1541 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1541 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
 | 
						|
/*
 | 
						|
 * Copyright (C) 2019, STMicroelectronics - All Rights Reserved
 | 
						|
 */
 | 
						|
 | 
						|
#define LOG_CATEGORY UCLASS_RAM
 | 
						|
 | 
						|
#include <common.h>
 | 
						|
#include <console.h>
 | 
						|
#include <clk.h>
 | 
						|
#include <log.h>
 | 
						|
#include <ram.h>
 | 
						|
#include <rand.h>
 | 
						|
#include <reset.h>
 | 
						|
#include <asm/io.h>
 | 
						|
#include <linux/bitops.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/iopoll.h>
 | 
						|
 | 
						|
#include "stm32mp1_ddr_regs.h"
 | 
						|
#include "stm32mp1_ddr.h"
 | 
						|
#include "stm32mp1_tests.h"
 | 
						|
 | 
						|
#define MAX_DQS_PHASE_IDX _144deg
 | 
						|
#define MAX_DQS_UNIT_IDX 7
 | 
						|
#define MAX_GSL_IDX 5
 | 
						|
#define MAX_GPS_IDX 3
 | 
						|
 | 
						|
/* Number of bytes used in this SW. ( min 1--> max 4). */
 | 
						|
#define NUM_BYTES 4
 | 
						|
 | 
						|
enum dqs_phase_enum {
 | 
						|
	_36deg = 0,
 | 
						|
	_54deg = 1,
 | 
						|
	_72deg = 2,
 | 
						|
	_90deg = 3,
 | 
						|
	_108deg = 4,
 | 
						|
	_126deg = 5,
 | 
						|
	_144deg = 6
 | 
						|
};
 | 
						|
 | 
						|
/* BIST Result struct */
 | 
						|
struct BIST_result {
 | 
						|
	/* Overall test result:
 | 
						|
	 * 0 Fail (any bit failed) ,
 | 
						|
	 * 1 Success (All bits success)
 | 
						|
	 */
 | 
						|
	bool test_result;
 | 
						|
	/* 1: true, all fail /  0: False, not all bits fail */
 | 
						|
	bool all_bits_fail;
 | 
						|
	bool bit_i_test_result[8];  /* 0 fail / 1 success */
 | 
						|
};
 | 
						|
 | 
						|
/* a struct that defines tuning parameters of a byte. */
 | 
						|
struct tuning_position {
 | 
						|
	u8 phase; /* DQS phase */
 | 
						|
	u8 unit; /* DQS unit delay */
 | 
						|
	u32 bits_delay; /* Bits deskew in this byte */
 | 
						|
};
 | 
						|
 | 
						|
/* 36deg, 54deg, 72deg, 90deg, 108deg, 126deg, 144deg */
 | 
						|
const u8 dx_dll_phase[7] = {3, 2, 1, 0, 14, 13, 12};
 | 
						|
 | 
						|
static u8 BIST_error_max = 1;
 | 
						|
static u32 BIST_seed = 0x1234ABCD;
 | 
						|
 | 
						|
static u8 get_nb_bytes(struct stm32mp1_ddrctl *ctl)
 | 
						|
{
 | 
						|
	u32 data_bus = readl(&ctl->mstr) & DDRCTRL_MSTR_DATA_BUS_WIDTH_MASK;
 | 
						|
	u8 nb_bytes = NUM_BYTES;
 | 
						|
 | 
						|
	switch (data_bus) {
 | 
						|
	case DDRCTRL_MSTR_DATA_BUS_WIDTH_HALF:
 | 
						|
		nb_bytes /= 2;
 | 
						|
		break;
 | 
						|
	case DDRCTRL_MSTR_DATA_BUS_WIDTH_QUARTER:
 | 
						|
		nb_bytes /= 4;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return nb_bytes;
 | 
						|
}
 | 
						|
 | 
						|
static u8 get_nb_bank(struct stm32mp1_ddrctl *ctl)
 | 
						|
{
 | 
						|
	/* Count bank address bits */
 | 
						|
	u8 bits = 0;
 | 
						|
	u32 reg, val;
 | 
						|
 | 
						|
	reg = readl(&ctl->addrmap1);
 | 
						|
	/* addrmap1.addrmap_bank_b1 */
 | 
						|
	val = (reg & GENMASK(5, 0)) >> 0;
 | 
						|
	if (val <= 31)
 | 
						|
		bits++;
 | 
						|
	/* addrmap1.addrmap_bank_b2 */
 | 
						|
	val = (reg & GENMASK(13, 8)) >> 8;
 | 
						|
	if (val <= 31)
 | 
						|
		bits++;
 | 
						|
	/* addrmap1.addrmap_bank_b3 */
 | 
						|
	val = (reg & GENMASK(21, 16)) >> 16;
 | 
						|
	if (val <= 31)
 | 
						|
		bits++;
 | 
						|
 | 
						|
	return bits;
 | 
						|
}
 | 
						|
 | 
						|
static u8 get_nb_col(struct stm32mp1_ddrctl *ctl)
 | 
						|
{
 | 
						|
	u8 bits;
 | 
						|
	u32 reg, val;
 | 
						|
 | 
						|
	/* Count column address bits, start at 2 for b0 and b1 (fixed) */
 | 
						|
	bits = 2;
 | 
						|
 | 
						|
	reg = readl(&ctl->addrmap2);
 | 
						|
	/* addrmap2.addrmap_col_b2 */
 | 
						|
	val = (reg & GENMASK(3, 0)) >> 0;
 | 
						|
	if (val <= 7)
 | 
						|
		bits++;
 | 
						|
	/* addrmap2.addrmap_col_b3 */
 | 
						|
	val = (reg & GENMASK(11, 8)) >> 8;
 | 
						|
	if (val <= 7)
 | 
						|
		bits++;
 | 
						|
	/* addrmap2.addrmap_col_b4 */
 | 
						|
	val = (reg & GENMASK(19, 16)) >> 16;
 | 
						|
	if (val <= 7)
 | 
						|
		bits++;
 | 
						|
	/* addrmap2.addrmap_col_b5 */
 | 
						|
	val = (reg & GENMASK(27, 24)) >> 24;
 | 
						|
	if (val <= 7)
 | 
						|
		bits++;
 | 
						|
 | 
						|
	reg = readl(&ctl->addrmap3);
 | 
						|
	/* addrmap3.addrmap_col_b6 */
 | 
						|
	val = (reg & GENMASK(3, 0)) >> 0;
 | 
						|
	if (val <= 7)
 | 
						|
		bits++;
 | 
						|
	/* addrmap3.addrmap_col_b7 */
 | 
						|
	val = (reg & GENMASK(11, 8)) >> 8;
 | 
						|
	if (val <= 7)
 | 
						|
		bits++;
 | 
						|
	/* addrmap3.addrmap_col_b8 */
 | 
						|
	val = (reg & GENMASK(19, 16)) >> 16;
 | 
						|
	if (val <= 7)
 | 
						|
		bits++;
 | 
						|
	/* addrmap3.addrmap_col_b9 */
 | 
						|
	val = (reg & GENMASK(27, 24)) >> 24;
 | 
						|
	if (val <= 7)
 | 
						|
		bits++;
 | 
						|
 | 
						|
	reg = readl(&ctl->addrmap4);
 | 
						|
	/* addrmap4.addrmap_col_b10 */
 | 
						|
	val = (reg & GENMASK(3, 0)) >> 0;
 | 
						|
	if (val <= 7)
 | 
						|
		bits++;
 | 
						|
	/* addrmap4.addrmap_col_b11 */
 | 
						|
	val = (reg & GENMASK(11, 8)) >> 8;
 | 
						|
	if (val <= 7)
 | 
						|
		bits++;
 | 
						|
 | 
						|
	return bits;
 | 
						|
}
 | 
						|
 | 
						|
static u8 get_nb_row(struct stm32mp1_ddrctl *ctl)
 | 
						|
{
 | 
						|
	/* Count row address bits */
 | 
						|
	u8 bits = 0;
 | 
						|
	u32 reg, val;
 | 
						|
 | 
						|
	reg = readl(&ctl->addrmap5);
 | 
						|
	/* addrmap5.addrmap_row_b0 */
 | 
						|
	val = (reg & GENMASK(3, 0)) >> 0;
 | 
						|
	if (val <= 11)
 | 
						|
		bits++;
 | 
						|
	/* addrmap5.addrmap_row_b1 */
 | 
						|
	val = (reg & GENMASK(11, 8)) >> 8;
 | 
						|
	if (val <= 11)
 | 
						|
		bits++;
