838 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			838 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright (C) 2017 NXP Semiconductors
 | |
|  * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
 | |
|  *
 | |
|  * SPDX-License-Identifier:	GPL-2.0+
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <dm.h>
 | |
| #include <errno.h>
 | |
| #include <memalign.h>
 | |
| #include <pci.h>
 | |
| #include <dm/device-internal.h>
 | |
| #include "nvme.h"
 | |
| 
 | |
| #define NVME_Q_DEPTH		2
 | |
| #define NVME_AQ_DEPTH		2
 | |
| #define NVME_SQ_SIZE(depth)	(depth * sizeof(struct nvme_command))
 | |
| #define NVME_CQ_SIZE(depth)	(depth * sizeof(struct nvme_completion))
 | |
| #define ADMIN_TIMEOUT		60
 | |
| #define IO_TIMEOUT		30
 | |
| #define MAX_PRP_POOL		512
 | |
| 
 | |
| enum nvme_queue_id {
 | |
| 	NVME_ADMIN_Q,
 | |
| 	NVME_IO_Q,
 | |
| 	NVME_Q_NUM,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * An NVM Express queue. Each device has at least two (one for admin
 | |
|  * commands and one for I/O commands).
 | |
|  */
 | |
| struct nvme_queue {
 | |
| 	struct nvme_dev *dev;
 | |
| 	struct nvme_command *sq_cmds;
 | |
| 	struct nvme_completion *cqes;
 | |
| 	wait_queue_head_t sq_full;
 | |
| 	u32 __iomem *q_db;
 | |
| 	u16 q_depth;
 | |
| 	s16 cq_vector;
 | |
| 	u16 sq_head;
 | |
| 	u16 sq_tail;
 | |
| 	u16 cq_head;
 | |
| 	u16 qid;
 | |
| 	u8 cq_phase;
 | |
| 	u8 cqe_seen;
 | |
| 	unsigned long cmdid_data[];
 | |
| };
 | |
| 
 | |
| static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
 | |
| {
 | |
| 	u32 bit = enabled ? NVME_CSTS_RDY : 0;
 | |
| 	int timeout;
 | |
| 	ulong start;
 | |
| 
 | |
| 	/* Timeout field in the CAP register is in 500 millisecond units */
 | |
| 	timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
 | |
| 
 | |
| 	start = get_timer(0);
 | |
| 	while (get_timer(start) < timeout) {
 | |
| 		if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	return -ETIME;
 | |
| }
 | |
| 
 | |
| static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
 | |
| 			   int total_len, u64 dma_addr)
 | |
| {
 | |
| 	u32 page_size = dev->page_size;
 | |
| 	int offset = dma_addr & (page_size - 1);
 | |
| 	u64 *prp_pool;
 | |
| 	int length = total_len;
 | |
| 	int i, nprps;
 | |
| 	length -= (page_size - offset);
 | |
| 
 | |
| 	if (length <= 0) {
 | |
| 		*prp2 = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (length)
 | |
| 		dma_addr += (page_size - offset);
 | |
| 
 | |
| 	if (length <= page_size) {
 | |
| 		*prp2 = dma_addr;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	nprps = DIV_ROUND_UP(length, page_size);
 | |
| 
 | |
| 	if (nprps > dev->prp_entry_num) {
 | |
| 		free(dev->prp_pool);
 | |
| 		dev->prp_pool = malloc(nprps << 3);
 | |
| 		if (!dev->prp_pool) {
 | |
| 			printf("Error: malloc prp_pool fail\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		dev->prp_entry_num = nprps;
 | |
| 	}
 | |
| 
 | |
| 	prp_pool = dev->prp_pool;
 | |
| 	i = 0;
 | |
| 	while (nprps) {
 | |
| 		if (i == ((page_size >> 3) - 1)) {
 | |
| 			*(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
