nand_host *host = nand_chip->priv;
 | 
						|
	int i = 0;
 | 
						|
	int byte_pos, bit_pos, sector_size, pos;
 | 
						|
	uint32_t tmp;
 | 
						|
	uint8_t err_byte;
 | 
						|
 | 
						|
	sector_size = host->pmecc_sector_size;
 | 
						|
 | 
						|
	while (err_nbr) {
 | 
						|
		tmp = pmecc_readl(host->pmerrloc, el[i]) - 1;
 | 
						|
		byte_pos = tmp / 8;
 | 
						|
		bit_pos  = tmp % 8;
 | 
						|
 | 
						|
		if (byte_pos >= (sector_size + extra_bytes))
 | 
						|
			BUG();	/* should never happen */
 | 
						|
 | 
						|
		if (byte_pos < sector_size) {
 | 
						|
			err_byte = *(buf + byte_pos);
 | 
						|
			*(buf + byte_pos) ^= (1 << bit_pos);
 | 
						|
 | 
						|
			pos = sector_num * host->pmecc_sector_size + byte_pos;
 | 
						|
			dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
 | 
						|
				pos, bit_pos, err_byte, *(buf + byte_pos));
 | 
						|
		} else {
 | 
						|
			/* Bit flip in OOB area */
 | 
						|
			tmp = sector_num * host->pmecc_bytes_per_sector
 | 
						|
					+ (byte_pos - sector_size);
 | 
						|
			err_byte = ecc[tmp];
 | 
						|
			ecc[tmp] ^= (1 << bit_pos);
 | 
						|
 | 
						|
			pos = tmp + nand_chip->ecc.layout->eccpos[0];
 | 
						|
			dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
 | 
						|
				pos, bit_pos, err_byte, ecc[tmp]);
 | 
						|
		}
 | 
						|
 | 
						|
		i++;
 | 
						|
		err_nbr--;
 | 
						|
	}
 | 
						|
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
 | 
						|
	u8 *ecc)
 | 
						|
{
 | 
						|
	struct nand_chip *nand_chip = mtd->priv;
 | 
						|
	struct atmel_nand_host *host = nand_chip->priv;
 | 
						|
	int i, err_nbr, eccbytes;
 | 
						|
	uint8_t *buf_pos;
 | 
						|
 | 
						|
	/* SAMA5D4 PMECC IP can correct errors for all 0xff page */
 | 
						|
	if (host->pmecc_version >= PMECC_VERSION_SAMA5D4)
 | 
						|
		goto normal_check;
 | 
						|
 | 
						|
	eccbytes = nand_chip->ecc.bytes;
 | 
						|
	for (i = 0; i < eccbytes; i++)
 | 
						|
		if (ecc[i] != 0xff)
 | 
						|
			goto normal_check;
 | 
						|
	/* Erased page, return OK */
 | 
						|
	return 0;
 | 
						|
 | 
						|
normal_check:
 | 
						|
	for (i = 0; i < host->pmecc_sector_number; i++) {
 | 
						|
		err_nbr = 0;
 | 
						|
		if (pmecc_stat & 0x1) {
 | 
						|
			buf_pos = buf + i * host->pmecc_sector_size;
 | 
						|
 | 
						|
			pmecc_gen_syndrome(mtd, i);
 | 
						|
			pmecc_substitute(mtd);
 | 
						|
			pmecc_get_sigma(mtd);
 | 
						|
 | 
						|
			err_nbr = pmecc_err_location(mtd);
 | 
						|
			if (err_nbr == -1) {
 | 
						|
				dev_err(host->dev, "PMECC: Too many errors\n");
 | 
						|
				mtd->ecc_stats.failed++;
 | 
						|
				return -EIO;
 | 
						|
			} else {
 | 
						|
				pmecc_correct_data(mtd, buf_pos, ecc, i,
 | 
						|
					host->pmecc_bytes_per_sector, err_nbr);
 | 
						|
				mtd->ecc_stats.corrected += err_nbr;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		pmecc_stat >>= 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
 | 
						|
	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
 | 
						|
{
 | 
						|
	struct atmel_nand_host *host = chip->priv;
 | 
						|
	int eccsize = chip->ecc.size;
 | 
						|
	uint8_t *oob = chip->oob_poi;
 | 
						|
	uint32_t *eccpos = chip->ecc.layout->eccpos;
 | 
						|
	uint32_t stat;
 | 
						|
	int timeout = PMECC_MAX_TIMEOUT_US;
 | 
						|
 | 
						|
	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
 | 
						|
	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
 | 
						|
	pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
 | 
						|
		& ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
 | 
						|
 | 
						|
	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
 | 
						|
	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
 | 
						|
 | 
						|
	chip->read_buf(mtd, buf, eccsize);
 | 
						|
	chip->read_buf(mtd, oob, mtd->oobsize);
 | 
						|
 | 
						|
	while (--timeout) {
 | 
						|
		if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
 | 
						|
			break;
 | 
						|
		WATCHDOG_RESET();
 | 
						|
		udelay(1);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!timeout) {
 | 
						|
		dev_err(host->dev, "atmel_nand : Timeout to read PMECC page\n");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	stat = pmecc_readl(host->pmecc, isr);
 | 
						|
	if (stat != 0)
 | 
						|
		if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
 | 
						|
			return -EIO;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
 | 
						|