 | 
						|
	/* addrmap5.addrmap_row_b2_10 */
 | 
						|
	val = (reg & GENMASK(19, 16)) >> 16;
 | 
						|
	if (val <= 11)
 | 
						|
		bits += 9;
 | 
						|
	else
 | 
						|
		printf("warning: addrmap5.addrmap_row_b2_10 not supported\n");
 | 
						|
	/* addrmap5.addrmap_row_b11 */
 | 
						|
	val = (reg & GENMASK(27, 24)) >> 24;
 | 
						|
	if (val <= 11)
 | 
						|
		bits++;
 | 
						|
 | 
						|
	reg = readl(&ctl->addrmap6);
 | 
						|
	/* addrmap6.addrmap_row_b12 */
 | 
						|
	val = (reg & GENMASK(3, 0)) >> 0;
 | 
						|
	if (val <= 7)
 | 
						|
		bits++;
 | 
						|
	/* addrmap6.addrmap_row_b13 */
 | 
						|
	val = (reg & GENMASK(11, 8)) >> 8;
 | 
						|
	if (val <= 7)
 | 
						|
		bits++;
 | 
						|
	/* addrmap6.addrmap_row_b14 */
 | 
						|
	val = (reg & GENMASK(19, 16)) >> 16;
 | 
						|
	if (val <= 7)
 | 
						|
		bits++;
 | 
						|
	/* addrmap6.addrmap_row_b15 */
 | 
						|
	val = (reg & GENMASK(27, 24)) >> 24;
 | 
						|
	if (val <= 7)
 | 
						|
		bits++;
 | 
						|
 | 
						|
	return bits;
 | 
						|
}
 | 
						|
 | 
						|
static void itm_soft_reset(struct stm32mp1_ddrphy *phy)
 | 
						|
{
 | 
						|
	stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST);
 | 
						|
}
 | 
						|
 | 
						|
/* Read DQ unit delay register and provides the retrieved value for DQS
 | 
						|
 * We are assuming that we have the same delay when clocking
 | 
						|
 * by DQS and when clocking by DQSN
 | 
						|
 */
 | 
						|
static u8 DQ_unit_index(struct stm32mp1_ddrphy *phy, u8 byte, u8 bit)
 | 
						|
{
 | 
						|
	u32 index;
 | 
						|
	u32 addr = DXNDQTR(phy, byte);
 | 
						|
 | 
						|
	/* We are assuming that we have the same delay when clocking by DQS
 | 
						|
	 * and when clocking by DQSN : use only the low bits
 | 
						|
	 */
 | 
						|
	index = (readl(addr) >> DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit))
 | 
						|
		& DDRPHYC_DXNDQTR_DQDLY_LOW_MASK;
 | 
						|
 | 
						|
	log_debug("[%x]: %x => DQ unit index = %x\n", addr, readl(addr), index);
 | 
						|
 | 
						|
	return index;
 | 
						|
}
 | 
						|
 | 
						|
/* Sets the DQS phase delay for a byte lane.
 | 
						|
 *phase delay is specified by giving the index of the desired delay
 | 
						|
 * in the dx_dll_phase array.
 | 
						|
 */
 | 
						|
static void DQS_phase_delay(struct stm32mp1_ddrphy *phy, u8 byte, u8 phase_idx)
 | 
						|
{
 | 
						|
	u8 sdphase_val = 0;
 | 
						|
 | 
						|
	/*	Write DXNDLLCR.SDPHASE = dx_dll_phase(phase_index); */
 | 
						|
	sdphase_val = dx_dll_phase[phase_idx];
 | 
						|
	clrsetbits_le32(DXNDLLCR(phy, byte),
 | 
						|
			DDRPHYC_DXNDLLCR_SDPHASE_MASK,
 | 
						|
			sdphase_val << DDRPHYC_DXNDLLCR_SDPHASE_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
/* Sets the DQS unit delay for a byte lane.
 | 
						|
 * unit delay is specified by giving the index of the desired delay
 | 
						|
 * for dgsdly and dqsndly (same value).
 | 
						|
 */
 | 
						|
static void DQS_unit_delay(struct stm32mp1_ddrphy *phy,
 | 
						|
			   u8 byte, u8 unit_dly_idx)
 | 
						|
{
 | 
						|
	/* Write the same value in DXNDQSTR.DQSDLY and DXNDQSTR.DQSNDLY */
 | 
						|
	clrsetbits_le32(DXNDQSTR(phy, byte),
 | 
						|
			DDRPHYC_DXNDQSTR_DQSDLY_MASK |
 | 
						|
			DDRPHYC_DXNDQSTR_DQSNDLY_MASK,
 | 
						|
			(unit_dly_idx << DDRPHYC_DXNDQSTR_DQSDLY_SHIFT) |
 | 
						|
			(unit_dly_idx << DDRPHYC_DXNDQSTR_DQSNDLY_SHIFT));
 | 
						|
 | 
						|
	/* After changing this value, an ITM soft reset (PIR.ITMSRST=1,
 | 
						|
	 * plus PIR.INIT=1) must be issued.
 | 
						|
	 */
 | 
						|
	stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST);
 | 
						|
}
 | 
						|
 | 
						|
/* Sets the DQ unit delay for a bit line in particular byte lane.
 | 
						|
 * unit delay is specified by giving the desired delay
 | 
						|
 */
 | 
						|
static void set_DQ_unit_delay(struct stm32mp1_ddrphy *phy,
 | 
						|
			      u8 byte, u8 bit,
 | 
						|
			      u8 dq_delay_index)
 | 
						|
{
 | 
						|
	u8 dq_bit_delay_val = dq_delay_index | (dq_delay_index << 2);
 | 
						|
 | 
						|
	/* same value on delay for clock DQ an DQS_b */
 | 
						|
	clrsetbits_le32(DXNDQTR(phy, byte),
 | 
						|
			DDRPHYC_DXNDQTR_DQDLY_MASK
 | 
						|
			<< DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit),
 | 
						|
			dq_bit_delay_val << DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit));
 | 
						|
}
 | 
						|
 | 
						|
static void set_r0dgsl_delay(struct stm32mp1_ddrphy *phy,
 | 
						|
			     u8 byte, u8 r0dgsl_idx)
 | 
						|
{
 | 
						|
	clrsetbits_le32(DXNDQSTR(phy, byte),
 | 
						|
			DDRPHYC_DXNDQSTR_R0DGSL_MASK,
 | 
						|
			r0dgsl_idx << DDRPHYC_DXNDQSTR_R0DGSL_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
static void set_r0dgps_delay(struct stm32mp1_ddrphy *phy,
 | 
						|
			     u8 byte, u8 r0dgps_idx)
 | 
						|
{
 | 
						|
	clrsetbits_le32(DXNDQSTR(phy, byte),
 | 
						|
			DDRPHYC_DXNDQSTR_R0DGPS_MASK,
 | 
						|
			r0dgps_idx << DDRPHYC_DXNDQSTR_R0DGPS_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
/* Basic BIST configuration for data lane tests. */
 | 
						|
static void config_BIST(struct stm32mp1_ddrctl *ctl,
 | 
						|
			struct stm32mp1_ddrphy *phy)
 | 
						|
{
 | 
						|
	u8 nb_bank = get_nb_bank(ctl);
 | 
						|
	u8 nb_row = get_nb_row(ctl);
 | 
						|
	u8 nb_col = get_nb_col(ctl);
 | 
						|
 | 
						|
	/* Selects the SDRAM bank address to be used during BIST. */
 | 
						|
	u32 bbank = 0;
 | 
						|
	/* Selects the SDRAM row address to be used during BIST. */
 | 
						|
	u32 brow = 0;
 | 
						|
	/* Selects the SDRAM column address to be used during BIST. */
 | 
						|
	u32 bcol = 0;
 | 
						|
	/* Selects the value by which the SDRAM address is incremented
 | 
						|
	 * for each write/read access.