 | |
| 					page_size);
 | |
| 			i = 0;
 | |
| 			prp_pool += page_size;
 | |
| 		}
 | |
| 		*(prp_pool + i++) = cpu_to_le64(dma_addr);
 | |
| 		dma_addr += page_size;
 | |
| 		nprps--;
 | |
| 	}
 | |
| 	*prp2 = (ulong)dev->prp_pool;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __le16 nvme_get_cmd_id(void)
 | |
| {
 | |
| 	static unsigned short cmdid;
 | |
| 
 | |
| 	return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
 | |
| }
 | |
| 
 | |
| static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
 | |
| {
 | |
| 	u64 start = (ulong)&nvmeq->cqes[index];
 | |
| 	u64 stop = start + sizeof(struct nvme_completion);
 | |
| 
 | |
| 	invalidate_dcache_range(start, stop);
 | |
| 
 | |
| 	return le16_to_cpu(readw(&(nvmeq->cqes[index].status)));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
 | |
|  *
 | |
|  * @nvmeq:	The queue to use
 | |
|  * @cmd:	The command to send
 | |
|  */
 | |
| static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
 | |
| {
 | |
| 	u16 tail = nvmeq->sq_tail;
 | |
| 
 | |
| 	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
 | |
| 	flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
 | |
| 			   (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
 | |
| 
 | |
| 	if (++tail == nvmeq->q_depth)
 | |
| 		tail = 0;
 | |
| 	writel(tail, nvmeq->q_db);
 | |
| 	nvmeq->sq_tail = tail;
 | |
| }
 | |
| 
 | |
| static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
 | |
| 				struct nvme_command *cmd,
 | |
| 				u32 *result, unsigned timeout)
 | |
| {
 | |
| 	u16 head = nvmeq->cq_head;
 | |
| 	u16 phase = nvmeq->cq_phase;
 | |
| 	u16 status;
 | |
| 	ulong start_time;
 | |
| 	ulong timeout_us = timeout * 100000;
 | |
| 
 | |
| 	cmd->common.command_id = nvme_get_cmd_id();
 | |
| 	nvme_submit_cmd(nvmeq, cmd);
 | |
| 
 | |
| 	start_time = timer_get_us();
 | |
| 
 | |
| 	for (;;) {
 | |
| 		status = nvme_read_completion_status(nvmeq, head);
 | |
| 		if ((status & 0x01) == phase)
 | |
| 			break;
 | |
| 		if (timeout_us > 0 && (timer_get_us() - start_time)
 | |
| 		    >= timeout_us)
 | |
| 			return -ETIMEDOUT;
 | |
| 	}
 | |
| 
 | |
| 	status >>= 1;
 | |
| 	if (status) {
 | |
| 		printf("ERROR: status = %x, phase = %d, head = %d\n",
 | |
| 		       status, phase, head);
 | |
| 		status = 0;
 | |
| 		if (++head == nvmeq->q_depth) {
 | |
| 			head = 0;
 | |
| 			phase = !phase;
 | |
| 		}
 | |
| 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
 | |
| 		nvmeq->cq_head = head;
 | |
| 		nvmeq->cq_phase = phase;
 | |
| 
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (result)
 | |
| 		*result = le32_to_cpu(readl(&(nvmeq->cqes[head].result)));
 | |
| 
 | |
| 	if (++head == nvmeq->q_depth) {
 | |
| 		head = 0;
 | |
| 		phase = !phase;
 | |
| 	}
 | |
| 	writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
 | |
| 	nvmeq->cq_head = head;
 | |
| 	nvmeq->cq_phase = phase;
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
 | |
| 				 u32 *result)
 | |
| {
 | |
| 	return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
 | |
| 				    result, ADMIN_TIMEOUT);
