863 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			863 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * drivers/mtd/nand/nand_util.c
 | |
|  *
 | |
|  * Copyright (C) 2006 by Weiss-Electronic GmbH.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * @author:	Guido Classen <clagix@gmail.com>
 | |
|  * @descr:	NAND Flash support
 | |
|  * @references: borrowed heavily from Linux mtd-utils code:
 | |
|  *		flash_eraseall.c by Arcom Control System Ltd
 | |
|  *		nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
 | |
|  *			       and Thomas Gleixner (tglx@linutronix.de)
 | |
|  *
 | |
|  * Copyright (C) 2008 Nokia Corporation: drop_ffs() function by
 | |
|  * Artem Bityutskiy <dedekind1@gmail.com> from mtd-utils
 | |
|  *
 | |
|  * Copyright 2010 Freescale Semiconductor
 | |
|  *
 | |
|  * SPDX-License-Identifier:	GPL-2.0
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <command.h>
 | |
| #include <watchdog.h>
 | |
| #include <malloc.h>
 | |
| #include <div64.h>
 | |
| 
 | |
| #include <asm/errno.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <nand.h>
 | |
| #include <jffs2/jffs2.h>
 | |
| 
 | |
| typedef struct erase_info	erase_info_t;
 | |
| typedef struct mtd_info		mtd_info_t;
 | |
| 
 | |
| /* support only for native endian JFFS2 */
 | |
| #define cpu_to_je16(x) (x)
 | |
| #define cpu_to_je32(x) (x)
 | |
| 
 | |
| /**
 | |
|  * nand_erase_opts: - erase NAND flash with support for various options
 | |
|  *		      (jffs2 formatting)
 | |
|  *
 | |
|  * @param meminfo	NAND device to erase
 | |
|  * @param opts		options,  @see struct nand_erase_options
 | |
|  * @return		0 in case of success
 | |
|  *
 | |
|  * This code is ported from flash_eraseall.c from Linux mtd utils by
 | |
|  * Arcom Control System Ltd.
 | |
|  */
 | |
| int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
 | |
| {
 | |
| 	struct jffs2_unknown_node cleanmarker;
 | |
| 	erase_info_t erase;
 | |
| 	unsigned long erase_length, erased_length; /* in blocks */
 | |
| 	int result;
 | |
| 	int percent_complete = -1;
 | |
| 	const char *mtd_device = meminfo->name;
 | |
| 	struct mtd_oob_ops oob_opts;
 | |
| 	struct nand_chip *chip = meminfo->priv;
 | |
| 
 | |
| 	if ((opts->offset & (meminfo->erasesize - 1)) != 0) {
 | |
| 		printf("Attempt to erase non block-aligned data\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	memset(&erase, 0, sizeof(erase));
 | |
| 	memset(&oob_opts, 0, sizeof(oob_opts));
 | |
| 
 | |
| 	erase.mtd = meminfo;
 | |
| 	erase.len  = meminfo->erasesize;
 | |
| 	erase.addr = opts->offset;
 | |
| 	erase_length = lldiv(opts->length + meminfo->erasesize - 1,
 | |
| 			     meminfo->erasesize);
 | |
| 
 | |
| 	cleanmarker.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
 | |
| 	cleanmarker.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
 | |
| 	cleanmarker.totlen = cpu_to_je32(8);
 | |
| 
 | |
| 	/* scrub option allows to erase badblock. To prevent internal
 | |
| 	 * check from erase() method, set block check method to dummy
 | |
| 	 * and disable bad block table while erasing.
 | |
| 	 */
 | |
| 	if (opts->scrub) {
 | |
| 		erase.scrub = opts->scrub;
 | |
| 		/*
 | |
| 		 * We don't need the bad block table anymore...
 | |
| 		 * after scrub, there are no bad blocks left!
