323 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			323 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 2014 Freescale Semiconductor, Inc.
 | |
|  *
 | |
|  * calculate the organization and timing parameter
 | |
|  * from ddr3 spd, please refer to the spec
 | |
|  * JEDEC standard No.21-C 4_01_02_12R23A.pdf
 | |
|  *
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <fsl_ddr_sdram.h>
 | |
| 
 | |
| #include <fsl_ddr.h>
 | |
| 
 | |
| /*
 | |
|  * Calculate the Density of each Physical Rank.
 | |
|  * Returned size is in bytes.
 | |
|  *
 | |
|  * Total DIMM size =
 | |
|  * sdram capacity(bit) / 8 * primary bus width / sdram width
 | |
|  *                     * Logical Ranks per DIMM
 | |
|  *
 | |
|  * where: sdram capacity  = spd byte4[3:0]
 | |
|  *        primary bus width = spd byte13[2:0]
 | |
|  *        sdram width = spd byte12[2:0]
 | |
|  *        Logical Ranks per DIMM = spd byte12[5:3] for SDP, DDP, QDP
 | |
|  *                                 spd byte12{5:3] * spd byte6[6:4] for 3DS
 | |
|  *
 | |
|  * To simplify each rank size = total DIMM size / Number of Package Ranks
 | |
|  * where Number of Package Ranks = spd byte12[5:3]
 | |
|  *
 | |
|  * SPD byte4 - sdram density and banks
 | |
|  *	bit[3:0]	size(bit)	size(byte)
 | |
|  *	0000		256Mb		32MB
 | |
|  *	0001		512Mb		64MB
 | |
|  *	0010		1Gb		128MB
 | |
|  *	0011		2Gb		256MB
 | |
|  *	0100		4Gb		512MB
 | |
|  *	0101		8Gb		1GB
 | |
|  *	0110		16Gb		2GB
 | |
|  *      0111		32Gb		4GB
 | |
|  *
 | |
|  * SPD byte13 - module memory bus width
 | |
|  *	bit[2:0]	primary bus width
 | |
|  *	000		8bits
 | |
|  *	001		16bits
 | |
|  *	010		32bits
 | |
|  *	011		64bits
 | |
|  *
 | |
|  * SPD byte12 - module organization
 | |
|  *	bit[2:0]	sdram device width
 | |
|  *	000		4bits
 | |
|  *	001		8bits
 | |
|  *	010		16bits
 | |
|  *	011		32bits
 | |
|  *
 | |
|  * SPD byte12 - module organization
 | |
|  *	bit[5:3]	number of package ranks per DIMM
 | |
|  *	000		1
 | |
|  *	001		2
 | |
|  *	010		3
 | |
|  *	011		4
 | |
|  *
 | |
|  * SPD byte6 - SDRAM package type
 | |
|  *	bit[6:4]	Die count
 | |
|  *	000		1
 | |
|  *	001		2
 | |
|  *	010		3
 | |
|  *	011		4
 | |
|  *	100		5
 | |
|  *	101		6
 | |
|  *	110		7
 | |
|  *	111		8
 | |
|  *
 | |
|  * SPD byte6 - SRAM package type
 | |
|  *	bit[1:0]	Signal loading
 | |
|  *	00		Not specified
 | |
|  *	01		Multi load stack
 | |
|  *	10		Sigle load stack (3DS)
 | |
|  *	11		Reserved
 | |
|  */
 | |
| static unsigned long long
 | |
| compute_ranksize(const struct ddr4_spd_eeprom_s *spd)
 | |
| {
 | |
| 	unsigned long long bsize;
 | |
| 
 | |
| 	int nbit_sdram_cap_bsize = 0;
 | |
| 	int nbit_primary_bus_width = 0;
 | |
| 	int nbit_sdram_width = 0;
 | |
| 	int die_count = 0;
 | |
| 	bool package_3ds;
 | |
| 
 | |