		struct nand_chip *chip, const uint8_t *buf,
 | 
						|
		int oob_required)
 | 
						|
{
 | 
						|
	struct atmel_nand_host *host = chip->priv;
 | 
						|
	uint32_t *eccpos = chip->ecc.layout->eccpos;
 | 
						|
	int i, j;
 | 
						|
	int timeout = PMECC_MAX_TIMEOUT_US;
 | 
						|
 | 
						|
	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
 | 
						|
	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
 | 
						|
 | 
						|
	pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
 | 
						|
		PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
 | 
						|
 | 
						|
	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
 | 
						|
	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
 | 
						|
 | 
						|
	chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
 | 
						|
 | 
						|
	while (--timeout) {
 | 
						|
		if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
 | 
						|
			break;
 | 
						|
		WATCHDOG_RESET();
 | 
						|
		udelay(1);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!timeout) {
 | 
						|
		dev_err(host->dev, "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < host->pmecc_sector_number; i++) {
 | 
						|
		for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
 | 
						|
			int pos;
 | 
						|
 | 
						|
			pos = i * host->pmecc_bytes_per_sector + j;
 | 
						|
			chip->oob_poi[eccpos[pos]] =
 | 
						|
				pmecc_readb(host->pmecc, ecc_port[i].ecc[j]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 | 
						|
out:
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void atmel_pmecc_core_init(struct mtd_info *mtd)
 | 
						|
{
 | 
						|
	struct nand_chip *nand_chip = mtd->priv;
 | 
						|
	struct atmel_nand_host *host = nand_chip->priv;
 | 
						|
	uint32_t val = 0;
 | 
						|
	struct nand_ecclayout *ecc_layout;
 | 
						|
 | 
						|
	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
 | 
						|
	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
 | 
						|
 | 
						|
	switch (host->pmecc_corr_cap) {
 | 
						|
	case 2:
 | 
						|
		val = PMECC_CFG_BCH_ERR2;
 | 
						|
		break;
 | 
						|
	case 4:
 | 
						|
		val = PMECC_CFG_BCH_ERR4;
 | 
						|
		break;
 | 
						|
	case 8:
 | 
						|
		val = PMECC_CFG_BCH_ERR8;
 | 
						|
		break;
 | 
						|
	case 12:
 | 
						|
		val = PMECC_CFG_BCH_ERR12;
 | 
						|
		break;
 | 
						|
	case 24:
 | 
						|
		val = PMECC_CFG_BCH_ERR24;
 | 
						|
		break;
 | 
						|
	case 32:
 | 
						|
		val = PMECC_CFG_BCH_ERR32;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (host->pmecc_sector_size == 512)
 | 
						|
		val |= PMECC_CFG_SECTOR512;
 | 
						|
	else if (host->pmecc_sector_size == 1024)
 | 
						|
		val |= PMECC_CFG_SECTOR1024;
 | 
						|
 | 
						|
	switch (host->pmecc_sector_number) {
 | 
						|
	case 1:
 | 
						|
		val |= PMECC_CFG_PAGE_1SECTOR;
 | 
						|
		break;
 | 
						|
	case 2:
 | 
						|
		val |= PMECC_CFG_PAGE_2SECTORS;
 | 
						|
		break;
 | 
						|
	case 4:
 | 
						|
		val |= PMECC_CFG_PAGE_4SECTORS;
 | 
						|
		break;
 | 
						|
	case 8:
 | 
						|
		val |= PMECC_CFG_PAGE_8SECTORS;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
 | 
						|
		| PMECC_CFG_AUTO_DISABLE);
 | 
						|
	pmecc_writel(host->pmecc, cfg, val);
 | 
						|
 | 
						|
	ecc_layout = nand_chip->ecc.layout;
 | 
						|
	pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
 | 
						|
	pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
 | 
						|
	pmecc_writel(host->pmecc, eaddr,
 | 
						|
			ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
 | 
						|
	/* See datasheet about PMECC Clock Control Register */
 | 
						|
	pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
 | 
						|
	pmecc_writel(host->pmecc, idr, 0xff);
 | 
						|
	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
 | 
						|
/*
 | 
						|
 * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If
 | 
						|
 *                    pmecc_corr_cap or pmecc_sector_size is 0, then set it as
 | 
						|
 *                    ONFI ECC parameters.
 | 
						|
 * @host: point to an atmel_nand_host structure.
 | 
						|
 *        if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits.
 | 
						|
 *        if host->pmecc_sector_size is 0 then set it as the ONFI sector_size.
 | 
						|
 * @chip: point to an nand_chip structure.
 | 
						|
 * @cap: store the ONFI ECC correct bits capbility
 | 
						|
 * @sector_size: in how many bytes that ONFI require to correct @ecc_bits
 | 
						|
 *
 | 
						|
 * Return 0 if success. otherwise return the error code.