 | |
| 		 */
 | |
| 		if (chip->bbt) {
 | |
| 			kfree(chip->bbt);
 | |
| 		}
 | |
| 		chip->bbt = NULL;
 | |
| 		chip->options &= ~NAND_BBT_SCANNED;
 | |
| 	}
 | |
| 
 | |
| 	for (erased_length = 0;
 | |
| 	     erased_length < erase_length;
 | |
| 	     erase.addr += meminfo->erasesize) {
 | |
| 
 | |
| 		WATCHDOG_RESET();
 | |
| 
 | |
| 		if (opts->lim && (erase.addr >= (opts->offset + opts->lim))) {
 | |
| 			puts("Size of erase exceeds limit\n");
 | |
| 			return -EFBIG;
 | |
| 		}
 | |
| 		if (!opts->scrub) {
 | |
| 			int ret = mtd_block_isbad(meminfo, erase.addr);
 | |
| 			if (ret > 0) {
 | |
| 				if (!opts->quiet)
 | |
| 					printf("\rSkipping bad block at  "
 | |
| 					       "0x%08llx                 "
 | |
| 					       "                         \n",
 | |
| 					       erase.addr);
 | |
| 
 | |
| 				if (!opts->spread)
 | |
| 					erased_length++;
 | |
| 
 | |
| 				continue;
 | |
| 
 | |
| 			} else if (ret < 0) {
 | |
| 				printf("\n%s: MTD get bad block failed: %d\n",
 | |
| 				       mtd_device,
 | |
| 				       ret);
 | |
| 				return -1;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		erased_length++;
 | |
| 
 | |
| 		result = mtd_erase(meminfo, &erase);
 | |
| 		if (result != 0) {
 | |
| 			printf("\n%s: MTD Erase failure: %d\n",
 | |
| 			       mtd_device, result);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* format for JFFS2 ? */
 | |
| 		if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
 | |
| 			struct mtd_oob_ops ops;
 | |
| 			ops.ooblen = 8;
 | |
| 			ops.datbuf = NULL;
 | |
| 			ops.oobbuf = (uint8_t *)&cleanmarker;
 | |
| 			ops.ooboffs = 0;
 | |
| 			ops.mode = MTD_OPS_AUTO_OOB;
 | |
| 
 | |
| 			result = mtd_write_oob(meminfo,
 | |
| 						    erase.addr,
 | |
| 						    &ops);
 | |
| 			if (result != 0) {
 | |
| 				printf("\n%s: MTD writeoob failure: %d\n",
 | |
| 				       mtd_device, result);
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!opts->quiet) {
 | |
| 			unsigned long long n = erased_length * 100ULL;
 | |
| 			int percent;
 | |
| 
 | |
| 			do_div(n, erase_length);
 | |
| 			percent = (int)n;
 | |
| 
 | |
| 			/* output progress message only at whole percent
 | |
| 			 * steps to reduce the number of messages printed
 | |
| 			 * on (slow) serial consoles
 | |
| 			 */
 | |
| 			if (percent != percent_complete) {
 | |
| 				percent_complete = percent;
 | |
| 
 | |
| 				printf("\rErasing at 0x%llx -- %3d%% complete.",
 | |
| 				       erase.addr, percent);
 | |
| 
 | |
| 				if (opts->jffs2 && result == 0)
 | |
| 					printf(" Cleanmarker written at 0x%llx.",
 | |
| 					       erase.addr);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (!opts->quiet)
 | |
| 		printf("\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
 | |
| 
 | |
| #define NAND_CMD_LOCK_TIGHT     0x2c
 | |
| #define NAND_CMD_LOCK_STATUS    0x7a
 | |
|  
 | |
| /******************************************************************************
 | |
|  * Support for locking / unlocking operations of some NAND devices
 | |
|  *****************************************************************************/
 | |
| 
 | |
| /**
 | |
|  * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
 | |
|  *	      state
 | |
|  *
 | |
|  * @param mtd		nand mtd instance
 | |
|  * @param tight		bring device in lock tight mode
 | |
|  *
 | |
|  * @return		0 on success, -1 in case of error
 | |
|  *
 | |
|  * The lock / lock-tight command only applies to the whole chip. To get some
 | |
|  * parts of the chip lock and others unlocked use the following sequence:
 | |
|  *
 | |
|  * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
 | |
|  * - Call nand_unlock() once for each consecutive area to be unlocked
 | |
|  * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
 | |
|  *
 | |
|  *   If the device is in lock-tight state software can't change the
 | |
|  *   current active lock/unlock state of all pages. nand_lock() / nand_unlock()
 | |
|  *   calls will fail. It is only posible to leave lock-tight state by
 | |
|  *   an hardware signal (low pulse on _WP pin) or by power down.