| 	if ((spd->density_banks & 0xf) <= 7)
 | |
| 		nbit_sdram_cap_bsize = (spd->density_banks & 0xf) + 28;
 | |
| 	if ((spd->bus_width & 0x7) < 4)
 | |
| 		nbit_primary_bus_width = (spd->bus_width & 0x7) + 3;
 | |
| 	if ((spd->organization & 0x7) < 4)
 | |
| 		nbit_sdram_width = (spd->organization & 0x7) + 2;
 | |
| 	package_3ds = (spd->package_type & 0x3) == 0x2;
 | |
| 	if (package_3ds)
 | |
| 		die_count = (spd->package_type >> 4) & 0x7;
 | |
| 
 | |
| 	bsize = 1ULL << (nbit_sdram_cap_bsize - 3 +
 | |
| 			 nbit_primary_bus_width - nbit_sdram_width +
 | |
| 			 die_count);
 | |
| 
 | |
| 	debug("DDR: DDR III rank density = 0x%16llx\n", bsize);
 | |
| 
 | |
| 	return bsize;
 | |
| }
 | |
| 
 | |
| #define spd_to_ps(mtb, ftb)	\
 | |
| 	(mtb * pdimm->mtb_ps + (ftb * pdimm->ftb_10th_ps) / 10)
 | |
| /*
 | |
|  * ddr_compute_dimm_parameters for DDR4 SPD
 | |
|  *
 | |
|  * Compute DIMM parameters based upon the SPD information in spd.
 | |
|  * Writes the results to the dimm_params_t structure pointed by pdimm.
 | |
|  *
 | |
|  */
 | |
| unsigned int ddr_compute_dimm_parameters(const unsigned int ctrl_num,
 | |
| 					 const generic_spd_eeprom_t *spd,
 | |
| 					 dimm_params_t *pdimm,
 | |
| 					 unsigned int dimm_number)
 | |
| {
 | |
| 	unsigned int retval;
 | |
| 	int i;
 | |
| 	const u8 udimm_rc_e_dq[18] = {
 | |
| 		0x0c, 0x2c, 0x15, 0x35, 0x15, 0x35, 0x0b, 0x2c, 0x15,
 | |
| 		0x35, 0x0b, 0x35, 0x0b, 0x2c, 0x0b, 0x35, 0x15, 0x36
 | |
| 	};
 | |
| 	int spd_error = 0;
 | |
| 	u8 *ptr;
 | |
| 
 | |
| 	if (spd->mem_type) {
 | |
| 		if (spd->mem_type != SPD_MEMTYPE_DDR4) {
 | |
| 			printf("DIMM %u: is not a DDR4 SPD.\n", dimm_number);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		memset(pdimm, 0, sizeof(dimm_params_t));
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	retval = ddr4_spd_check(spd);
 | |
| 	if (retval) {
 | |
| 		printf("DIMM %u: failed checksum\n", dimm_number);
 | |
| 		return 2;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The part name in ASCII in the SPD EEPROM is not null terminated.
 | |
| 	 * Guarantee null termination here by presetting all bytes to 0
 | |
| 	 * and copying the part name in ASCII from the SPD onto it
 | |
| 	 */
 | |
| 	memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
 | |
| 	if ((spd->info_size_crc & 0xF) > 2)
 | |
| 		memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
 | |
| 
 | |
| 	/* DIMM organization parameters */
 | |
| 	pdimm->n_ranks = ((spd->organization >> 3) & 0x7) + 1;
 | |
| 	pdimm->rank_density = compute_ranksize(spd);
 | |
| 	pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
 | |
| 	pdimm->primary_sdram_width = 1 << (3 + (spd->bus_width & 0x7));
 | |
| 	if ((spd->bus_width >> 3) & 0x3)
 | |
| 		pdimm->ec_sdram_width = 8;
 | |
| 	else