 | 
						|
	 */
 | 
						|
	u32 bainc = 0x00000008;
 | 
						|
	/* Specifies the maximum SDRAM rank to be used during BIST.
 | 
						|
	 * The default value is set to maximum ranks minus 1.
 | 
						|
	 * must be 0 with single rank
 | 
						|
	 */
 | 
						|
	u32 bmrank = 0;
 | 
						|
	/* Selects the SDRAM rank to be used during BIST.
 | 
						|
	 * must be 0 with single rank
 | 
						|
	 */
 | 
						|
	u32 brank = 0;
 | 
						|
 | 
						|
	/* Specifies the maximum SDRAM bank address to be used during
 | 
						|
	 * BIST before the address & increments to the next rank.
 | 
						|
	 */
 | 
						|
	u32 bmbank = (1 << nb_bank) - 1;
 | 
						|
	/* Specifies the maximum SDRAM row address to be used during
 | 
						|
	 * BIST before the address & increments to the next bank.
 | 
						|
	 */
 | 
						|
	u32 bmrow = (1 << nb_row) - 1;
 | 
						|
	/* Specifies the maximum SDRAM column address to be used during
 | 
						|
	 * BIST before the address & increments to the next row.
 | 
						|
	 */
 | 
						|
	u32 bmcol = (1 << nb_col) - 1;
 | 
						|
 | 
						|
	u32 bmode_conf = 0x00000001;  /* DRam mode */
 | 
						|
	u32 bdxen_conf = 0x00000001;  /* BIST on Data byte */
 | 
						|
	u32 bdpat_conf = 0x00000002;  /* Select LFSR pattern */
 | 
						|
 | 
						|
	/*Setup BIST for DRAM mode,  and LFSR-random data pattern.*/
 | 
						|
	/*Write BISTRR.BMODE = 1?b1;*/
 | 
						|
	/*Write BISTRR.BDXEN = 1?b1;*/
 | 
						|
	/*Write BISTRR.BDPAT = 2?b10;*/
 | 
						|
 | 
						|
	/* reset BIST */
 | 
						|
	writel(0x3, &phy->bistrr);
 | 
						|
 | 
						|
	writel((bmode_conf << 3) | (bdxen_conf << 14) | (bdpat_conf << 17),
 | 
						|
	       &phy->bistrr);
 | 
						|
 | 
						|
	/*Setup BIST Word Count*/
 | 
						|
	/*Write BISTWCR.BWCNT = 16?b0008;*/
 | 
						|
	writel(0x00000200, &phy->bistwcr); /* A multiple of BL/2 */
 | 
						|
 | 
						|
	writel(bcol | (brow << 12) | (bbank << 28), &phy->bistar0);
 | 
						|
	writel(brank | (bmrank << 2) | (bainc << 4), &phy->bistar1);
 | 
						|
	writel(bmcol | (bmrow << 12) | (bmbank << 28), &phy->bistar2);
 | 
						|
}
 | 
						|
 | 
						|
/* Select the Byte lane to be tested by BIST. */
 | 
						|
static void BIST_datx8_sel(struct stm32mp1_ddrphy *phy, u8 datx8)
 | 
						|
{
 | 
						|
	clrsetbits_le32(&phy->bistrr,
 | 
						|
			DDRPHYC_BISTRR_BDXSEL_MASK,
 | 
						|
			datx8 << DDRPHYC_BISTRR_BDXSEL_SHIFT);
 | 
						|
 | 
						|
	/*(For example, selecting Byte Lane 3, BISTRR.BDXSEL = 4?b0011)*/
 | 
						|
	/* Write BISTRR.BDXSEL = datx8; */
 | 
						|
}
 | 
						|
 | 
						|
/* Perform BIST Write_Read test on a byte lane and return test result. */
 | 
						|
static void BIST_test(struct stm32mp1_ddrphy *phy, u8 byte,
 | 
						|
		      struct BIST_result *bist)
 | 
						|
{
 | 
						|
	bool result = true; /* BIST_SUCCESS */
 | 
						|
	u32 cnt = 0;
 | 
						|
	u32 error = 0;
 | 
						|
	u32 val;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	bist->test_result = true;
 | 
						|
 | 
						|
run:
 | 
						|
	itm_soft_reset(phy);
 | 
						|
 | 
						|
	/*Perform BIST Reset*/
 | 
						|
	/* Write BISTRR.BINST = 3?b011; */
 | 
						|
	clrsetbits_le32(&phy->bistrr,
 | 
						|
			0x00000007,
 | 
						|
			0x00000003);
 | 
						|
 | 
						|
	/*Re-seed LFSR*/
 | 
						|
	/* Write BISTLSR.SEED = 32'h1234ABCD; */
 | 
						|
	if (BIST_seed)
 | 
						|
		writel(BIST_seed, &phy->bistlsr);
 | 
						|
	else
 | 
						|
		writel(rand(), &phy->bistlsr);
 | 
						|
 | 
						|
	/* some delay to reset BIST */
 | 
						|
	udelay(10);
 | 
						|
 | 
						|
	/*Perform BIST Run*/
 | 
						|
	clrsetbits_le32(&phy->bistrr,
 | 
						|
			0x00000007,
 | 
						|
			0x00000001);
 | 
						|
	/* Write BISTRR.BINST = 3?b001; */
 | 
						|
 | 
						|
	/* poll on BISTGSR.BDONE and wait max 1000 us */
 | 
						|
	ret = readl_poll_timeout(&phy->bistgsr, val,
 | 
						|
				 val & DDRPHYC_BISTGSR_BDDONE, 1000);
 | 
						|
 | 
						|
	if (ret < 0) {
 | 
						|
		printf("warning: BIST timeout\n");
 | 
						|
		result = false; /* BIST_FAIL; */
 | 
						|
		/*Perform BIST Stop */
 | 
						|
		clrsetbits_le32(&phy->bistrr, 0x00000007, 0x00000002);
 | 
						|
	} else {
 | 
						|
		/*Check if received correct number of words*/
 | 
						|
		/* if (Read BISTWCSR.DXWCNT = Read BISTWCR.BWCNT) */
 | 
						|
		if (((readl(&phy->bistwcsr)) >> DDRPHYC_BISTWCSR_DXWCNT_SHIFT)
 | 
						|
		    == readl(&phy->bistwcr)) {
 | 
						|
			/*Determine if there is a data comparison error*/
 | 
						|
			/* if (Read BISTGSR.BDXERR = 1?b0) */
 | 
						|
			if (readl(&phy->bistgsr) & DDRPHYC_BISTGSR_BDXERR)
 | 
						|
				result = false; /* BIST_FAIL; */
 | 
						|
			else
 | 
						|
				result = true; /* BIST_SUCCESS; */
 | 
						|
		} else {
 | 
						|
			result = false; /* BIST_FAIL; */
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* loop while success */
 | 
						|
	cnt++;
 | 
						|
	if (result && cnt != 1000)
 | 
						|
		goto run;
 | 
						|
 | 
						|
	if (!result)
 | 
						|
		error++;
 | 
						|
 | 
						|
	if (error < BIST_error_max) {
 | 
						|
		if (cnt != 1000)
 | 
						|
			goto run;
 | 
						|
		bist->test_result = true;
 | 
						|
	} else {
 | 
						|
		bist->test_result = false;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* After running the deskew algo, this function applies the new DQ delays
 | 
						|
 * by reading them from the array "deskew_delay"and writing in PHY registers.