 | |
|  */
 | |
| int nand_lock(struct mtd_info *mtd, int tight)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int status;
 | |
| 	struct nand_chip *chip = mtd->priv;
 | |
| 
 | |
| 	/* select the NAND device */
 | |
| 	chip->select_chip(mtd, 0);
 | |
| 
 | |
| 	/* check the Lock Tight Status */
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, 0);
 | |
| 	if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
 | |
| 		printf("nand_lock: Device is locked tight!\n");
 | |
| 		ret = -1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	chip->cmdfunc(mtd,
 | |
| 		      (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
 | |
| 		      -1, -1);
 | |
| 
 | |
| 	/* call wait ready function */
 | |
| 	status = chip->waitfunc(mtd, chip);
 | |
| 
 | |
| 	/* see if device thinks it succeeded */
 | |
| 	if (status & 0x01) {
 | |
| 		ret = -1;
 | |
| 	}
 | |
| 
 | |
|  out:
 | |
| 	/* de-select the NAND device */
 | |
| 	chip->select_chip(mtd, -1);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nand_get_lock_status: - query current lock state from one page of NAND
 | |
|  *			   flash
 | |
|  *
 | |
|  * @param mtd		nand mtd instance
 | |
|  * @param offset	page address to query (must be page-aligned!)
 | |
|  *
 | |
|  * @return		-1 in case of error
 | |
|  *			>0 lock status:
 | |
|  *			  bitfield with the following combinations:
 | |
|  *			  NAND_LOCK_STATUS_TIGHT: page in tight state
 | |
|  *			  NAND_LOCK_STATUS_UNLOCK: page unlocked
 | |
|  *
 | |
|  */
 | |
| int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int chipnr;
 | |
| 	int page;
 | |
| 	struct nand_chip *chip = mtd->priv;
 | |
| 
 | |
| 	/* select the NAND device */
 | |
| 	chipnr = (int)(offset >> chip->chip_shift);
 | |
| 	chip->select_chip(mtd, chipnr);
 | |
| 
 | |
| 
 | |
| 	if ((offset & (mtd->writesize - 1)) != 0) {
 | |
| 		printf("nand_get_lock_status: "
 | |
| 			"Start address must be beginning of "
 | |
| 			"nand page!\n");
 | |
| 		ret = -1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* check the Lock Status */
 | |
| 	page = (int)(offset >> chip->page_shift);
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
 | |
| 
 | |
| 	ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
 | |
| 					  | NAND_LOCK_STATUS_UNLOCK);
 | |
| 
 | |
|  out:
 | |
| 	/* de-select the NAND device */
 | |
| 	chip->select_chip(mtd, -1);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nand_unlock: - Unlock area of NAND pages
 | |
|  *		  only one consecutive area can be unlocked at one time!