 | |
| 		pdimm->ec_sdram_width = 0;
 | |
| 	pdimm->data_width = pdimm->primary_sdram_width
 | |
| 			  + pdimm->ec_sdram_width;
 | |
| 	pdimm->device_width = 1 << ((spd->organization & 0x7) + 2);
 | |
| 
 | |
| 	/* These are the types defined by the JEDEC SPD spec */
 | |
| 	pdimm->mirrored_dimm = 0;
 | |
| 	pdimm->registered_dimm = 0;
 | |
| 	switch (spd->module_type & DDR4_SPD_MODULETYPE_MASK) {
 | |
| 	case DDR4_SPD_MODULETYPE_RDIMM:
 | |
| 		/* Registered/buffered DIMMs */
 | |
| 		pdimm->registered_dimm = 1;
 | |
| 		break;
 | |
| 
 | |
| 	case DDR4_SPD_MODULETYPE_UDIMM:
 | |
| 	case DDR4_SPD_MODULETYPE_SO_DIMM:
 | |
| 		/* Unbuffered DIMMs */
 | |
| 		if (spd->mod_section.unbuffered.addr_mapping & 0x1)
 | |
| 			pdimm->mirrored_dimm = 1;
 | |
| 		if ((spd->mod_section.unbuffered.mod_height & 0xe0) == 0 &&
 | |
| 		    (spd->mod_section.unbuffered.ref_raw_card == 0x04)) {
 | |
| 			/* Fix SPD error found on DIMMs with raw card E0 */
 | |
| 			for (i = 0; i < 18; i++) {
 | |
| 				if (spd->mapping[i] == udimm_rc_e_dq[i])
 | |
| 					continue;
 | |
| 				spd_error = 1;
 | |
| 				debug("SPD byte %d: 0x%x, should be 0x%x\n",
 | |
| 				      60 + i, spd->mapping[i],
 | |
| 				      udimm_rc_e_dq[i]);
 | |
| 				ptr = (u8 *)&spd->mapping[i];
 | |
| 				*ptr = udimm_rc_e_dq[i];
 | |
| 			}
 | |
| 			if (spd_error)
 | |
| 				puts("SPD DQ mapping error fixed\n");
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		printf("unknown module_type 0x%02X\n", spd->module_type);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* SDRAM device parameters */
 | |
| 	pdimm->n_row_addr = ((spd->addressing >> 3) & 0x7) + 12;
 | |
| 	pdimm->n_col_addr = (spd->addressing & 0x7) + 9;
 | |
| 	pdimm->bank_addr_bits = (spd->density_banks >> 4) & 0x3;
 | |
| 	pdimm->bank_group_bits = (spd->density_banks >> 6) & 0x3;
 | |
| 
 | |
| 	/*
 | |
| 	 * The SPD spec has not the ECC bit,
 | |
| 	 * We consider the DIMM as ECC capability
 | |
| 	 * when the extension bus exist
 | |
| 	 */
 | |
| 	if (pdimm->ec_sdram_width)
 | |
| 		pdimm->edc_config = 0x02;
 | |
| 	else
 | |
| 		pdimm->edc_config = 0x00;
 | |
| 
 | |
| 	/*
 | |
| 	 * The SPD spec has not the burst length byte
 | |
| 	 * but DDR4 spec has nature BL8 and BC4,
 | |
| 	 * BL8 -bit3, BC4 -bit2
 | |
| 	 */
 | |
| 	pdimm->burst_lengths_bitmask = 0x0c;
 | |
| 	pdimm->row_density = __ilog2(pdimm->rank_density);
 | |
| 
 | |
| 	/* MTB - medium timebase
 | |
| 	 * The MTB in the SPD spec is 125ps,
 | |
| 	 *
 | |
| 	 * FTB - fine timebase
 | |
| 	 * use 1/10th of ps as our unit to avoid floating point
 | |
| 	 * eg, 10 for 1ps, 25 for 2.5ps, 50 for 5ps
 | |
| 	 */
 | |
| 	if ((spd->timebases & 0xf) == 0x0) {
 | |
| 		pdimm->mtb_ps = 125;
 | |
| 		pdimm->ftb_10th_ps = 10;
 | |
| 
 | |
| 	} else {