 | 
						|
 */
 | 
						|
static int pmecc_choose_ecc(struct atmel_nand_host *host,
 | 
						|
		struct nand_chip *chip,
 | 
						|
		int *cap, int *sector_size)
 | 
						|
{
 | 
						|
	/* Get ECC requirement from ONFI parameters */
 | 
						|
	*cap = *sector_size = 0;
 | 
						|
	if (chip->onfi_version) {
 | 
						|
		*cap = chip->ecc_strength_ds;
 | 
						|
		*sector_size = chip->ecc_step_ds;
 | 
						|
		MTDDEBUG(MTD_DEBUG_LEVEL1, "ONFI params, minimum required ECC: %d bits in %d bytes\n",
 | 
						|
			 *cap, *sector_size);
 | 
						|
	}
 | 
						|
 | 
						|
	if (*cap == 0 && *sector_size == 0) {
 | 
						|
		/* Non-ONFI compliant */
 | 
						|
		dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes\n");
 | 
						|
		*cap = 2;
 | 
						|
		*sector_size = 512;
 | 
						|
	}
 | 
						|
 | 
						|
	/* If head file doesn't specify then use the one in ONFI parameters */
 | 
						|
	if (host->pmecc_corr_cap == 0) {
 | 
						|
		/* use the most fitable ecc bits (the near bigger one ) */
 | 
						|
		if (*cap <= 2)
 | 
						|
			host->pmecc_corr_cap = 2;
 | 
						|
		else if (*cap <= 4)
 | 
						|
			host->pmecc_corr_cap = 4;
 | 
						|
		else if (*cap <= 8)
 | 
						|
			host->pmecc_corr_cap = 8;
 | 
						|
		else if (*cap <= 12)
 | 
						|
			host->pmecc_corr_cap = 12;
 | 
						|
		else if (*cap <= 24)
 | 
						|
			host->pmecc_corr_cap = 24;
 | 
						|
		else
 | 
						|
#ifdef CONFIG_SAMA5D2
 | 
						|
			host->pmecc_corr_cap = 32;
 | 
						|
#else
 | 
						|
			host->pmecc_corr_cap = 24;
 | 
						|
#endif
 | 
						|
	}
 | 
						|
	if (host->pmecc_sector_size == 0) {
 | 
						|
		/* use the most fitable sector size (the near smaller one ) */
 | 
						|
		if (*sector_size >= 1024)
 | 
						|
			host->pmecc_sector_size = 1024;
 | 
						|
		else if (*sector_size >= 512)
 | 
						|
			host->pmecc_sector_size = 512;
 | 
						|
		else
 | 
						|
			return -EINVAL;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(NO_GALOIS_TABLE_IN_ROM)
 | 
						|
static uint16_t *pmecc_galois_table;
 | 
						|
static inline int deg(unsigned int poly)
 | 
						|
{
 | 
						|
	/* polynomial degree is the most-significant bit index */
 | 
						|
	return fls(poly) - 1;
 | 
						|
}
 | 
						|
 | 
						|
static int build_gf_tables(int mm, unsigned int poly,
 | 
						|
			   int16_t *index_of, int16_t *alpha_to)
 | 
						|
{
 | 
						|
	unsigned int i, x = 1;
 | 
						|
	const unsigned int k = 1 << deg(poly);
 | 
						|
	unsigned int nn = (1 << mm) - 1;
 | 
						|
 | 
						|
	/* primitive polynomial must be of degree m */
 | 
						|
	if (k != (1u << mm))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	for (i = 0; i < nn; i++) {
 | 
						|
		alpha_to[i] = x;
 | 
						|
		index_of[x] = i;
 | 
						|
		if (i && (x == 1))
 | 
						|
			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
 | 
						|
			return -EINVAL;
 | 
						|
		x <<= 1;
 | 
						|
		if (x & k)
 | 
						|
			x ^= poly;
 | 
						|
	}
 | 
						|
 | 
						|
	alpha_to[nn] = 1;
 | 
						|
	index_of[0] = 0;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static uint16_t *create_lookup_table(int sector_size)
 | 
						|
{
 | 
						|
	int degree = (sector_size == 512) ?
 | 
						|
			PMECC_GF_DIMENSION_13 :
 | 
						|
			PMECC_GF_DIMENSION_14;
 | 
						|
	unsigned int poly = (sector_size == 512) ?
 | 
						|
			PMECC_GF_13_PRIMITIVE_POLY :
 | 
						|
			PMECC_GF_14_PRIMITIVE_POLY;
 | 
						|
	int table_size = (sector_size == 512) ?
 | 
						|
			PMECC_INDEX_TABLE_SIZE_512 :
 | 
						|
			PMECC_INDEX_TABLE_SIZE_1024;
 | 
						|
 | 
						|
	int16_t *addr = kzalloc(2 * table_size * sizeof(uint16_t), GFP_KERNEL);
 | 
						|
	if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return (uint16_t *)addr;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
 | 
						|
		struct mtd_info *mtd)
 | 
						|
{
 | 
						|
	struct atmel_nand_host *host;
 | 
						|
	int cap, sector_size;
 | 
						|
 | 
						|
	host = nand->priv = &pmecc_host;
 | 
						|
 | 
						|
	nand->ecc.mode = NAND_ECC_HW;
 | 
						|
	nand->ecc.calculate = NULL;
 | 
						|
	nand->ecc.correct = NULL;
 | 
						|
	nand->ecc.hwctl = NULL;
 | 
						|
 | 
						|
#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
 | 
						|
	host->pmecc_corr_cap = host->pmecc_sector_size = 0;
 | 
						|
 | 
						|
#ifdef CONFIG_PMECC_CAP
 | 
						|
	host->pmecc_corr_cap = CONFIG_PMECC_CAP;
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_PMECC_SECTOR_SIZE
 | 
						|
	host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
 | 
						|
#endif
 | 
						|
	/* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or
 | 
						|
	 * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size
 | 
						|
	 * from ONFI.
 | 
						|
	 */
 | 
						|
	if (pmecc_choose_ecc(host, nand, &cap, §or_size)) {
 | 
						|
		dev_err(host->dev, "Required ECC %d bits in %d bytes not supported!\n",
 | 
						|
			cap, sector_size);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (cap > host->pmecc_corr_cap)
 | 
						|
		dev_info(host->dev, "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n",
 | 
						|
				host->pmecc_corr_cap, cap);
 | 
						|
	if (sector_size < host->pmecc_sector_size)
 | 
						|
		dev_info(host->dev, "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n",
 | 
						|
				host->pmecc_sector_size, sector_size);
 | 
						|
#else	/* CONFIG_SYS_NAND_ONFI_DETECTION */
 | 
						|
	host->pmecc_corr_cap = CONFIG_PMECC_CAP;
 | 
						|
	host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
 | 
						|
#endif
 | 
						|
 | 
						|
	cap = host->pmecc_corr_cap;
 | 
						|
	sector_size = host->pmecc_sector_size;
 | 
						|
 | 
						|
	/* TODO: need check whether cap & sector_size is validate */
 | 
						|
#if defined(NO_GALOIS_TABLE_IN_ROM)
 | 
						|
	/*
 | 
						|
	 * As pmecc_rom_base is the begin of the gallois field table, So the
 | 
						|
	 * index offset just set as 0.