 | |
|  *
 | |
|  * @param mtd		nand mtd instance
 | |
|  * @param start		start byte address
 | |
|  * @param length	number of bytes to unlock (must be a multiple of
 | |
|  *			page size nand->writesize)
 | |
|  * @param allexcept	if set, unlock everything not selected
 | |
|  *
 | |
|  * @return		0 on success, -1 in case of error
 | |
|  */
 | |
| int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length,
 | |
| 	int allexcept)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int chipnr;
 | |
| 	int status;
 | |
| 	int page;
 | |
| 	struct nand_chip *chip = mtd->priv;
 | |
| 
 | |
| 	debug("nand_unlock%s: start: %08llx, length: %zd!\n",
 | |
| 		allexcept ? " (allexcept)" : "", start, length);
 | |
| 
 | |
| 	/* select the NAND device */
 | |
| 	chipnr = (int)(start >> chip->chip_shift);
 | |
| 	chip->select_chip(mtd, chipnr);
 | |
| 
 | |
| 	/* check the WP bit */
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 | |
| 	if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
 | |
| 		printf("nand_unlock: Device is write protected!\n");
 | |
| 		ret = -1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* check the Lock Tight Status */
 | |
| 	page = (int)(start >> chip->page_shift);
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
 | |
| 	if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
 | |
| 		printf("nand_unlock: Device is locked tight!\n");
 | |
| 		ret = -1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if ((start & (mtd->erasesize - 1)) != 0) {
 | |
| 		printf("nand_unlock: Start address must be beginning of "
 | |
| 			"nand block!\n");
 | |
| 		ret = -1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
 | |
| 		printf("nand_unlock: Length must be a multiple of nand block "
 | |
| 			"size %08x!\n", mtd->erasesize);
 | |
| 		ret = -1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set length so that the last address is set to the
 | |
| 	 * starting address of the last block
 | |
| 	 */
 | |
| 	length -= mtd->erasesize;
 | |
| 
 | |
| 	/* submit address of first page to unlock */
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
 | |
| 
 | |
| 	/* submit ADDRESS of LAST page to unlock */
 | |
| 	page += (int)(length >> chip->page_shift);
 | |
| 
 | |
| 	/*
 | |
| 	 * Page addresses for unlocking are supposed to be block-aligned.
 | |
| 	 * At least some NAND chips use the low bit to indicate that the
 | |
| 	 * page range should be inverted.
 | |
| 	 */
 | |
| 	if (allexcept)
 | |
| 		page |= 1;
 | |
| 
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
 | |
| 
 | |
| 	/* call wait ready function */
 | |
| 	status = chip->waitfunc(mtd, chip);
 | |
| 	/* see if device thinks it succeeded */
 | |
| 	if (status & 0x01) {
 | |
| 		/* there was an error */
 | |
| 		ret = -1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
|  out:
 | |
| 	/* de-select the NAND device */
 | |
| 	chip->select_chip(mtd, -1);
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * check_skip_len
 | |
|  *
 | |
|  * Check if there are any bad blocks, and whether length including bad
 | |
|  * blocks fits into device
 | |
|  *
 | |
|  * @param nand NAND device
 | |
|  * @param offset offset in flash
 | |
|  * @param length image length
 | |
|  * @param used length of flash needed for the requested length
 | |
|  * @return 0 if the image fits and there are no bad blocks
 | |
|  *         1 if the image fits, but there are bad blocks
 | |
|  *        -1 if the image does not fit
 | |
|  */
 | |
| static int check_skip_len(nand_info_t *nand, loff_t offset, size_t length,
 | |
| 		size_t *used)
 | |
| {
 | |
| 	size_t len_excl_bad = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	while (len_excl_bad < length) {
 | |
| 		size_t block_len, block_off;
 | |
| 		loff_t block_start;
 | |
| 
 | |
| 		if (offset >= nand->size)
 | |
| 			return -1;
 | |
| 
 | |
| 		block_start = offset & ~(loff_t)(nand->erasesize - 1);
 | |
| 		block_off = offset & (nand->erasesize - 1);
 | |
| 		block_len = nand->erasesize - block_off;
 | |
| 
 | |
| 		if (!nand_block_isbad(nand, block_start))
 | |
| 			len_excl_bad += block_len;
 | |
| 		else
 | |
| 			ret = 1;
 | |
| 
 | |
| 		offset += block_len;
 | |
| 		*used += block_len;
 | |
| 	}
 | |
| 
 | |
| 	/* If the length is not a multiple of block_len, adjust. */
 | |
| 	if (len_excl_bad > length)
 | |
| 		*used -= (len_excl_bad - length);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CMD_NAND_TRIMFFS
 | |
| static size_t drop_ffs(const nand_info_t *nand, const u_char *buf,
 | |
| 			const size_t *len)
 | |
| {
 | |
| 	size_t l = *len;
 | |
| 	ssize_t i;
 | |
| 
 | |
| 	for (i = l - 1; i >= 0; i--)
 | |
| 		if (buf[i] != 0xFF)
 | |
| 			break;
 | |
| 
 | |
| 	/* The resulting length must be aligned to the minimum flash I/O size */
 | |
| 	l = i + 1;
 | |
| 	l = (l + nand->writesize - 1) / nand->writesize;
 | |
| 	l *=  nand->writesize;
 | |
| 
 | |
| 	/*
 | |
| 	 * since the input length may be unaligned, prevent access past the end
 | |
| 	 * of the buffer
 | |
| 	 */
 | |
| 	return min(l, *len);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * nand_write_skip_bad:
 | |
|  *
 | |
|  * Write image to NAND flash.