 | 
						|
 * The bits that are not deskewed parfectly (too much skew on them,
 | 
						|
 * or data eye very wide) are marked in the array deskew_non_converge.
 | 
						|
 */
 | 
						|
static void apply_deskew_results(struct stm32mp1_ddrphy *phy, u8 byte,
 | 
						|
				 u8 deskew_delay[NUM_BYTES][8],
 | 
						|
				 u8 deskew_non_converge[NUM_BYTES][8])
 | 
						|
{
 | 
						|
	u8  bit_i;
 | 
						|
	u8  index;
 | 
						|
 | 
						|
	for (bit_i = 0; bit_i < 8; bit_i++) {
 | 
						|
		set_DQ_unit_delay(phy, byte, bit_i, deskew_delay[byte][bit_i]);
 | 
						|
		index = DQ_unit_index(phy, byte, bit_i);
 | 
						|
		log_debug("Byte %d ; bit %d : The new DQ delay (%d) index=%d [delta=%d, 3 is the default]",
 | 
						|
			  byte, bit_i, deskew_delay[byte][bit_i],
 | 
						|
			  index, index - 3);
 | 
						|
		printf("Byte %d, bit %d, DQ delay = %d",
 | 
						|
		       byte, bit_i, deskew_delay[byte][bit_i]);
 | 
						|
		if (deskew_non_converge[byte][bit_i] == 1)
 | 
						|
			log_debug(" - not converged : still more skew");
 | 
						|
		printf("\n");
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* DQ Bit de-skew algorithm.
 | 
						|
 * Deskews data lines as much as possible.
 | 
						|
 * 1. Add delay to DQS line until finding the failure
 | 
						|
 *    (normally a hold time violation)
 | 
						|
 * 2. Reduce DQS line by small steps until finding the very first time
 | 
						|
 *    we go back to "Pass" condition.
 | 
						|
 * 3. For each DQ line, Reduce DQ delay until finding the very first failure
 | 
						|
 *    (normally a hold time fail)
 | 
						|
 * 4. When all bits are at their first failure delay, we can consider them
 | 
						|
 *    aligned.
 | 
						|
 * Handle conrer situation (Can't find Pass-fail, or fail-pass transitions
 | 
						|
 * at any step)
 | 
						|
 * TODO Provide a return Status. Improve doc
 | 
						|
 */
 | 
						|
static enum test_result bit_deskew(struct stm32mp1_ddrctl *ctl,
 | 
						|
				   struct stm32mp1_ddrphy *phy, char *string)
 | 
						|
{
 | 
						|
	/* New DQ delay value (index), set during Deskew algo */
 | 
						|
	u8 deskew_delay[NUM_BYTES][8];
 | 
						|
	/*If there is still skew on a bit, mark this bit. */
 | 
						|
	u8 deskew_non_converge[NUM_BYTES][8];
 | 
						|
	struct BIST_result result;
 | 
						|
	s8 dqs_unit_delay_index = 0;
 | 
						|
	u8 datx8 = 0;
 | 
						|
	u8 bit_i = 0;
 | 
						|
	s8 phase_idx = 0;
 | 
						|
	s8 bit_i_delay_index = 0;
 | 
						|
	u8 success = 0;
 | 
						|
	struct tuning_position last_right_ok;
 | 
						|
	u8 force_stop = 0;
 | 
						|
	u8 fail_found;
 | 
						|
	u8 error = 0;
 | 
						|
	u8 nb_bytes = get_nb_bytes(ctl);
 | 
						|
	/* u8 last_pass_dqs_unit = 0; */
 | 
						|
 | 
						|
	memset(deskew_delay, 0, sizeof(deskew_delay));
 | 
						|
	memset(deskew_non_converge, 0, sizeof(deskew_non_converge));
 | 
						|
 | 
						|
	/*Disable DQS Drift Compensation*/
 | 
						|
	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
 | 
						|
	/*Disable all bytes*/
 | 
						|
	/* Disable automatic power down of DLL and IOs when disabling
 | 
						|
	 * a byte (To avoid having to add programming and  delay
 | 
						|
	 * for a DLL re-lock when later re-enabling a disabled Byte Lane)
 | 
						|
	 */
 | 
						|
	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
 | 
						|
 | 
						|
	/* Disable all data bytes */
 | 
						|
	clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
 | 
						|
	clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
 | 
						|
	clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
 | 
						|
	clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
 | 
						|
 | 
						|
	/* Config the BIST block */
 | 
						|
	config_BIST(ctl, phy);
 | 
						|
	log_debug("BIST Config done.\n");
 | 
						|
 | 
						|
	/* Train each byte */
 | 
						|
	for (datx8 = 0; datx8 < nb_bytes; datx8++) {
 | 
						|
		if (ctrlc()) {
 | 
						|
			sprintf(string, "interrupted at byte %d/%d, error=%d",
 | 
						|
				datx8 + 1, nb_bytes, error);
 | 
						|
			return TEST_FAILED;
 | 
						|
		}
 | 
						|
		log_debug("\n======================\n");
 | 
						|
		log_debug("Start deskew byte %d .\n", datx8);
 | 
						|
		log_debug("======================\n");
 | 
						|
		/* Enable Byte (DXNGCR, bit DXEN) */
 | 
						|
		setbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN);
 | 
						|
 | 
						|
		/* Select the byte lane for comparison of read data */
 | 
						|
		BIST_datx8_sel(phy, datx8);
 | 
						|
 | 
						|
		/* Set all DQDLYn to maximum value. All bits within the byte
 | 
						|
		 * will be delayed with DQSTR = 2 instead of max = 3
 | 
						|
		 * to avoid inter bits fail influence
 | 
						|
		 */
 | 
						|
		writel(0xAAAAAAAA, DXNDQTR(phy, datx8));
 | 
						|
 | 
						|
		/* Set the DQS phase delay to 90 DEG (default).
 | 
						|
		 * What is defined here is the index of the desired config
 | 
						|
		 * in the PHASE array.
 | 
						|
		 */
 | 
						|
		phase_idx = _90deg;
 | 
						|
 | 
						|
		/* Set DQS unit delay to the max value. */
 | 
						|
		dqs_unit_delay_index = MAX_DQS_UNIT_IDX;
 | 
						|
		DQS_unit_delay(phy, datx8, dqs_unit_delay_index);
 | 
						|
		DQS_phase_delay(phy, datx8, phase_idx);
 | 
						|
 | 
						|
		/* Issue a DLL soft reset */
 | 
						|
		clrbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST);
 | 
						|
		setbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST);
 | 
						|
 | 
						|
		/* Test this typical init condition */
 | 
						|
		BIST_test(phy, datx8, &result);
 | 
						|
		success = result.test_result;
 | 
						|
 | 
						|
		/* If the test pass in this typical condition,
 | 
						|
		 * start the algo with it.
 | 
						|
		 * Else, look for Pass init condition
 | 
						|
		 */
 | 
						|
		if (!success) {
 | 
						|
			log_debug("Fail at init condtion. Let's look for a good init condition.\n");
 | 
						|
			success = 0; /* init */
 | 
						|
			/* Make sure we start with a PASS condition before
 | 
						|
			 * looking for a fail condition.