 | |
| }
 | |
| 
 | |
| static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
 | |
| 					   int qid, int depth)
 | |
| {
 | |
| 	struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
 | |
| 	if (!nvmeq)
 | |
| 		return NULL;
 | |
| 	memset(nvmeq, 0, sizeof(*nvmeq));
 | |
| 
 | |
| 	nvmeq->cqes = (void *)memalign(4096, NVME_CQ_SIZE(depth));
 | |
| 	if (!nvmeq->cqes)
 | |
| 		goto free_nvmeq;
 | |
| 	memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
 | |
| 
 | |
| 	nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
 | |
| 	if (!nvmeq->sq_cmds)
 | |
| 		goto free_queue;
 | |
| 	memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
 | |
| 
 | |
| 	nvmeq->dev = dev;
 | |
| 
 | |
| 	nvmeq->cq_head = 0;
 | |
| 	nvmeq->cq_phase = 1;
 | |
| 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
 | |
| 	nvmeq->q_depth = depth;
 | |
| 	nvmeq->qid = qid;
 | |
| 	dev->queue_count++;
 | |
| 	dev->queues[qid] = nvmeq;
 | |
| 
 | |
| 	return nvmeq;
 | |
| 
 | |
|  free_queue:
 | |
| 	free((void *)nvmeq->cqes);
 | |
|  free_nvmeq:
 | |
| 	free(nvmeq);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
 | |
| {
 | |
| 	struct nvme_command c;
 | |
| 
 | |
| 	memset(&c, 0, sizeof(c));
 | |
| 	c.delete_queue.opcode = opcode;
 | |
| 	c.delete_queue.qid = cpu_to_le16(id);
 | |
| 
 | |
| 	return nvme_submit_admin_cmd(dev, &c, NULL);
 | |
| }
 | |
| 
 | |
| static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
 | |
| {
 | |
| 	return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
 | |
| }
 | |
| 
 | |
| static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
 | |
| {
 | |
| 	return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
 | |
| }
 | |
| 
 | |
| static int nvme_enable_ctrl(struct nvme_dev *dev)
 | |
| {
 | |
| 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
 | |
| 	dev->ctrl_config |= NVME_CC_ENABLE;
 | |
| 	writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
 | |
| 
 | |
| 	return nvme_wait_ready(dev, true);
 | |
| }
 | |
| 
 | |
| static int nvme_disable_ctrl(struct nvme_dev *dev)
 | |
| {
 | |
| 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
 | |
| 	dev->ctrl_config &= ~NVME_CC_ENABLE;
 | |
| 	writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
 | |
| 
 | |
| 	return nvme_wait_ready(dev, false);
 | |
| }
 | |
| 
 | |
| static void nvme_free_queue(struct nvme_queue *nvmeq)
 | |
| {
 | |
| 	free((void *)nvmeq->cqes);
 | |
| 	free(nvmeq->sq_cmds);
 | |
| 	free(nvmeq);
 | |
| }
 | |
| 
 | |
| static void nvme_free_queues(struct nvme_dev *dev, int lowest)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = dev->queue_count - 1; i >= lowest; i--) {
 | |
| 		struct nvme_queue *nvmeq = dev->queues[i];
 | |
| 		dev->queue_count--;
 | |
| 		dev->queues[i] = NULL;
 | |
| 		nvme_free_queue(nvmeq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
 | |
| {
 | |
| 	struct nvme_dev *dev = nvmeq->dev;
 | |
| 
 | |
| 	nvmeq->sq_tail = 0;
 | |
| 	nvmeq->cq_head = 0;
 | |
| 	nvmeq->cq_phase = 1;
 | |
| 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
 | |