 | 
						|
	 */
 | 
						|
	host->pmecc_index_table_offset = 0;
 | 
						|
#else
 | 
						|
	if (host->pmecc_sector_size == 512)
 | 
						|
		host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512;
 | 
						|
	else
 | 
						|
		host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024;
 | 
						|
#endif
 | 
						|
 | 
						|
	MTDDEBUG(MTD_DEBUG_LEVEL1,
 | 
						|
		"Initialize PMECC params, cap: %d, sector: %d\n",
 | 
						|
		cap, sector_size);
 | 
						|
 | 
						|
	host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
 | 
						|
	host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
 | 
						|
			ATMEL_BASE_PMERRLOC;
 | 
						|
#if defined(NO_GALOIS_TABLE_IN_ROM)
 | 
						|
	pmecc_galois_table = create_lookup_table(host->pmecc_sector_size);
 | 
						|
	if (!pmecc_galois_table) {
 | 
						|
		dev_err(host->dev, "out of memory\n");
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	host->pmecc_rom_base = (void __iomem *)pmecc_galois_table;
 | 
						|
#else
 | 
						|
	host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
 | 
						|
#endif
 | 
						|
 | 
						|
	/* ECC is calculated for the whole page (1 step) */
 | 
						|
	nand->ecc.size = mtd->writesize;
 | 
						|
 | 
						|
	/* set ECC page size and oob layout */
 | 
						|
	switch (mtd->writesize) {
 | 
						|
	case 2048:
 | 
						|
	case 4096:
 | 
						|
	case 8192:
 | 
						|
		host->pmecc_degree = (sector_size == 512) ?
 | 
						|
			PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
 | 
						|
		host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
 | 
						|
		host->pmecc_sector_number = mtd->writesize / sector_size;
 | 
						|
		host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
 | 
						|
			cap, sector_size);
 | 
						|
		host->pmecc_alpha_to = pmecc_get_alpha_to(host);
 | 
						|
		host->pmecc_index_of = host->pmecc_rom_base +
 | 
						|
			host->pmecc_index_table_offset;
 | 
						|
 | 
						|
		nand->ecc.steps = 1;
 | 
						|
		nand->ecc.bytes = host->pmecc_bytes_per_sector *
 | 
						|
				       host->pmecc_sector_number;
 | 
						|
 | 
						|
		if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) {
 | 
						|
			dev_err(host->dev, "too large eccpos entries. max support ecc.bytes is %d\n",
 | 
						|
					MTD_MAX_ECCPOS_ENTRIES_LARGE);
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
 | 
						|
		if (nand->ecc.bytes > mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
 | 
						|
			dev_err(host->dev, "No room for ECC bytes\n");
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
		pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
 | 
						|
					mtd->oobsize,
 | 
						|
					nand->ecc.bytes);
 | 
						|
		nand->ecc.layout = &atmel_pmecc_oobinfo;
 | 
						|
		break;
 | 
						|
	case 512:
 | 
						|
	case 1024:
 | 
						|
		/* TODO */
 | 
						|
		dev_err(host->dev, "Unsupported page size for PMECC, use Software ECC\n");
 | 
						|
	default:
 | 
						|
		/* page size not handled by HW ECC */
 | 
						|
		/* switching back to soft ECC */
 | 
						|
		nand->ecc.mode = NAND_ECC_SOFT;
 | 
						|
		nand->ecc.read_page = NULL;
 | 
						|
		nand->ecc.postpad = 0;
 | 
						|
		nand->ecc.prepad = 0;
 | 
						|
		nand->ecc.bytes = 0;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Allocate data for PMECC computation */
 | 
						|
	if (pmecc_data_alloc(host)) {
 | 
						|
		dev_err(host->dev, "Cannot allocate memory for PMECC computation!\n");
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	nand->options |= NAND_NO_SUBPAGE_WRITE;
 | 
						|
	nand->ecc.read_page = atmel_nand_pmecc_read_page;
 | 
						|
	nand->ecc.write_page = atmel_nand_pmecc_write_page;
 | 
						|
	nand->ecc.strength = cap;
 | 
						|
 | 
						|
	/* Check the PMECC ip version */
 | 
						|
	host->pmecc_version = pmecc_readl(host->pmerrloc, version);
 | 
						|
	dev_dbg(host->dev, "PMECC IP version is: %x\n", host->pmecc_version);
 | 
						|
 | 
						|
	atmel_pmecc_core_init(mtd);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
/* oob layout for large page size
 | 
						|
 * bad block info is on bytes 0 and 1
 | 
						|
 * the bytes have to be consecutives to avoid
 | 
						|
 * several NAND_CMD_RNDOUT during read
 | 
						|
 */
 | 
						|
static struct nand_ecclayout atmel_oobinfo_large = {
 | 
						|
	.eccbytes = 4,
 | 
						|
	.eccpos = {60, 61, 62, 63},
 | 
						|
	.oobfree = {
 | 
						|
		{2, 58}
 | 
						|
	},
 | 
						|
};
 | 
						|
 | 
						|
/* oob layout for small page size
 | 
						|
 * bad block info is on bytes 4 and 5
 | 
						|
 * the bytes have to be consecutives to avoid
 | 
						|
 * several NAND_CMD_RNDOUT during read
 | 
						|
 */
 | 
						|
static struct nand_ecclayout atmel_oobinfo_small = {
 | 
						|
	.eccbytes = 4,
 | 
						|
	.eccpos = {0, 1, 2, 3},
 | 
						|
	.oobfree = {
 | 
						|
		{6, 10}
 | 
						|
	},
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate HW ECC