 | |
| 		printf("Unknown Timebases\n");
 | |
| 	}
 | |
| 
 | |
| 	/* sdram minimum cycle time */
 | |
| 	pdimm->tckmin_x_ps = spd_to_ps(spd->tck_min, spd->fine_tck_min);
 | |
| 
 | |
| 	/* sdram max cycle time */
 | |
| 	pdimm->tckmax_ps = spd_to_ps(spd->tck_max, spd->fine_tck_max);
 | |
| 
 | |
| 	/*
 | |
| 	 * CAS latency supported
 | |
| 	 * bit0 - CL7
 | |
| 	 * bit4 - CL11
 | |
| 	 * bit8 - CL15
 | |
| 	 * bit12- CL19
 | |
| 	 * bit16- CL23
 | |
| 	 */
 | |
| 	pdimm->caslat_x  = (spd->caslat_b1 << 7)	|
 | |
| 			   (spd->caslat_b2 << 15)	|
 | |
| 			   (spd->caslat_b3 << 23);
 | |
| 
 | |
| 	BUG_ON(spd->caslat_b4 != 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * min CAS latency time
 | |
| 	 */
 | |
| 	pdimm->taa_ps = spd_to_ps(spd->taa_min, spd->fine_taa_min);
 | |
| 
 | |
| 	/*
 | |
| 	 * min RAS to CAS delay time
 | |
| 	 */
 | |
| 	pdimm->trcd_ps = spd_to_ps(spd->trcd_min, spd->fine_trcd_min);
 | |
| 
 | |
| 	/*
 | |
| 	 * Min Row Precharge Delay Time
 | |
| 	 */
 | |
| 	pdimm->trp_ps = spd_to_ps(spd->trp_min, spd->fine_trp_min);
 | |
| 
 | |
| 	/* min active to precharge delay time */
 | |
| 	pdimm->tras_ps = (((spd->tras_trc_ext & 0xf) << 8) +
 | |
| 			  spd->tras_min_lsb) * pdimm->mtb_ps;
 | |
| 
 | |
| 	/* min active to actice/refresh delay time */
 | |
| 	pdimm->trc_ps = spd_to_ps((((spd->tras_trc_ext & 0xf0) << 4) +
 | |
| 				   spd->trc_min_lsb), spd->fine_trc_min);
 | |
| 	/* Min Refresh Recovery Delay Time */
 | |
| 	pdimm->trfc1_ps = ((spd->trfc1_min_msb << 8) | (spd->trfc1_min_lsb)) *
 | |
| 		       pdimm->mtb_ps;
 | |
| 	pdimm->trfc2_ps = ((spd->trfc2_min_msb << 8) | (spd->trfc2_min_lsb)) *
 | |
| 		       pdimm->mtb_ps;
 | |
| 	pdimm->trfc4_ps = ((spd->trfc4_min_msb << 8) | (spd->trfc4_min_lsb)) *
 | |
| 			pdimm->mtb_ps;
 | |
| 	/* min four active window delay time */
 | |
| 	pdimm->tfaw_ps = (((spd->tfaw_msb & 0xf) << 8) | spd->tfaw_min) *
 | |
| 			pdimm->mtb_ps;
 | |
| 
 | |
| 	/* min row active to row active delay time, different bank group */
 | |
| 	pdimm->trrds_ps = spd_to_ps(spd->trrds_min, spd->fine_trrds_min);
 | |
| 	/* min row active to row active delay time, same bank group */
 | |
| 	pdimm->trrdl_ps = spd_to_ps(spd->trrdl_min, spd->fine_trrdl_min);
 | |
| 	/* min CAS to CAS Delay Time (tCCD_Lmin), same bank group */
 | |
| 	pdimm->tccdl_ps = spd_to_ps(spd->tccdl_min, spd->fine_tccdl_min);
 | |
| 
 | |
| 	/*
 | |
| 	 * Average periodic refresh interval
 | |
| 	 * tREFI = 7.8 us at normal temperature range
 | |
| 	 */
 | |
| 	pdimm->refresh_rate_ps = 7800000;
 | |
| 
 | |
| 	for (i = 0; i < 18; i++)
 | |
| 		pdimm->dq_mapping[i] = spd->mapping[i];
 | |
| 
 | |
| 	pdimm->dq_mapping_ors = ((spd->mapping[0] >> 6) & 0x3) == 0 ? 1 : 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 |