| 	memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
 | |
| 	flush_dcache_range((ulong)nvmeq->cqes,
 | |
| 			   (ulong)nvmeq->cqes + NVME_CQ_SIZE(nvmeq->q_depth));
 | |
| 	dev->online_queues++;
 | |
| }
 | |
| 
 | |
| static int nvme_configure_admin_queue(struct nvme_dev *dev)
 | |
| {
 | |
| 	int result;
 | |
| 	u32 aqa;
 | |
| 	u64 cap = dev->cap;
 | |
| 	struct nvme_queue *nvmeq;
 | |
| 	/* most architectures use 4KB as the page size */
 | |
| 	unsigned page_shift = 12;
 | |
| 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
 | |
| 	unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
 | |
| 
 | |
| 	if (page_shift < dev_page_min) {
 | |
| 		debug("Device minimum page size (%u) too large for host (%u)\n",
 | |
| 		      1 << dev_page_min, 1 << page_shift);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	if (page_shift > dev_page_max) {
 | |
| 		debug("Device maximum page size (%u) smaller than host (%u)\n",
 | |
| 		      1 << dev_page_max, 1 << page_shift);
 | |
| 		page_shift = dev_page_max;
 | |
| 	}
 | |
| 
 | |
| 	result = nvme_disable_ctrl(dev);
 | |
| 	if (result < 0)
 | |
| 		return result;
 | |
| 
 | |
| 	nvmeq = dev->queues[NVME_ADMIN_Q];
 | |
| 	if (!nvmeq) {
 | |
| 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
 | |
| 		if (!nvmeq)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	aqa = nvmeq->q_depth - 1;
 | |
| 	aqa |= aqa << 16;
 | |
| 	aqa |= aqa << 16;
 | |
| 
 | |
| 	dev->page_size = 1 << page_shift;
 | |
| 
 | |
| 	dev->ctrl_config = NVME_CC_CSS_NVM;
 | |
| 	dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
 | |
| 	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
 | |
| 	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
 | |
| 
 | |
| 	writel(aqa, &dev->bar->aqa);
 | |
| 	nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
 | |
| 	nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
 | |
| 
 | |
| 	result = nvme_enable_ctrl(dev);
 | |
| 	if (result)
 | |
| 		goto free_nvmeq;
 | |
| 
 | |
| 	nvmeq->cq_vector = 0;
 | |
| 
 | |
| 	nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
 | |
| 
 | |
| 	return result;
 | |
| 
 | |
|  free_nvmeq:
 | |
| 	nvme_free_queues(dev, 0);
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
 | |
| 			    struct nvme_queue *nvmeq)
 | |
| {
 | |
| 	struct nvme_command c;
 | |
| 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
 | |
| 
 | |
| 	memset(&c, 0, sizeof(c));
 | |
| 	c.create_cq.opcode = nvme_admin_create_cq;
 | |
| 	c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
 | |
| 	c.create_cq.cqid = cpu_to_le16(qid);
 | |
| 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
 | |
| 	c.create_cq.cq_flags = cpu_to_le16(flags);
 | |
| 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
 | |
| 
 | |
| 	return nvme_submit_admin_cmd(dev, &c, NULL);
 | |
| }
 | |
| 
 | |
| static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
 | |
| 			    struct nvme_queue *nvmeq)
 | |
| {
 | |
| 	struct nvme_command c;
 | |
| 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
 | |
| 
 | |
| 	memset(&c, 0, sizeof(c));
 | |