 | 
						|
 *
 | 
						|
 * function called after a write
 | 
						|
 *
 | 
						|
 * mtd:        MTD block structure
 | 
						|
 * dat:        raw data (unused)
 | 
						|
 * ecc_code:   buffer for ECC
 | 
						|
 */
 | 
						|
static int atmel_nand_calculate(struct mtd_info *mtd,
 | 
						|
		const u_char *dat, unsigned char *ecc_code)
 | 
						|
{
 | 
						|
	unsigned int ecc_value;
 | 
						|
 | 
						|
	/* get the first 2 ECC bytes */
 | 
						|
	ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
 | 
						|
 | 
						|
	ecc_code[0] = ecc_value & 0xFF;
 | 
						|
	ecc_code[1] = (ecc_value >> 8) & 0xFF;
 | 
						|
 | 
						|
	/* get the last 2 ECC bytes */
 | 
						|
	ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
 | 
						|
 | 
						|
	ecc_code[2] = ecc_value & 0xFF;
 | 
						|
	ecc_code[3] = (ecc_value >> 8) & 0xFF;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * HW ECC read page function
 | 
						|
 *
 | 
						|
 * mtd:        mtd info structure
 | 
						|
 * chip:       nand chip info structure
 | 
						|
 * buf:        buffer to store read data
 | 
						|
 * oob_required:    caller expects OOB data read to chip->oob_poi
 | 
						|
 */
 | 
						|
static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 | 
						|
				uint8_t *buf, int oob_required, int page)
 | 
						|
{
 | 
						|
	int eccsize = chip->ecc.size;
 | 
						|
	int eccbytes = chip->ecc.bytes;
 | 
						|
	uint32_t *eccpos = chip->ecc.layout->eccpos;
 | 
						|
	uint8_t *p = buf;
 | 
						|
	uint8_t *oob = chip->oob_poi;
 | 
						|
	uint8_t *ecc_pos;
 | 
						|
	int stat;
 | 
						|
 | 
						|
	/* read the page */
 | 
						|
	chip->read_buf(mtd, p, eccsize);
 | 
						|
 | 
						|
	/* move to ECC position if needed */
 | 
						|
	if (eccpos[0] != 0) {
 | 
						|
		/* This only works on large pages
 | 
						|
		 * because the ECC controller waits for
 | 
						|
		 * NAND_CMD_RNDOUTSTART after the
 | 
						|
		 * NAND_CMD_RNDOUT.
 | 
						|
		 * anyway, for small pages, the eccpos[0] == 0
 | 
						|
		 */
 | 
						|
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
 | 
						|
				mtd->writesize + eccpos[0], -1);
 | 
						|
	}
 | 
						|
 | 
						|
	/* the ECC controller needs to read the ECC just after the data */
 | 
						|
	ecc_pos = oob + eccpos[0];
 | 
						|
	chip->read_buf(mtd, ecc_pos, eccbytes);
 | 
						|
 | 
						|
	/* check if there's an error */
 | 
						|
	stat = chip->ecc.correct(mtd, p, oob, NULL);
 | 
						|
 | 
						|
	if (stat < 0)
 | 
						|
		mtd->ecc_stats.failed++;
 | 
						|
	else
 | 
						|
		mtd->ecc_stats.corrected += stat;
 | 
						|
 | 
						|
	/* get back to oob start (end of page) */
 | 
						|
	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
 | 
						|
 | 
						|
	/* read the oob */
 | 
						|
	chip->read_buf(mtd, oob, mtd->oobsize);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * HW ECC Correction
 | 
						|
 *
 | 
						|
 * function called after a read
 | 
						|
 *
 | 
						|
 * mtd:        MTD block structure
 | 
						|
 * dat:        raw data read from the chip
 | 
						|
 * read_ecc:   ECC from the chip (unused)
 | 
						|
 * isnull:     unused
 | 
						|
 *
 | 
						|
 * Detect and correct a 1 bit error for a page
 | 
						|
 */
 | 
						|
static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
 | 
						|
		u_char *read_ecc, u_char *isnull)
 | 
						|
{
 | 
						|
	struct nand_chip *nand_chip = mtd->priv;
 | 
						|
	unsigned int ecc_status;
 | 
						|
	unsigned int ecc_word, ecc_bit;
 | 
						|
 | 
						|
	/* get the status from the Status Register */
 | 
						|
	ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
 | 
						|
 | 
						|
	/* if there's no error */
 | 
						|
	if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* get error bit offset (4 bits) */
 | 
						|
	ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
 | 
						|
	/* get word address (12 bits) */
 | 
						|
	ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
 | 
						|
	ecc_word >>= 4;
 | 
						|
 | 
						|
	/* if there are multiple errors */
 | 
						|
	if (ecc_status & ATMEL_ECC_MULERR) {
 | 
						|
		/* check if it is a freshly erased block
 | 
						|
		 * (filled with 0xff) */
 | 
						|
		if ((ecc_bit == ATMEL_ECC_BITADDR)
 | 
						|
				&& (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
 | 
						|
			/* the block has just been erased, return OK */
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
		/* it doesn't seems to be a freshly
 | 
						|
		 * erased block.
 | 
						|
		 * We can't correct so many errors */
 | 
						|
		dev_warn(host->dev, "atmel_nand : multiple errors detected."
 | 
						|
				" Unable to correct.\n");
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	/* if there's a single bit error : we can correct it */
 | 
						|
	if (ecc_status & ATMEL_ECC_ECCERR) {
 | 
						|
		/* there's nothing much to do here.