 | |
|  * Blocks that are marked bad are skipped and the is written to the next
 | |
|  * block instead as long as the image is short enough to fit even after
 | |
|  * skipping the bad blocks.  Due to bad blocks we may not be able to
 | |
|  * perform the requested write.  In the case where the write would
 | |
|  * extend beyond the end of the NAND device, both length and actual (if
 | |
|  * not NULL) are set to 0.  In the case where the write would extend
 | |
|  * beyond the limit we are passed, length is set to 0 and actual is set
 | |
|  * to the required length.
 | |
|  *
 | |
|  * @param nand  	NAND device
 | |
|  * @param offset	offset in flash
 | |
|  * @param length	buffer length
 | |
|  * @param actual	set to size required to write length worth of
 | |
|  *			buffer or 0 on error, if not NULL
 | |
|  * @param lim		maximum size that actual may be in order to not
 | |
|  *			exceed the buffer
 | |
|  * @param buffer        buffer to read from
 | |
|  * @param flags		flags modifying the behaviour of the write to NAND
 | |
|  * @return		0 in case of success
 | |
|  */
 | |
| int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
 | |
| 		size_t *actual, loff_t lim, u_char *buffer, int flags)
 | |
| {
 | |
| 	int rval = 0, blocksize;
 | |
| 	size_t left_to_write = *length;
 | |
| 	size_t used_for_write = 0;
 | |
| 	u_char *p_buffer = buffer;
 | |
| 	int need_skip;
 | |
| 
 | |
| 	if (actual)
 | |
| 		*actual = 0;
 | |
| 
 | |
| #ifdef CONFIG_CMD_NAND_YAFFS
 | |
| 	if (flags & WITH_YAFFS_OOB) {
 | |
| 		if (flags & ~WITH_YAFFS_OOB)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		int pages;
 | |
| 		pages = nand->erasesize / nand->writesize;
 | |
| 		blocksize = (pages * nand->oobsize) + nand->erasesize;
 | |
| 		if (*length % (nand->writesize + nand->oobsize)) {
 | |
| 			printf("Attempt to write incomplete page"
 | |
| 				" in yaffs mode\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	} else
 | |
| #endif
 | |
| 	{
 | |
| 		blocksize = nand->erasesize;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * nand_write() handles unaligned, partial page writes.
 | |
| 	 *
 | |
| 	 * We allow length to be unaligned, for convenience in
 | |
| 	 * using the $filesize variable.
 | |
| 	 *
 | |
| 	 * However, starting at an unaligned offset makes the
 | |
| 	 * semantics of bad block skipping ambiguous (really,
 | |
| 	 * you should only start a block skipping access at a
 | |
| 	 * partition boundary).  So don't try to handle that.