| 	c.create_sq.opcode = nvme_admin_create_sq;
 | |
| 	c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
 | |
| 	c.create_sq.sqid = cpu_to_le16(qid);
 | |
| 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
 | |
| 	c.create_sq.sq_flags = cpu_to_le16(flags);
 | |
| 	c.create_sq.cqid = cpu_to_le16(qid);
 | |
| 
 | |
| 	return nvme_submit_admin_cmd(dev, &c, NULL);
 | |
| }
 | |
| 
 | |
| int nvme_identify(struct nvme_dev *dev, unsigned nsid,
 | |
| 		  unsigned cns, dma_addr_t dma_addr)
 | |
| {
 | |
| 	struct nvme_command c;
 | |
| 	u32 page_size = dev->page_size;
 | |
| 	int offset = dma_addr & (page_size - 1);
 | |
| 	int length = sizeof(struct nvme_id_ctrl);
 | |
| 	int ret;
 | |
| 
 | |
| 	memset(&c, 0, sizeof(c));
 | |
| 	c.identify.opcode = nvme_admin_identify;
 | |
| 	c.identify.nsid = cpu_to_le32(nsid);
 | |
| 	c.identify.prp1 = cpu_to_le64(dma_addr);
 | |
| 
 | |
| 	length -= (page_size - offset);
 | |
| 	if (length <= 0) {
 | |
| 		c.identify.prp2 = 0;
 | |
| 	} else {
 | |
| 		dma_addr += (page_size - offset);
 | |
| 		c.identify.prp2 = cpu_to_le64(dma_addr);
 | |
| 	}
 | |
| 
 | |
| 	c.identify.cns = cpu_to_le32(cns);
 | |
| 
 | |
| 	ret = nvme_submit_admin_cmd(dev, &c, NULL);
 | |
| 	if (!ret)
 | |
| 		invalidate_dcache_range(dma_addr,
 | |
| 					dma_addr + sizeof(struct nvme_id_ctrl));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
 | |
| 		      dma_addr_t dma_addr, u32 *result)
 | |
| {
 | |
| 	struct nvme_command c;
 | |
| 
 | |
| 	memset(&c, 0, sizeof(c));
 | |
| 	c.features.opcode = nvme_admin_get_features;
 | |
| 	c.features.nsid = cpu_to_le32(nsid);
 | |
| 	c.features.prp1 = cpu_to_le64(dma_addr);
 | |
| 	c.features.fid = cpu_to_le32(fid);
 | |
| 
 | |
| 	/*
 | |
| 	 * TODO: add cache invalidate operation when the size of
 | |
| 	 * the DMA buffer is known
 | |
| 	 */
 | |
| 
 | |
| 	return nvme_submit_admin_cmd(dev, &c, result);
 | |
| }
 | |
| 
 | |
| int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
 | |
| 		      dma_addr_t dma_addr, u32 *result)
 | |
| {
 | |
| 	struct nvme_command c;
 | |
| 
 | |
| 	memset(&c, 0, sizeof(c));
 | |
| 	c.features.opcode = nvme_admin_set_features;
 | |
| 	c.features.prp1 = cpu_to_le64(dma_addr);
 | |
| 	c.features.fid = cpu_to_le32(fid);
 | |
| 	c.features.dword11 = cpu_to_le32(dword11);
 | |
| 
 | |
| 	/*
 | |
| 	 * TODO: add cache flush operation when the size of
 | |
| 	 * the DMA buffer is known
 | |
| 	 */
 | |
| 
 | |
| 	return nvme_submit_admin_cmd(dev, &c, result);
 | |
| }
 | |
| 
 | |
| static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
 | |
| {
 | |
| 	struct nvme_dev *dev = nvmeq->dev;
 | |
| 	int result;
 | |
| 
 | |
| 	nvmeq->cq_vector = qid - 1;
 | |
| 	result = nvme_alloc_cq(dev, qid, nvmeq);
 | |
| 	if (result < 0)
 | |
| 		goto release_cq;
 | |
| 
 | |
| 	result = nvme_alloc_sq(dev, qid, nvmeq);
 | |
| 	if (result < 0)
 | |
| 		goto release_sq;
 | |
| 
 | |
| 	nvme_init_queue(nvmeq, qid);
 | |
| 
 | |
| 	return result;
 | |
| 
 | |
|  release_sq:
 | |
| 	nvme_delete_sq(dev, qid);
 | |
|  release_cq:
 | |