 | 
						|
			 * Find the first PASS PHASE condition
 | 
						|
			 */
 | 
						|
 | 
						|
			/* escape if we find a PASS */
 | 
						|
			log_debug("increase Phase idx\n");
 | 
						|
			while (!success && (phase_idx <= MAX_DQS_PHASE_IDX)) {
 | 
						|
				DQS_phase_delay(phy, datx8, phase_idx);
 | 
						|
				BIST_test(phy, datx8, &result);
 | 
						|
				success = result.test_result;
 | 
						|
				phase_idx++;
 | 
						|
			}
 | 
						|
			/* if ended with success
 | 
						|
			 * ==>> Restore the fist success condition
 | 
						|
			 */
 | 
						|
			if (success)
 | 
						|
				phase_idx--; /* because it ended with ++ */
 | 
						|
		}
 | 
						|
		if (ctrlc()) {
 | 
						|
			sprintf(string, "interrupted at byte %d/%d, error=%d",
 | 
						|
				datx8 + 1, nb_bytes, error);
 | 
						|
			return TEST_FAILED;
 | 
						|
		}
 | 
						|
		/* We couldn't find a successful condition, its seems
 | 
						|
		 * we have hold violation, lets try reduce DQS_unit Delay
 | 
						|
		 */
 | 
						|
		if (!success) {
 | 
						|
			/* We couldn't find a successful condition, its seems
 | 
						|
			 * we have hold violation, lets try reduce DQS_unit
 | 
						|
			 * Delay
 | 
						|
			 */
 | 
						|
			log_debug("Still fail. Try decrease DQS Unit delay\n");
 | 
						|
 | 
						|
			phase_idx = 0;
 | 
						|
			dqs_unit_delay_index = 0;
 | 
						|
			DQS_phase_delay(phy, datx8, phase_idx);
 | 
						|
 | 
						|
			/* escape if we find a PASS */
 | 
						|
			while (!success &&
 | 
						|
			       (dqs_unit_delay_index <=
 | 
						|
				MAX_DQS_UNIT_IDX)) {
 | 
						|
				DQS_unit_delay(phy, datx8,
 | 
						|
					       dqs_unit_delay_index);
 | 
						|
				BIST_test(phy, datx8, &result);
 | 
						|
				success = result.test_result;
 | 
						|
				dqs_unit_delay_index++;
 | 
						|
			}
 | 
						|
			if (success) {
 | 
						|
				/* Restore the first success condition*/
 | 
						|
				dqs_unit_delay_index--;
 | 
						|
				/* last_pass_dqs_unit = dqs_unit_delay_index;*/
 | 
						|
				DQS_unit_delay(phy, datx8,
 | 
						|
					       dqs_unit_delay_index);
 | 
						|
			} else {
 | 
						|
				/* No need to continue,
 | 
						|
				 * there is no pass region.
 | 
						|
				 */
 | 
						|
				force_stop = 1;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* There is an initial PASS condition
 | 
						|
		 * Look for the first failing condition by PHASE stepping.
 | 
						|
		 * This part of the algo can finish without converging.
 | 
						|
		 */
 | 
						|
		if (force_stop) {
 | 
						|
			printf("Result: Failed ");
 | 
						|
			printf("[Cannot Deskew lines, ");
 | 
						|
			printf("there is no PASS region]\n");
 | 
						|
			error++;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		if (ctrlc()) {
 | 
						|
			sprintf(string, "interrupted at byte %d/%d, error=%d",
 | 
						|
				datx8 + 1, nb_bytes, error);
 | 
						|
			return TEST_FAILED;
 | 
						|
		}
 | 
						|
 | 
						|
		log_debug("there is a pass region for phase idx %d\n",
 | 
						|
			  phase_idx);
 | 
						|
		log_debug("Step1: Find the first failing condition\n");
 | 
						|
		/* Look for the first failing condition by PHASE stepping.
 | 
						|
		 * This part of the algo can finish without converging.
 | 
						|
		 */
 | 
						|
 | 
						|
		/* escape if we find a fail (hold time violation)
 | 
						|
		 * condition at any bit or if out of delay range.
 | 
						|
		 */
 | 
						|
		while (success && (phase_idx <= MAX_DQS_PHASE_IDX)) {
 | 
						|
			DQS_phase_delay(phy, datx8, phase_idx);
 | 
						|
			BIST_test(phy, datx8, &result);
 | 
						|
			success = result.test_result;
 | 
						|
			phase_idx++;
 | 
						|
		}
 | 
						|
		if (ctrlc()) {
 | 
						|
			sprintf(string, "interrupted at byte %d/%d, error=%d",
 | 
						|
				datx8 + 1, nb_bytes, error);
 | 
						|
			return TEST_FAILED;
 | 
						|
		}
 | 
						|
 | 
						|
		/* if the loop ended with a failing condition at any bit,
 | 
						|
		 * lets look for the first previous success condition by unit
 | 
						|
		 * stepping (minimal delay)
 | 
						|
		 */
 | 
						|
		if (!success) {
 | 
						|
			log_debug("Fail region (PHASE) found phase idx %d\n",
 | 
						|
				  phase_idx);
 | 
						|
			log_debug("Let's look for first success by DQS Unit steps\n");
 | 
						|
			/* This part, the algo always converge */
 | 
						|
			phase_idx--;
 | 
						|
 | 
						|
			/* escape if we find a success condition
 | 
						|
			 * or if out of delay range.
 | 
						|
			 */
 | 
						|
			while (!success && dqs_unit_delay_index >= 0) {
 | 
						|
				DQS_unit_delay(phy, datx8,
 | 
						|
					       dqs_unit_delay_index);
 | 
						|
				BIST_test(phy, datx8, &result);
 | 
						|
				success = result.test_result;
 | 
						|
				dqs_unit_delay_index--;
 | 
						|
			}
 | 
						|
			/* if the loop ended with a success condition,
 | 
						|
			 * the last delay Right OK (before hold violation)
 | 
						|
			 *  condition is then defined as following:
 | 
						|
			 */
 | 
						|
			if (success) {
 | 
						|
				/* Hold the dely parameters of the the last
 | 
						|
				 * delay Right OK condition.
 | 
						|
				 * -1 to get back to current condition
 | 
						|
				 */
 | 
						|
				last_right_ok.phase = phase_idx;
 | 
						|
				/*+1 to get back to current condition */
 | 
						|
				last_right_ok.unit = dqs_unit_delay_index + 1;
 | 
						|
				last_right_ok.bits_delay = 0xFFFFFFFF;
 | 
						|
				log_debug("Found %d\n", dqs_unit_delay_index);
 | 
						|
			} else {
 | 
						|
				/* the last OK condition is then with the
 | 
						|
				 * previous phase_idx.
 | 
						|
				 * -2 instead of -1 because at the last
 | 
						|
				 * iteration of the while(),
 | 
						|
				 * we incremented phase_idx
 | 
						|
				 */
 | 
						|
				last_right_ok.phase = phase_idx - 1;
 | 
						|
				/* Nominal+1. Because we want the previous
 | 
						|
				 * delay after reducing the phase delay.
 | 
						|
				 */
 | 
						|
				last_right_ok.unit = 1;
 | 
						|
				last_right_ok.bits_delay = 0xFFFFFFFF;
 | 
						|
				log_debug("Not Found : try previous phase %d\n",
 | 
						|
					  phase_idx - 1);
 | 
						|
 | 
						|
				DQS_phase_delay(phy, datx8, phase_idx - 1);
 | 
						|
				dqs_unit_delay_index = 0;
 | 
						|
				success = true;
 | 
						|
				while (success &&
 | 
						|
				       (dqs_unit_delay_index <
 | 
						|
					MAX_DQS_UNIT_IDX)) {
 | 
						|
					DQS_unit_delay(phy, datx8,
 | 
						|
						       dqs_unit_delay_index);
 | 
						|
					BIST_test(phy, datx8, &result);
 | 
						|
					success = result.test_result;
 | 
						|
					dqs_unit_delay_index++;
 | 
						|
					log_debug("dqs_unit_delay_index = %d, result = %d\n",
 | 
						|
						  dqs_unit_delay_index, success);
 | 
						|
				}
 | 
						|
 | 
						|
				if (!success) {
 | 
						|
					last_right_ok.unit =
 | 
						|
						 dqs_unit_delay_index - 1;
 | 
						|
				} else {
 | 
						|
					last_right_ok.unit = 0;
 | 
						|
					log_debug("ERROR: failed region not FOUND");
 | 
						|
				}
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			/* we can't find a failing  condition at all bits
 | 
						|
			 * ==> Just hold the last test condition
 | 
						|
			 * (the max DQS delay)
 | 
						|
			 * which is the most likely,
 | 
						|
			 * the closest to a hold violation
 | 
						|
			 * If we can't find a Fail condition after
 | 
						|
			 * the Pass region, stick at this position
 | 
						|
			 * In order to have max chances to find a fail
 | 
						|
			 * when reducing DQ delays.