 | 
						|
		 * the bit error is on the ECC itself.
 | 
						|
		 */
 | 
						|
		dev_warn(host->dev, "atmel_nand : one bit error on ECC code."
 | 
						|
				" Nothing to correct\n");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	dev_warn(host->dev, "atmel_nand : one bit error on data."
 | 
						|
			" (word offset in the page :"
 | 
						|
			" 0x%x bit offset : 0x%x)\n",
 | 
						|
			ecc_word, ecc_bit);
 | 
						|
	/* correct the error */
 | 
						|
	if (nand_chip->options & NAND_BUSWIDTH_16) {
 | 
						|
		/* 16 bits words */
 | 
						|
		((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
 | 
						|
	} else {
 | 
						|
		/* 8 bits words */
 | 
						|
		dat[ecc_word] ^= (1 << ecc_bit);
 | 
						|
	}
 | 
						|
	dev_warn(host->dev, "atmel_nand : error corrected\n");
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Enable HW ECC : unused on most chips
 | 
						|
 */
 | 
						|
static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
 | 
						|
{
 | 
						|
	nand->ecc.mode = NAND_ECC_HW;
 | 
						|
	nand->ecc.calculate = atmel_nand_calculate;
 | 
						|
	nand->ecc.correct = atmel_nand_correct;
 | 
						|
	nand->ecc.hwctl = atmel_nand_hwctl;
 | 
						|
	nand->ecc.read_page = atmel_nand_read_page;
 | 
						|
	nand->ecc.bytes = 4;
 | 
						|
 | 
						|
	if (nand->ecc.mode == NAND_ECC_HW) {
 | 
						|
		/* ECC is calculated for the whole page (1 step) */
 | 
						|
		nand->ecc.size = mtd->writesize;
 | 
						|
 | 
						|
		/* set ECC page size and oob layout */
 | 
						|
		switch (mtd->writesize) {
 | 
						|
		case 512:
 | 
						|
			nand->ecc.layout = &atmel_oobinfo_small;
 | 
						|
			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
 | 
						|
					ATMEL_ECC_PAGESIZE_528);
 | 
						|
			break;
 | 
						|
		case 1024:
 | 
						|
			nand->ecc.layout = &atmel_oobinfo_large;
 | 
						|
			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
 | 
						|
					ATMEL_ECC_PAGESIZE_1056);
 | 
						|
			break;
 | 
						|
		case 2048:
 | 
						|
			nand->ecc.layout = &atmel_oobinfo_large;
 | 
						|
			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
 | 
						|
					ATMEL_ECC_PAGESIZE_2112);
 | 
						|
			break;
 | 
						|
		case 4096:
 | 
						|
			nand->ecc.layout = &atmel_oobinfo_large;
 | 
						|
			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
 | 
						|
					ATMEL_ECC_PAGESIZE_4224);
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			/* page size not handled by HW ECC */
 | 
						|
			/* switching back to soft ECC */
 | 
						|
			nand->ecc.mode = NAND_ECC_SOFT;
 | 
						|
			nand->ecc.calculate = NULL;
 | 
						|
			nand->ecc.correct = NULL;
 | 
						|
			nand->ecc.hwctl = NULL;
 | 
						|
			nand->ecc.read_page = NULL;
 | 
						|
			nand->ecc.postpad = 0;
 | 
						|
			nand->ecc.prepad = 0;
 | 
						|
			nand->ecc.bytes = 0;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_ATMEL_NAND_HW_PMECC */
 | 
						|
 | 
						|
#endif /* CONFIG_ATMEL_NAND_HWECC */
 | 
						|
 | 
						|
static void at91_nand_hwcontrol(struct mtd_info *mtd,
 | 
						|
					 int cmd, unsigned int ctrl)
 | 
						|
{
 | 
						|
	struct nand_chip *this = mtd->priv;
 | 
						|
 | 
						|
	if (ctrl & NAND_CTRL_CHANGE) {
 | 
						|
		ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
 | 
						|
		IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
 | 
						|
			     | CONFIG_SYS_NAND_MASK_CLE);
 | 
						|
 | 
						|
		if (ctrl & NAND_CLE)
 | 
						|
			IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
 | 
						|
		if (ctrl & NAND_ALE)
 | 
						|
			IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
 | 
						|
 | 
						|
#ifdef CONFIG_SYS_NAND_ENABLE_PIN
 | 
						|
		gpio_set_value(CONFIG_SYS_NAND_ENABLE_PIN, !(ctrl & NAND_NCE));
 | 
						|
#endif
 | 
						|
		this->IO_ADDR_W = (void *) IO_ADDR_W;
 | 
						|
	}
 | 
						|
 | 
						|
	if (cmd != NAND_CMD_NONE)
 | 
						|
		writeb(cmd, this->IO_ADDR_W);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SYS_NAND_READY_PIN
 | 
						|
static int at91_nand_ready(struct mtd_info *mtd)
 | 
						|
{
 | 
						|
	return gpio_get_value(CONFIG_SYS_NAND_READY_PIN);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_SPL_BUILD
 | 
						|
/* The following code is for SPL */
 | 
						|
static nand_info_t mtd;
 | 
						|
static struct nand_chip nand_chip;
 | 
						|
 | 
						|
static int nand_command(int block, int page, uint32_t offs, u8 cmd)
 | 
						|
{
 | 
						|
	struct nand_chip *this = mtd.priv;
 | 
						|
	int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
 | 
						|
	void (*hwctrl)(struct mtd_info *mtd, int cmd,
 | 
						|
			unsigned int ctrl) = this->cmd_ctrl;
 | 
						|
 | 
						|
	while (!this->dev_ready(&mtd))
 | 
						|
		;
 | 
						|
 | 
						|
	if (cmd == NAND_CMD_READOOB) {
 | 
						|
		offs += CONFIG_SYS_NAND_PAGE_SIZE;
 | 
						|
		cmd = NAND_CMD_READ0;