| 	nvme_delete_cq(dev, qid);
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static int nvme_set_queue_count(struct nvme_dev *dev, int count)
 | |
| {
 | |
| 	int status;
 | |
| 	u32 result;
 | |
| 	u32 q_count = (count - 1) | ((count - 1) << 16);
 | |
| 
 | |
| 	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
 | |
| 			q_count, 0, &result);
 | |
| 
 | |
| 	if (status < 0)
 | |
| 		return status;
 | |
| 	if (status > 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	return min(result & 0xffff, result >> 16) + 1;
 | |
| }
 | |
| 
 | |
| static void nvme_create_io_queues(struct nvme_dev *dev)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = dev->queue_count; i <= dev->max_qid; i++)
 | |
| 		if (!nvme_alloc_queue(dev, i, dev->q_depth))
 | |
| 			break;
 | |
| 
 | |
| 	for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
 | |
| 		if (nvme_create_queue(dev->queues[i], i))
 | |
| 			break;
 | |
| }
 | |
| 
 | |
| static int nvme_setup_io_queues(struct nvme_dev *dev)
 | |
| {
 | |
| 	int nr_io_queues;
 | |
| 	int result;
 | |
| 
 | |
| 	nr_io_queues = 1;
 | |
| 	result = nvme_set_queue_count(dev, nr_io_queues);
 | |
| 	if (result <= 0)
 | |
| 		return result;
 | |
| 
 | |
| 	dev->max_qid = nr_io_queues;
 | |
| 
 | |
| 	/* Free previously allocated queues */
 | |
| 	nvme_free_queues(dev, nr_io_queues + 1);
 | |
| 	nvme_create_io_queues(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nvme_get_info_from_identify(struct nvme_dev *dev)
 | |
| {
 | |
| 	ALLOC_CACHE_ALIGN_BUFFER(char, buf, sizeof(struct nvme_id_ctrl));
 | |
| 	struct nvme_id_ctrl *ctrl = (struct nvme_id_ctrl *)buf;
 | |
| 	int ret;
 | |
| 	int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
 | |
| 
 | |
| 	ret = nvme_identify(dev, 0, 1, (dma_addr_t)ctrl);
 | |
| 	if (ret)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	dev->nn = le32_to_cpu(ctrl->nn);
 | |
| 	dev->vwc = ctrl->vwc;
 | |
| 	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
 | |
| 	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
 | |
| 	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
 | |
| 	if (ctrl->mdts)
 | |
| 		dev->max_transfer_shift = (ctrl->mdts + shift);
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * Maximum Data Transfer Size (MDTS) field indicates the maximum
 | |
| 		 * data transfer size between the host and the controller. The
 | |
| 		 * host should not submit a command that exceeds this transfer
 | |
| 		 * size. The value is in units of the minimum memory page size
 | |
| 		 * and is reported as a power of two (2^n).
 | |
| 		 *
 | |
| 		 * The spec also says: a value of 0h indicates no restrictions
 | |
| 		 * on transfer size. But in nvme_blk_read/write() below we have
 | |
| 		 * the following algorithm for maximum number of logic blocks
 | |
| 		 * per transfer:
 | |
| 		 *
 | |
| 		 * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
 | |
| 		 *
 | |
| 		 * In order for lbas not to overflow, the maximum number is 15
 | |
| 		 * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
 | |
| 		 * Let's use 20 which provides 1MB size.