 | 
						|
			 */
 | 
						|
			last_right_ok.phase = MAX_DQS_PHASE_IDX;
 | 
						|
			last_right_ok.unit = MAX_DQS_UNIT_IDX;
 | 
						|
			last_right_ok.bits_delay = 0xFFFFFFFF;
 | 
						|
			log_debug("Can't find the a fail condition\n");
 | 
						|
		}
 | 
						|
 | 
						|
		/* step 2:
 | 
						|
		 * if we arrive at this stage, it means that we found the last
 | 
						|
		 * Right OK condition (by tweeking the DQS delay). Or we simply
 | 
						|
		 * pushed DQS delay to the max
 | 
						|
		 * This means that by reducing the delay on some DQ bits,
 | 
						|
		 * we should find a failing condition.
 | 
						|
		 */
 | 
						|
		printf("Byte %d, DQS unit = %d, phase = %d\n",
 | 
						|
		       datx8, last_right_ok.unit, last_right_ok.phase);
 | 
						|
		log_debug("Step2, unit = %d, phase = %d, bits delay=%x\n",
 | 
						|
			  last_right_ok.unit, last_right_ok.phase,
 | 
						|
			  last_right_ok.bits_delay);
 | 
						|
 | 
						|
		/* Restore the last_right_ok condtion. */
 | 
						|
		DQS_unit_delay(phy, datx8, last_right_ok.unit);
 | 
						|
		DQS_phase_delay(phy, datx8, last_right_ok.phase);
 | 
						|
		writel(last_right_ok.bits_delay, DXNDQTR(phy, datx8));
 | 
						|
 | 
						|
		/* train each bit
 | 
						|
		 * reduce delay on each bit, and perform a write/read test
 | 
						|
		 * and stop at the very first time it fails.
 | 
						|
		 * the goal is the find the first failing condition
 | 
						|
		 * for each bit.
 | 
						|
		 * When we achieve this condition<  for all the bits,
 | 
						|
		 * we are sure they are aligned (+/- step resolution)
 | 
						|
		 */
 | 
						|
		fail_found = 0;
 | 
						|
		for (bit_i = 0; bit_i < 8; bit_i++) {
 | 
						|
			if (ctrlc()) {
 | 
						|
				sprintf(string,
 | 
						|
					"interrupted at byte %d/%d, error=%d",
 | 
						|
					datx8 + 1, nb_bytes, error);
 | 
						|
				return error;
 | 
						|
			}
 | 
						|
			log_debug("deskewing bit %d:\n", bit_i);
 | 
						|
			success = 1; /* init */
 | 
						|
			/* Set all DQDLYn to maximum value.
 | 
						|
			 * Only bit_i will be down-delayed
 | 
						|
			 * ==> if we have a fail, it will be definitely
 | 
						|
			 *     from bit_i
 | 
						|
			 */
 | 
						|
			writel(0xFFFFFFFF, DXNDQTR(phy, datx8));
 | 
						|
			/* Arriving at this stage,
 | 
						|
			 * we have a success condition with delay = 3;
 | 
						|
			 */
 | 
						|
			bit_i_delay_index = 3;
 | 
						|
 | 
						|
			/* escape if bit delay is out of range or
 | 
						|
			 * if a fatil occurs
 | 
						|
			 */
 | 
						|
			while ((bit_i_delay_index >= 0) && success) {
 | 
						|
				set_DQ_unit_delay(phy, datx8,
 | 
						|
						  bit_i,
 | 
						|
						  bit_i_delay_index);
 | 
						|
				BIST_test(phy, datx8, &result);
 | 
						|
				success = result.test_result;
 | 
						|
				bit_i_delay_index--;
 | 
						|
			}
 | 
						|
 | 
						|
			/* if escape with a fail condition
 | 
						|
			 * ==> save this position for bit_i
 | 
						|
			 */
 | 
						|
			if (!success) {
 | 
						|
				/* save the delay position.
 | 
						|
				 * Add 1 because the while loop ended with a --,
 | 
						|
				 * and that we need to hold the last success
 | 
						|
				 *  delay
 | 
						|
				 */
 | 
						|
				deskew_delay[datx8][bit_i] =
 | 
						|
					bit_i_delay_index + 2;
 | 
						|
				if (deskew_delay[datx8][bit_i] > 3)
 | 
						|
					deskew_delay[datx8][bit_i] = 3;
 | 
						|
 | 
						|
				/* A flag that states we found at least a fail
 | 
						|
				 * at one bit.
 | 
						|
				 */
 | 
						|
				fail_found = 1;
 | 
						|
				log_debug("Fail found on bit %d, for delay = %d => deskew[%d][%d] = %d\n",
 | 
						|
					  bit_i, bit_i_delay_index + 1,
 | 
						|
					  datx8, bit_i,
 | 
						|
					  deskew_delay[datx8][bit_i]);
 | 
						|
			} else {
 | 
						|
				/* if we can find a success condition by
 | 
						|
				 * back-delaying this bit, just set the delay
 | 
						|
				 * to 0 (the best deskew
 | 
						|
				 * possible) and mark the bit.
 | 
						|
				 */
 | 
						|
				deskew_delay[datx8][bit_i] = 0;
 | 
						|
				/* set a flag that will be used later
 | 
						|
				 * in the report.
 | 
						|
				 */
 | 
						|
				deskew_non_converge[datx8][bit_i] = 1;
 | 
						|
				log_debug("Fail not found on bit %d => deskew[%d][%d] = %d\n",
 | 
						|
					  bit_i, datx8, bit_i,
 | 
						|
					  deskew_delay[datx8][bit_i]);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		log_debug("**********byte %d tuning complete************\n",
 | 
						|
			  datx8);
 | 
						|
		/* If we can't find any failure by back delaying DQ lines,
 | 
						|
		 * hold the default values
 | 
						|
		 */
 | 
						|
		if (!fail_found) {
 | 
						|
			for (bit_i = 0; bit_i < 8; bit_i++)
 | 
						|
				deskew_delay[datx8][bit_i] = 0;
 | 
						|
			log_debug("The Deskew algorithm can't converge, there is too much margin in your design. Good job!\n");
 | 
						|
		}
 | 
						|
 | 
						|
		apply_deskew_results(phy, datx8, deskew_delay,
 | 
						|
				     deskew_non_converge);
 | 
						|
		/* Restore nominal value for DQS delay */
 | 
						|
		DQS_phase_delay(phy, datx8, 3);
 | 
						|
		DQS_unit_delay(phy, datx8, 3);
 | 
						|
		/* disable byte after byte bits deskew */
 | 
						|
		clrbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN);
 | 
						|
	}  /* end of byte deskew */
 | 
						|
 | 
						|
	/* re-enable all data bytes */
 | 
						|
	setbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
 | 
						|
	setbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
 | 
						|
	setbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
 | 
						|
	setbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
 | 
						|
 | 
						|
	if (error) {
 | 
						|
		sprintf(string, "error = %d", error);
 | 
						|
		return TEST_FAILED;
 | 
						|
	}
 | 
						|
 | 
						|
	return TEST_PASSED;
 | 
						|
} /* end function */
 | 
						|
 | 
						|
/* Trim DQS timings and set it in the centre of data eye.