 | 
						|
	}
 | 
						|
 | 
						|
	hwctrl(&mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 | 
						|
 | 
						|
	if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
 | 
						|
		offs >>= 1;
 | 
						|
 | 
						|
	hwctrl(&mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
 | 
						|
	hwctrl(&mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE);
 | 
						|
	hwctrl(&mtd, (page_addr & 0xff), NAND_CTRL_ALE);
 | 
						|
	hwctrl(&mtd, ((page_addr >> 8) & 0xff), NAND_CTRL_ALE);
 | 
						|
#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
 | 
						|
	hwctrl(&mtd, (page_addr >> 16) & 0x0f, NAND_CTRL_ALE);
 | 
						|
#endif
 | 
						|
	hwctrl(&mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 | 
						|
 | 
						|
	hwctrl(&mtd, NAND_CMD_READSTART, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 | 
						|
	hwctrl(&mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 | 
						|
 | 
						|
	while (!this->dev_ready(&mtd))
 | 
						|
		;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int nand_is_bad_block(int block)
 | 
						|
{
 | 
						|
	struct nand_chip *this = mtd.priv;
 | 
						|
 | 
						|
	nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
 | 
						|
 | 
						|
	if (this->options & NAND_BUSWIDTH_16) {
 | 
						|
		if (readw(this->IO_ADDR_R) != 0xffff)
 | 
						|
			return 1;
 | 
						|
	} else {
 | 
						|
		if (readb(this->IO_ADDR_R) != 0xff)
 | 
						|
			return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SPL_NAND_ECC
 | 
						|
static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
 | 
						|
#define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
 | 
						|
		  CONFIG_SYS_NAND_ECCSIZE)
 | 
						|
#define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
 | 
						|
 | 
						|
static int nand_read_page(int block, int page, void *dst)
 | 
						|
{
 | 
						|
	struct nand_chip *this = mtd.priv;
 | 
						|
	u_char ecc_calc[ECCTOTAL];
 | 
						|
	u_char ecc_code[ECCTOTAL];
 | 
						|
	u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
 | 
						|
	int eccsize = CONFIG_SYS_NAND_ECCSIZE;
 | 
						|
	int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
 | 
						|
	int eccsteps = ECCSTEPS;
 | 
						|
	int i;
 | 
						|
	uint8_t *p = dst;
 | 
						|
	nand_command(block, page, 0, NAND_CMD_READ0);
 | 
						|
 | 
						|
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
 | 
						|
		if (this->ecc.mode != NAND_ECC_SOFT)
 | 
						|
			this->ecc.hwctl(&mtd, NAND_ECC_READ);
 | 
						|
		this->read_buf(&mtd, p, eccsize);
 | 
						|
		this->ecc.calculate(&mtd, p, &ecc_calc[i]);
 | 
						|
	}
 | 
						|
	this->read_buf(&mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
 | 
						|
 | 
						|
	for (i = 0; i < ECCTOTAL; i++)
 | 
						|
		ecc_code[i] = oob_data[nand_ecc_pos[i]];
 | 
						|
 | 
						|
	eccsteps = ECCSTEPS;
 | 
						|
	p = dst;
 | 
						|
 | 
						|
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
 | 
						|
		this->ecc.correct(&mtd, p, &ecc_code[i], &ecc_calc[i]);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int spl_nand_erase_one(int block, int page)
 | 
						|
{
 | 
						|
	struct nand_chip *this = mtd.priv;
 | 
						|
	void (*hwctrl)(struct mtd_info *mtd, int cmd,
 | 
						|
			unsigned int ctrl) = this->cmd_ctrl;
 | 
						|
	int page_addr;
 | 
						|
 | 
						|
	if (nand_chip.select_chip)
 | 
						|
		nand_chip.select_chip(&mtd, 0);
 | 
						|
 | 
						|
	page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
 | 
						|
	hwctrl(&mtd, NAND_CMD_ERASE1, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 | 
						|
	/* Row address */
 | 
						|
	hwctrl(&mtd, (page_addr & 0xff), NAND_CTRL_ALE | NAND_CTRL_CHANGE);
 | 
						|
	hwctrl(&mtd, ((page_addr >> 8) & 0xff),
 | 
						|
	       NAND_CTRL_ALE | NAND_CTRL_CHANGE);
 | 
						|
#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
 | 
						|
	/* One more address cycle for devices > 128MiB */
 | 
						|
	hwctrl(&mtd, (page_addr >> 16) & 0x0f,
 | 
						|
	       NAND_CTRL_ALE | NAND_CTRL_CHANGE);
 | 
						|
#endif
 | 
						|
	hwctrl(&mtd, NAND_CMD_ERASE2, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 | 
						|
 | 
						|
	while (!this->dev_ready(&mtd))
 | 
						|
		;
 | 
						|
 | 
						|
	nand_deselect();
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#else
 | 
						|
static int nand_read_page(int block, int page, void *dst)
 | 
						|
{
 | 
						|
	struct nand_chip *this = mtd.priv;
 | 
						|
 | 
						|
	nand_command(block, page, 0, NAND_CMD_READ0);
 | 
						|
	atmel_nand_pmecc_read_page(&mtd, this, dst, 0, page);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif /* CONFIG_SPL_NAND_ECC */
 | 
						|
 | 
						|
int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst)
 | 
						|
{
 | 
						|
	unsigned int block, lastblock;
 | 
						|
	unsigned int page;
 | 
						|
 | 
						|