 | |
| 		 */
 | |
| 		dev->max_transfer_shift = 20;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int nvme_scan_namespace(void)
 | |
| {
 | |
| 	struct uclass *uc;
 | |
| 	struct udevice *dev;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = uclass_get(UCLASS_NVME, &uc);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	uclass_foreach_dev(dev, uc) {
 | |
| 		ret = device_probe(dev);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nvme_blk_probe(struct udevice *udev)
 | |
| {
 | |
| 	struct nvme_dev *ndev = dev_get_priv(udev->parent);
 | |
| 	struct blk_desc *desc = dev_get_uclass_platdata(udev);
 | |
| 	struct nvme_ns *ns = dev_get_priv(udev);
 | |
| 	u8 flbas;
 | |
| 	ALLOC_CACHE_ALIGN_BUFFER(char, buf, sizeof(struct nvme_id_ns));
 | |
| 	struct nvme_id_ns *id = (struct nvme_id_ns *)buf;
 | |
| 	struct pci_child_platdata *pplat;
 | |
| 
 | |
| 	memset(ns, 0, sizeof(*ns));
 | |
| 	ns->dev = ndev;
 | |
| 	/* extract the namespace id from the block device name */
 | |
| 	ns->ns_id = trailing_strtol(udev->name) + 1;
 | |
| 	if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)id))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
 | |
| 	ns->flbas = flbas;
 | |
| 	ns->lba_shift = id->lbaf[flbas].ds;
 | |
| 	ns->mode_select_num_blocks = le64_to_cpu(id->nsze);
 | |
| 	ns->mode_select_block_len = 1 << ns->lba_shift;
 | |
| 	list_add(&ns->list, &ndev->namespaces);
 | |
| 
 | |
| 	desc->lba = ns->mode_select_num_blocks;
 | |
| 	desc->log2blksz = ns->lba_shift;
 | |
| 	desc->blksz = 1 << ns->lba_shift;
 | |
| 	desc->bdev = udev;
 | |
| 	pplat = dev_get_parent_platdata(udev->parent);
 | |
| 	sprintf(desc->vendor, "0x%.4x", pplat->vendor);
 | |
| 	memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
 | |
| 	memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
 | |
| 	part_init(desc);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
 | |
| 			 lbaint_t blkcnt, void *buffer, bool read)
 | |
| {
 | |
| 	struct nvme_ns *ns = dev_get_priv(udev);
 | |
| 	struct nvme_dev *dev = ns->dev;
 | |
| 	struct nvme_command c;
 | |
| 	struct blk_desc *desc = dev_get_uclass_platdata(udev);
 | |
| 	int status;
 | |
| 	u64 prp2;
 | |
| 	u64 total_len = blkcnt << desc->log2blksz;
 | |
| 	u64 temp_len = total_len;
 | |
| 
 | |
| 	u64 slba = blknr;
 | |
| 	u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
 | |
| 	u64 total_lbas = blkcnt;
 | |
| 
 | |
| 	if (!read)
 | |
| 		flush_dcache_range((unsigned long)buffer,
 | |
| 				   (unsigned long)buffer + total_len);
 | |
| 
 | |
| 	c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
 | |
| 	c.rw.flags = 0;
 | |
| 	c.rw.nsid = cpu_to_le32(ns->ns_id);
 | |
| 	c.rw.control = 0;
 | |
| 	c.rw.dsmgmt = 0;
 | |
| 	c.rw.reftag = 0;
 | |
| 	c.rw.apptag = 0;
 | |
| 	c.rw.appmask = 0;
 | |
| 	c.rw.metadata = 0;
 | |
| 
 | |
| 	while (total_lbas) {
 | |
| 		if (total_lbas < lbas) {
 | |
| 			lbas = (u16)total_lbas;
 | |
| 			total_lbas = 0;
 | |
| 		} else {
 | |
| 			total_lbas -= lbas;
 | |
| 		}
 | |
| 
 | |
| 		if (nvme_setup_prps(dev, &prp2,
 | |
| 				    lbas << ns->lba_shift, (ulong)buffer))
 | |
| 			return -EIO;
 | |
| 		c.rw.slba = cpu_to_le64(slba);
 | |
| 		slba += lbas;
 | |
| 		c.rw.length = cpu_to_le16(lbas - 1);
 | |
| 		c.rw.prp1 = cpu_to_le64((ulong)buffer);
 | |
| 		c.rw.prp2 = cpu_to_le64(prp2);
 | |
| 		status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
 | |
| 				&c, NULL, IO_TIMEOUT);
 | |