 | 
						|
 * Look for a PPPPF region, then look for a FPPP region and finally select
 | 
						|
 * the mid of the FPPPPPF region
 | 
						|
 */
 | 
						|
static enum test_result eye_training(struct stm32mp1_ddrctl *ctl,
 | 
						|
				     struct stm32mp1_ddrphy *phy, char *string)
 | 
						|
{
 | 
						|
	/*Stores the DQS trim values (PHASE index, unit index) */
 | 
						|
	u8 eye_training_val[NUM_BYTES][2];
 | 
						|
	u8 byte = 0;
 | 
						|
	struct BIST_result result;
 | 
						|
	s8 dqs_unit_delay_index = 0;
 | 
						|
	s8 phase_idx = 0;
 | 
						|
	s8 dqs_unit_delay_index_pass = 0;
 | 
						|
	s8 phase_idx_pass = 0;
 | 
						|
	u8 success = 0;
 | 
						|
	u8 left_phase_bound_found, right_phase_bound_found;
 | 
						|
	u8 left_unit_bound_found, right_unit_bound_found;
 | 
						|
	u8 left_bound_found, right_bound_found;
 | 
						|
	struct tuning_position left_bound, right_bound;
 | 
						|
	u8 error = 0;
 | 
						|
	u8 nb_bytes = get_nb_bytes(ctl);
 | 
						|
 | 
						|
	/*Disable DQS Drift Compensation*/
 | 
						|
	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
 | 
						|
	/*Disable all bytes*/
 | 
						|
	/* Disable automatic power down of DLL and IOs when disabling a byte
 | 
						|
	 * (To avoid having to add programming and  delay
 | 
						|
	 * for a DLL re-lock when later re-enabling a disabled Byte Lane)
 | 
						|
	 */
 | 
						|
	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
 | 
						|
 | 
						|
	/*Disable all data bytes */
 | 
						|
	clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
 | 
						|
	clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
 | 
						|
	clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
 | 
						|
	clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
 | 
						|
 | 
						|
	/* Config the BIST block */
 | 
						|
	config_BIST(ctl, phy);
 | 
						|
 | 
						|
	for (byte = 0; byte < nb_bytes; byte++) {
 | 
						|
		if (ctrlc()) {
 | 
						|
			sprintf(string, "interrupted at byte %d/%d, error=%d",
 | 
						|
				byte + 1, nb_bytes, error);
 | 
						|
			return TEST_FAILED;
 | 
						|
		}
 | 
						|
		right_bound.phase = 0;
 | 
						|
		right_bound.unit = 0;
 | 
						|
 | 
						|
		left_bound.phase = 0;
 | 
						|
		left_bound.unit = 0;
 | 
						|
 | 
						|
		left_phase_bound_found = 0;
 | 
						|
		right_phase_bound_found = 0;
 | 
						|
 | 
						|
		left_unit_bound_found = 0;
 | 
						|
		right_unit_bound_found = 0;
 | 
						|
 | 
						|
		left_bound_found = 0;
 | 
						|
		right_bound_found = 0;
 | 
						|
 | 
						|
		/* Enable Byte (DXNGCR, bit DXEN) */
 | 
						|
		setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN);
 | 
						|
 | 
						|
		/* Select the byte lane for comparison of read data */
 | 
						|
		BIST_datx8_sel(phy, byte);
 | 
						|
 | 
						|
		/* Set DQS phase delay to the nominal value. */
 | 
						|
		phase_idx = _90deg;
 | 
						|
		phase_idx_pass = phase_idx;
 | 
						|
 | 
						|
		/* Set DQS unit delay to the nominal value. */
 | 
						|
		dqs_unit_delay_index = 3;
 | 
						|
		dqs_unit_delay_index_pass = dqs_unit_delay_index;
 | 
						|
		success = 0;
 | 
						|
 | 
						|
		log_debug("STEP0: Find Init delay\n");
 | 
						|
		/* STEP0: Find Init delay: a delay that put the system
 | 
						|
		 * in a "Pass" condition then (TODO) update
 | 
						|
		 * dqs_unit_delay_index_pass & phase_idx_pass
 | 
						|
		 */
 | 
						|
		DQS_unit_delay(phy, byte, dqs_unit_delay_index);
 | 
						|
		DQS_phase_delay(phy, byte, phase_idx);
 | 
						|
		BIST_test(phy, byte, &result);
 | 
						|
		success = result.test_result;
 | 
						|
		/* If we have a fail in the nominal condition */
 | 
						|
		if (!success) {
 | 
						|
			/* Look at the left */
 | 
						|
			while (phase_idx >= 0 && !success) {
 | 
						|
				phase_idx--;
 | 
						|
				DQS_phase_delay(phy, byte, phase_idx);
 | 
						|
				BIST_test(phy, byte, &result);
 | 
						|
				success = result.test_result;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (!success) {
 | 
						|
			/* if we can't find pass condition,
 | 
						|
			 * then look at the right
 | 
						|
			 */
 | 
						|
			phase_idx = _90deg;
 | 
						|
			while (phase_idx <= MAX_DQS_PHASE_IDX &&
 | 
						|
			       !success) {
 | 
						|
				phase_idx++;
 | 
						|
				DQS_phase_delay(phy, byte,
 | 
						|
						phase_idx);
 | 
						|
				BIST_test(phy, byte, &result);
 | 
						|
				success = result.test_result;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		/* save the pass condition */
 | 
						|
		if (success) {
 | 
						|
			phase_idx_pass = phase_idx;
 | 
						|
		} else {
 | 
						|
			printf("Result: Failed ");
 | 
						|
			printf("[Cannot DQS timings, ");
 | 
						|
			printf("there is no PASS region]\n");
 | 
						|
			error++;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (ctrlc()) {
 | 
						|
			sprintf(string, "interrupted at byte %d/%d, error=%d",
 | 
						|
				byte + 1, nb_bytes, error);
 | 
						|
			return TEST_FAILED;
 | 
						|
		}
 | 
						|
		log_debug("STEP1: Find LEFT PHASE DQS Bound\n");
 | 
						|
		/* STEP1: Find LEFT PHASE DQS Bound */
 | 
						|
		while ((phase_idx >= 0) &&
 | 
						|
		       (phase_idx <= MAX_DQS_PHASE_IDX) &&
 | 
						|
		       !left_phase_bound_found) {
 | 
						|
			DQS_unit_delay(phy, byte,
 | 
						|
				       dqs_unit_delay_index);
 | 
						|
			DQS_phase_delay(phy, byte,
 | 
						|
					phase_idx);
 | 
						|
			BIST_test(phy, byte, &result);
 | 
						|
			success = result.test_result;
 | 
						|
 | 
						|
			/*TODO: Manage the case were at the beginning
 | 
						|
			 * there is already a fail
 | 
						|
			 */
 | 
						|
			if (!success) {
 | 
						|
				/* the last pass condition */
 | 
						|
				left_bound.phase = ++phase_idx;
 | 
						|
				left_phase_bound_found = 1;
 | 
						|
			} else if (success) {
 | 
						|
				phase_idx--;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (!left_phase_bound_found) {
 | 
						|
			left_bound.phase = 0;
 | 
						|
			phase_idx = 0;
 | 
						|
		}
 | 
						|
		/* If not found, lets take 0 */
 | 
						|
 | 
						|
		if (ctrlc()) {
 | 
						|
			sprintf(string, "interrupted at byte %d/%d, error=%d",
 | 
						|
				byte + 1, nb_bytes, error);
 | 
						|
			return TEST_FAILED;
 | 
						|
		}
 | 
						|
		log_debug("STEP2: Find UNIT left bound\n");
 | 
						|
		/* STEP2: Find UNIT left bound */
 | 
						|
		while ((dqs_unit_delay_index >= 0) &&
 | 
						|