 | |
| 	 */
 | |
| 	if ((offset & (nand->writesize - 1)) != 0) {
 | |
| 		printf("Attempt to write non page-aligned data\n");
 | |
| 		*length = 0;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	need_skip = check_skip_len(nand, offset, *length, &used_for_write);
 | |
| 
 | |
| 	if (actual)
 | |
| 		*actual = used_for_write;
 | |
| 
 | |
| 	if (need_skip < 0) {
 | |
| 		printf("Attempt to write outside the flash area\n");
 | |
| 		*length = 0;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (used_for_write > lim) {
 | |
| 		puts("Size of write exceeds partition or device limit\n");
 | |
| 		*length = 0;
 | |
| 		return -EFBIG;
 | |
| 	}
 | |
| 
 | |
| 	if (!need_skip && !(flags & WITH_DROP_FFS)) {
 | |
| 		rval = nand_write(nand, offset, length, buffer);
 | |
| 		if (rval == 0)
 | |
| 			return 0;
 | |
| 
 | |
| 		*length = 0;
 | |
| 		printf("NAND write to offset %llx failed %d\n",
 | |
| 			offset, rval);
 | |
| 		return rval;
 | |
| 	}
 | |
| 
 | |
| 	while (left_to_write > 0) {
 | |
| 		size_t block_offset = offset & (nand->erasesize - 1);
 | |
| 		size_t write_size, truncated_write_size;
 | |
| 
 | |
| 		WATCHDOG_RESET();
 | |
| 
 | |
| 		if (nand_block_isbad(nand, offset & ~(nand->erasesize - 1))) {
 | |
| 			printf("Skip bad block 0x%08llx\n",
 | |
| 				offset & ~(nand->erasesize - 1));
 | |
| 			offset += nand->erasesize - block_offset;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (left_to_write < (blocksize - block_offset))
 | |
| 			write_size = left_to_write;
 | |
| 		else
 | |
| 			write_size = blocksize - block_offset;
 | |
| 
 | |
| #ifdef CONFIG_CMD_NAND_YAFFS
 | |
| 		if (flags & WITH_YAFFS_OOB) {
 | |
| 			int page, pages;
 | |
| 			size_t pagesize = nand->writesize;
 | |
| 			size_t pagesize_oob = pagesize + nand->oobsize;
 | |
| 			struct mtd_oob_ops ops;
 | |
| 
 | |
| 			ops.len = pagesize;
 | |
| 			ops.ooblen = nand->oobsize;
 | |
| 			ops.mode = MTD_OPS_AUTO_OOB;
 | |
| 			ops.ooboffs = 0;
 | |
| 
 | |
| 			pages = write_size / pagesize_oob;
 | |
| 			for (page = 0; page < pages; page++) {
 | |
| 				WATCHDOG_RESET();
 | |
| 
 | |
| 				ops.datbuf = p_buffer;
 | |
| 				ops.oobbuf = ops.datbuf + pagesize;
 | |
| 
 | |
| 				rval = mtd_write_oob(nand, offset, &ops);
 | |
| 				if (rval != 0)
 | |
| 					break;
 | |
| 
 | |
| 				offset += pagesize;
 | |
| 				p_buffer += pagesize_oob;
 | |
| 			}
 | |
| 		}
 | |
| 		else
 | |
| #endif
 | |
| 		{
 | |
| 			truncated_write_size = write_size;
 | |
| #ifdef CONFIG_CMD_NAND_TRIMFFS
 | |
| 			if (flags & WITH_DROP_FFS)
 | |
| 				truncated_write_size = drop_ffs(nand, p_buffer,
 | |
| 						&write_size);
 | |
| #endif
 | |
| 
 | |
| 			rval = nand_write(nand, offset, &truncated_write_size,
 | |
| 					p_buffer);
 | |
| 			offset += write_size;
 | |
| 			p_buffer += write_size;
 | |
| 		}
 | |
| 
 | |
| 		if (rval != 0) {
 | |
| 			printf("NAND write to offset %llx failed %d\n",
 | |
| 				offset, rval);
 | |
| 			*length -= left_to_write;
 | |
| 			return rval;
 | |
| 		}
 | |
| 
 | |
| 		left_to_write -= write_size;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nand_read_skip_bad:
 | |
|  *
 | |
|  * Read image from NAND flash.