| 		if (status)
 | |
| 			break;
 | |
| 		temp_len -= (u32)lbas << ns->lba_shift;
 | |
| 		buffer += lbas << ns->lba_shift;
 | |
| 	}
 | |
| 
 | |
| 	if (read)
 | |
| 		invalidate_dcache_range((unsigned long)buffer,
 | |
| 					(unsigned long)buffer + total_len);
 | |
| 
 | |
| 	return (total_len - temp_len) >> desc->log2blksz;
 | |
| }
 | |
| 
 | |
| static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
 | |
| 			   lbaint_t blkcnt, void *buffer)
 | |
| {
 | |
| 	return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
 | |
| }
 | |
| 
 | |
| static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
 | |
| 			    lbaint_t blkcnt, const void *buffer)
 | |
| {
 | |
| 	return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
 | |
| }
 | |
| 
 | |
| static const struct blk_ops nvme_blk_ops = {
 | |
| 	.read	= nvme_blk_read,
 | |
| 	.write	= nvme_blk_write,
 | |
| };
 | |
| 
 | |
| U_BOOT_DRIVER(nvme_blk) = {
 | |
| 	.name	= "nvme-blk",
 | |
| 	.id	= UCLASS_BLK,
 | |
| 	.probe	= nvme_blk_probe,
 | |
| 	.ops	= &nvme_blk_ops,
 | |
| 	.priv_auto_alloc_size = sizeof(struct nvme_ns),
 | |
| };
 | |
| 
 | |
| static int nvme_bind(struct udevice *udev)
 | |
| {
 | |
| 	static int ndev_num;
 | |
| 	char name[20];
 | |
| 
 | |
| 	sprintf(name, "nvme#%d", ndev_num++);
 | |
| 
 | |
| 	return device_set_name(udev, name);
 | |
| }
 | |
| 
 | |
| static int nvme_probe(struct udevice *udev)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct nvme_dev *ndev = dev_get_priv(udev);
 | |
| 
 | |
| 	ndev->instance = trailing_strtol(udev->name);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&ndev->namespaces);
 | |
| 	ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
 | |
| 			PCI_REGION_MEM);
 | |
| 	if (readl(&ndev->bar->csts) == -1) {
 | |
| 		ret = -ENODEV;
 | |
| 		printf("Error: %s: Out of memory!\n", udev->name);
 | |
| 		goto free_nvme;
 | |
| 	}
 | |
| 
 | |
| 	ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
 | |
| 	if (!ndev->queues) {
 | |
| 		ret = -ENOMEM;
 | |
| 		printf("Error: %s: Out of memory!\n", udev->name);
 | |
| 		goto free_nvme;
 | |
| 	}
 | |
| 	memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
 | |
| 
 | |
| 	ndev->prp_pool = malloc(MAX_PRP_POOL);
 | |
| 	if (!ndev->prp_pool) {
 | |
| 		ret = -ENOMEM;
 | |
| 		printf("Error: %s: Out of memory!\n", udev->name);
 | |
| 		goto free_nvme;
 | |
| 	}
 | |
| 	ndev->prp_entry_num = MAX_PRP_POOL >> 3;
 | |
| 
 | |
| 	ndev->cap = nvme_readq(&ndev->bar->cap);
 | |
| 	ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
 | |
| 	ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
 | |
| 	ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
 | |
| 
 | |
| 	ret = nvme_configure_admin_queue(ndev);
 | |
| 	if (ret)
 | |
| 		goto free_queue;
 | |
| 
 | |
| 	ret = nvme_setup_io_queues(ndev);
 | |
| 	if (ret)
 | |
| 		goto free_queue;
 | |
| 
 | |
| 	nvme_get_info_from_identify(ndev);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_queue:
 | |
| 	free((void *)ndev->queues);
 | |
| free_nvme:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| U_BOOT_DRIVER(nvme) = {
 | |
| 	.name	= "nvme",
 | |
| 	.id	= UCLASS_NVME,
 | |
| 	.bind	= nvme_bind,
 | |
| 	.probe	= nvme_probe,
 | |
| 	.priv_auto_alloc_size = sizeof(struct nvme_dev),
 | |
| };
 | |
| 
 | |
| struct pci_device_id nvme_supported[] = {
 | |
| 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| U_BOOT_PCI_DEVICE(nvme, nvme_supported);
 |