	block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
 | 
						|
	lastblock = (offs + size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
 | 
						|
	page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
 | 
						|
 | 
						|
	while (block <= lastblock) {
 | 
						|
		if (!nand_is_bad_block(block)) {
 | 
						|
			while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
 | 
						|
				nand_read_page(block, page, dst);
 | 
						|
				dst += CONFIG_SYS_NAND_PAGE_SIZE;
 | 
						|
				page++;
 | 
						|
			}
 | 
						|
 | 
						|
			page = 0;
 | 
						|
		} else {
 | 
						|
			lastblock++;
 | 
						|
		}
 | 
						|
 | 
						|
		block++;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int at91_nand_wait_ready(struct mtd_info *mtd)
 | 
						|
{
 | 
						|
	struct nand_chip *this = mtd->priv;
 | 
						|
 | 
						|
	udelay(this->chip_delay);
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
int board_nand_init(struct nand_chip *nand)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	nand->ecc.mode = NAND_ECC_SOFT;
 | 
						|
#ifdef CONFIG_SYS_NAND_DBW_16
 | 
						|
	nand->options = NAND_BUSWIDTH_16;
 | 
						|
	nand->read_buf = nand_read_buf16;
 | 
						|
#else
 | 
						|
	nand->read_buf = nand_read_buf;
 | 
						|
#endif
 | 
						|
	nand->cmd_ctrl = at91_nand_hwcontrol;
 | 
						|
#ifdef CONFIG_SYS_NAND_READY_PIN
 | 
						|
	nand->dev_ready = at91_nand_ready;
 | 
						|
#else
 | 
						|
	nand->dev_ready = at91_nand_wait_ready;
 | 
						|
#endif
 | 
						|
	nand->chip_delay = 20;
 | 
						|
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
 | 
						|
	nand->bbt_options |= NAND_BBT_USE_FLASH;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_ATMEL_NAND_HWECC
 | 
						|
#ifdef CONFIG_ATMEL_NAND_HW_PMECC
 | 
						|
	ret = atmel_pmecc_nand_init_params(nand, &mtd);
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void nand_init(void)
 | 
						|
{
 | 
						|
	mtd.writesize = CONFIG_SYS_NAND_PAGE_SIZE;
 | 
						|
	mtd.oobsize = CONFIG_SYS_NAND_OOBSIZE;
 | 
						|
	mtd.priv = &nand_chip;
 | 
						|
	nand_chip.IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE;
 | 
						|
	nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
 | 
						|
	board_nand_init(&nand_chip);
 | 
						|
 | 
						|
#ifdef CONFIG_SPL_NAND_ECC
 | 
						|
	if (nand_chip.ecc.mode == NAND_ECC_SOFT) {
 | 
						|
		nand_chip.ecc.calculate = nand_calculate_ecc;
 | 
						|
		nand_chip.ecc.correct = nand_correct_data;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	if (nand_chip.select_chip)
 | 
						|
		nand_chip.select_chip(&mtd, 0);
 | 
						|
}
 | 
						|
 | 
						|
void nand_deselect(void)
 | 
						|
{
 | 
						|
	if (nand_chip.select_chip)
 | 
						|
		nand_chip.select_chip(&mtd, -1);
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
#ifndef CONFIG_SYS_NAND_BASE_LIST
 | 
						|
#define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
 | 
						|
#endif
 | 
						|
static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
 | 
						|
static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
 | 
						|
 | 
						|
int atmel_nand_chip_init(int devnum, ulong base_addr)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct mtd_info *mtd = &nand_info[devnum];
 | 
						|
	struct nand_chip *nand = &nand_chip[devnum];
 | 
						|
 | 
						|
	mtd->priv = nand;
 | 
						|
	nand->IO_ADDR_R = nand->IO_ADDR_W = (void  __iomem *)base_addr;
 | 
						|
 | 
						|
#ifdef CONFIG_NAND_ECC_BCH
 | 
						|
	nand->ecc.mode = NAND_ECC_SOFT_BCH;
 | 
						|
#else
 | 
						|
	nand->ecc.mode = NAND_ECC_SOFT;
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_SYS_NAND_DBW_16
 | 
						|
	nand->options = NAND_BUSWIDTH_16;
 | 
						|
#endif
 | 
						|
	nand->cmd_ctrl = at91_nand_hwcontrol;
 | 
						|
#ifdef CONFIG_SYS_NAND_READY_PIN
 | 
						|
	nand->dev_ready = at91_nand_ready;
 | 
						|
#endif
 | 
						|
	nand->chip_delay = 75;
 | 
						|
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
 | 
						|
	nand->bbt_options |= NAND_BBT_USE_FLASH;
 | 
						|
#endif
 | 
						|
 | 
						|
	ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
#ifdef CONFIG_ATMEL_NAND_HWECC
 | 
						|
#ifdef CONFIG_ATMEL_NAND_HW_PMECC
 | 
						|
	ret = atmel_pmecc_nand_init_params(nand, mtd);
 | 
						|
#else
 | 
						|
	ret = atmel_hwecc_nand_init_param(nand, mtd);
 | 
						|
#endif
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
#endif
 | 
						|
 | 
						|
	ret = nand_scan_tail(mtd);
 | 
						|
	if (!ret)
 | 
						|
		nand_register(devnum);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void board_nand_init(void)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
 | 
						|
		if (atmel_nand_chip_init(i, base_addr[i]))
 | 
						|
			dev_err(host->dev, "atmel_nand: Fail to initialize #%d chip",
 | 
						|
				i);
 | 
						|
}
 | 
						|
#endif /* CONFIG_SPL_BUILD */
 |