 | |
|  * Blocks that are marked bad are skipped and the next block is read
 | |
|  * instead as long as the image is short enough to fit even after
 | |
|  * skipping the bad blocks.  Due to bad blocks we may not be able to
 | |
|  * perform the requested read.  In the case where the read would extend
 | |
|  * beyond the end of the NAND device, both length and actual (if not
 | |
|  * NULL) are set to 0.  In the case where the read would extend beyond
 | |
|  * the limit we are passed, length is set to 0 and actual is set to the
 | |
|  * required length.
 | |
|  *
 | |
|  * @param nand NAND device
 | |
|  * @param offset offset in flash
 | |
|  * @param length buffer length, on return holds number of read bytes
 | |
|  * @param actual set to size required to read length worth of buffer or 0
 | |
|  * on error, if not NULL
 | |
|  * @param lim maximum size that actual may be in order to not exceed the
 | |
|  * buffer
 | |
|  * @param buffer buffer to write to
 | |
|  * @return 0 in case of success
 | |
|  */
 | |
| int nand_read_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
 | |
| 		size_t *actual, loff_t lim, u_char *buffer)
 | |
| {
 | |
| 	int rval;
 | |
| 	size_t left_to_read = *length;
 | |
| 	size_t used_for_read = 0;
 | |
| 	u_char *p_buffer = buffer;
 | |
| 	int need_skip;
 | |
| 
 | |
| 	if ((offset & (nand->writesize - 1)) != 0) {
 | |
| 		printf("Attempt to read non page-aligned data\n");
 | |
| 		*length = 0;
 | |
| 		if (actual)
 | |
| 			*actual = 0;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	need_skip = check_skip_len(nand, offset, *length, &used_for_read);
 | |
| 
 | |
| 	if (actual)
 | |
| 		*actual = used_for_read;
 | |
| 
 | |
| 	if (need_skip < 0) {
 | |
| 		printf("Attempt to read outside the flash area\n");
 | |
| 		*length = 0;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (used_for_read > lim) {
 | |
| 		puts("Size of read exceeds partition or device limit\n");
 | |
| 		*length = 0;
 | |
| 		return -EFBIG;
 | |
| 	}
 | |
| 
 | |
| 	if (!need_skip) {
 | |
| 		rval = nand_read(nand, offset, length, buffer);
 | |
| 		if (!rval || rval == -EUCLEAN)
 | |
| 			return 0;
 | |
| 
 | |
| 		*length = 0;
 | |
| 		printf("NAND read from offset %llx failed %d\n",
 | |
| 			offset, rval);
 | |
| 		return rval;
 | |
| 	}
 | |
| 
 | |
| 	while (left_to_read > 0) {
 | |
| 		size_t block_offset = offset & (nand->erasesize - 1);
 | |
| 		size_t read_length;
 | |
| 
 | |
| 		WATCHDOG_RESET();
 | |
| 
 | |
| 		if (nand_block_isbad(nand, offset & ~(nand->erasesize - 1))) {
 | |
| 			printf("Skipping bad block 0x%08llx\n",
 | |
| 				offset & ~(nand->erasesize - 1));
 | |
| 			offset += nand->erasesize - block_offset;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (left_to_read < (nand->erasesize - block_offset))
 | |
| 			read_length = left_to_read;
 | |
| 		else
 | |
| 			read_length = nand->erasesize - block_offset;
 | |
| 
 | |
| 		rval = nand_read(nand, offset, &read_length, p_buffer);
 | |
| 		if (rval && rval != -EUCLEAN) {
 | |
| 			printf("NAND read from offset %llx failed %d\n",
 | |
| 				offset, rval);
 | |
| 			*length -= left_to_read;
 | |
| 			return rval;
 | |
| 		}
 | |
| 
 | |
| 		left_to_read -= read_length;
 | |
| 		offset       += read_length;
 | |
| 		p_buffer     += read_length;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CMD_NAND_TORTURE
 | |
| 
 | |
| /**
 | |
|  * check_pattern:
 | |
|  *
 | |
|  * Check if buffer contains only a certain byte pattern.
 | |
|  *
 | |
|  * @param buf buffer to check
 | |
|  * @param patt the pattern to check
 | |
|  * @param size buffer size in bytes
 | |
|  * @return 1 if there are only patt bytes in buf
 | |
|  *         0 if something else was found
 | |
|  */
 | |
| static int check_pattern(const u_char *buf, u_char patt, int size)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < size; i++)
 | |
| 		if (buf[i] != patt)
 | |
| 			return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nand_torture:
 | |
|  *
 | |
|  * Torture a block of NAND flash.
 | |
|  * This is useful to determine if a block that caused a write error is still
 | |
|  * good or should be marked as bad.
 | |
|  *
 | |
|  * @param nand NAND device
 | |
|  * @param offset offset in flash
 | |
|  * @return 0 if the block is still good
 | |
|  */
 | |
| int nand_torture(nand_info_t *nand, loff_t offset)
 | |
| {
 | |
| 	u_char patterns[] = {0xa5, 0x5a, 0x00};
 | |
| 	struct erase_info instr = {
 | |
| 		.mtd = nand,
 | |
| 		.addr = offset,
 | |
| 		.len = nand->erasesize,
 | |
| 	};
 | |
| 	size_t retlen;
 | |
| 	int err, ret = -1, i, patt_count;
 | |
| 	u_char *buf;
 | |
| 
 | |
| 	if ((offset & (nand->erasesize - 1)) != 0) {
 | |
| 		puts("Attempt to torture a block at a non block-aligned offset\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (offset + nand->erasesize > nand->size) {
 | |
| 		puts("Attempt to torture a block outside the flash area\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	patt_count = ARRAY_SIZE(patterns);
 | |
| 
 | |
| 	buf = malloc(nand->erasesize);
 | |
| 	if (buf == NULL) {
 | |
| 		puts("Out of memory for erase block buffer\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < patt_count; i++) {
 | |
| 		err = nand->erase(nand, &instr);
 | |
| 		if (err) {
 | |
| 			printf("%s: erase() failed for block at 0x%llx: %d\n",
 | |
| 				nand->name, instr.addr, err);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* Make sure the block contains only 0xff bytes */
 | |
| 		err = nand->read(nand, offset, nand->erasesize, &retlen, buf);
 | |
| 		if ((err && err != -EUCLEAN) || retlen != nand->erasesize) {
 | |
| 			printf("%s: read() failed for block at 0x%llx: %d\n",
 | |
| 				nand->name, instr.addr, err);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		err = check_pattern(buf, 0xff, nand->erasesize);
 | |
| 		if (!err) {
 | |
| 			printf("Erased block at 0x%llx, but a non-0xff byte was found\n",
 | |
| 				offset);
 | |
| 			ret = -EIO;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* Write a pattern and check it */
 | |
| 		memset(buf, patterns[i], nand->erasesize);
 | |
| 		err = nand->write(nand, offset, nand->erasesize, &retlen, buf);
 | |
| 		if (err || retlen != nand->erasesize) {
 | |
| 			printf("%s: write() failed for block at 0x%llx: %d\n",
 | |
| 				nand->name, instr.addr, err);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		err = nand->read(nand, offset, nand->erasesize, &retlen, buf);
 | |
| 		if ((err && err != -EUCLEAN) || retlen != nand->erasesize) {
 | |
| 			printf("%s: read() failed for block at 0x%llx: %d\n",
 | |
| 				nand->name, instr.addr, err);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		err = check_pattern(buf, patterns[i], nand->erasesize);
 | |
| 		if (!err) {
 | |
| 			printf("Pattern 0x%.2x checking failed for block at "
 | |
| 					"0x%llx\n", patterns[i], offset);
 | |
| 			ret = -EIO;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| 
 | |
| out:
 | |
| 	free(buf);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #endif
 |