		       !left_unit_bound_found) {
 | 
						|
			DQS_unit_delay(phy, byte,
 | 
						|
				       dqs_unit_delay_index);
 | 
						|
			DQS_phase_delay(phy, byte, phase_idx);
 | 
						|
			BIST_test(phy, byte, &result);
 | 
						|
			success = result.test_result;
 | 
						|
			if (!success) {
 | 
						|
				left_bound.unit =
 | 
						|
					++dqs_unit_delay_index;
 | 
						|
				left_unit_bound_found = 1;
 | 
						|
				left_bound_found = 1;
 | 
						|
			} else if (success) {
 | 
						|
				dqs_unit_delay_index--;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* If not found, lets take 0 */
 | 
						|
		if (!left_unit_bound_found)
 | 
						|
			left_bound.unit = 0;
 | 
						|
 | 
						|
		if (ctrlc()) {
 | 
						|
			sprintf(string, "interrupted at byte %d/%d, error=%d",
 | 
						|
				byte + 1, nb_bytes, error);
 | 
						|
			return TEST_FAILED;
 | 
						|
		}
 | 
						|
		log_debug("STEP3: Find PHase right bound\n");
 | 
						|
		/* STEP3: Find PHase right bound, start with "pass"
 | 
						|
		 * condition
 | 
						|
		 */
 | 
						|
 | 
						|
		/* Set DQS phase delay to the pass value. */
 | 
						|
		phase_idx = phase_idx_pass;
 | 
						|
 | 
						|
		/* Set DQS unit delay to the pass value. */
 | 
						|
		dqs_unit_delay_index = dqs_unit_delay_index_pass;
 | 
						|
 | 
						|
		while ((phase_idx <= MAX_DQS_PHASE_IDX) &&
 | 
						|
		       !right_phase_bound_found) {
 | 
						|
			DQS_unit_delay(phy, byte,
 | 
						|
				       dqs_unit_delay_index);
 | 
						|
			DQS_phase_delay(phy, byte, phase_idx);
 | 
						|
			BIST_test(phy, byte, &result);
 | 
						|
			success = result.test_result;
 | 
						|
			if (!success) {
 | 
						|
				/* the last pass condition */
 | 
						|
				right_bound.phase = --phase_idx;
 | 
						|
				right_phase_bound_found = 1;
 | 
						|
			} else if (success) {
 | 
						|
				phase_idx++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* If not found, lets take the max value */
 | 
						|
		if (!right_phase_bound_found) {
 | 
						|
			right_bound.phase = MAX_DQS_PHASE_IDX;
 | 
						|
			phase_idx = MAX_DQS_PHASE_IDX;
 | 
						|
		}
 | 
						|
 | 
						|
		if (ctrlc()) {
 | 
						|
			sprintf(string, "interrupted at byte %d/%d, error=%d",
 | 
						|
				byte + 1, nb_bytes, error);
 | 
						|
			return TEST_FAILED;
 | 
						|
		}
 | 
						|
		log_debug("STEP4: Find UNIT right bound\n");
 | 
						|
		/* STEP4: Find UNIT right bound */
 | 
						|
		while ((dqs_unit_delay_index <= MAX_DQS_UNIT_IDX) &&
 | 
						|
		       !right_unit_bound_found) {
 | 
						|
			DQS_unit_delay(phy, byte,
 | 
						|
				       dqs_unit_delay_index);
 | 
						|
			DQS_phase_delay(phy, byte, phase_idx);
 | 
						|
			BIST_test(phy, byte, &result);
 | 
						|
			success = result.test_result;
 | 
						|
			if (!success) {
 | 
						|
				right_bound.unit =
 | 
						|
					--dqs_unit_delay_index;
 | 
						|
				right_unit_bound_found = 1;
 | 
						|
				right_bound_found = 1;
 | 
						|
			} else if (success) {
 | 
						|
				dqs_unit_delay_index++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		/* If not found, lets take the max value */
 | 
						|
		if (!right_unit_bound_found)
 | 
						|
			right_bound.unit = MAX_DQS_UNIT_IDX;
 | 
						|
 | 
						|
		/* If we found a regular FAil Pass FAil pattern
 | 
						|
		 * FFPPPPPPFF
 | 
						|
		 * OR PPPPPFF  Or FFPPPPP
 | 
						|
		 */
 | 
						|
 | 
						|
		if (left_bound_found || right_bound_found) {
 | 
						|
			eye_training_val[byte][0] = (right_bound.phase +
 | 
						|
						 left_bound.phase) / 2;
 | 
						|
			eye_training_val[byte][1] = (right_bound.unit +
 | 
						|
						 left_bound.unit) / 2;
 | 
						|
 | 
						|
			/* If we already lost 1/2PHASE Tuning,
 | 
						|
			 * let's try to recover by ++ on unit
 | 
						|
			 */
 | 
						|
			if (((right_bound.phase + left_bound.phase) % 2 == 1) &&
 | 
						|
			    eye_training_val[byte][1] != MAX_DQS_UNIT_IDX)
 | 
						|
				eye_training_val[byte][1]++;
 | 
						|
			log_debug("** found phase : %d -  %d & unit %d - %d\n",
 | 
						|
				  right_bound.phase, left_bound.phase,
 | 
						|
				  right_bound.unit, left_bound.unit);
 | 
						|
			log_debug("** calculating mid region: phase: %d  unit: %d (nominal is 3)\n",
 | 
						|
				  eye_training_val[byte][0],
 | 
						|
				  eye_training_val[byte][1]);
 | 
						|
		} else {
 | 
						|
			/* PPPPPPPPPP, we're already good.
 | 
						|
			 * Set nominal values.
 | 
						|
			 */
 | 
						|
			eye_training_val[byte][0] = 3;
 | 
						|
			eye_training_val[byte][1] = 3;
 | 
						|
		}
 | 
						|
		DQS_phase_delay(phy, byte, eye_training_val[byte][0]);
 | 
						|
		DQS_unit_delay(phy, byte, eye_training_val[byte][1]);
 | 
						|
 | 
						|
		printf("Byte %d, DQS unit = %d, phase = %d\n",
 | 
						|
		       byte,
 | 
						|
		       eye_training_val[byte][1],
 | 
						|
		       eye_training_val[byte][0]);
 | 
						|
	}
 | 
						|
 | 
						|
	if (error) {
 | 
						|
		sprintf(string, "error = %d", error);
 | 
						|
		return TEST_FAILED;
 | 
						|
	}
 | 
						|
 | 
						|
	return TEST_PASSED;
 | 
						|
}
 | 
						|
 | 
						|
static void display_reg_results(struct stm32mp1_ddrphy *phy, u8 byte)
 | 
						|
{
 | 
						|
	u8 i = 0;
 | 
						|
 | 
						|
	printf("Byte %d Dekew result, bit0 delay, bit1 delay...bit8 delay\n  ",
 | 
						|
	       byte);
 | 
						|
 | 
						|
	for (i = 0; i < 8; i++)
 | 
						|
		printf("%d ", DQ_unit_index(phy, byte, i));
 | 
						|
	printf("\n");
 | 
						|
 | 
						|
	printf("dxndllcr: [%08x] val:%08x\n",
 | 
						|
	       DXNDLLCR(phy, byte),
 | 
						|
	       readl(DXNDLLCR(phy, byte)));
 | 
						|
	printf("dxnqdstr: [%08x] val:%08x\n",
 | 
						|
	       DXNDQSTR(phy, byte),
 | 
						|
	       readl(DXNDQSTR(phy, byte)));
 | 
						|
	printf("dxndqtr: [%08x] val:%08x\n",
 | 
						|
	       DXNDQTR(phy, byte),
 | 
						|
	       readl(DXNDQTR(phy, byte)));
 | 
						|
}
 | 
						|
 | 
						|
/* analyse the dgs gating log table, and determine the midpoint.*/
 | 
						|
static u8 set_midpoint_read_dqs_gating(struct stm32mp1_ddrphy *phy, u8 byte,
 | 
						|
				       u8 dqs_gating[NUM_BYTES]
 | 
						|
						    [MAX_GSL_IDX + 1]
 | 
						|
						    [MAX_GPS_IDX + 1])
 | 
						|
{
 | 
						|
	/* stores the dqs gate values (gsl index, gps index) */
 | 
						|
	u8 dqs_gate_values[NUM_BYTES][2];
 | 
						|
	u8 gsl_idx, gps_idx = 0;
 | 
						|
	u8 left_bound_idx[2] = {0, 0};
 | 
						|
	u8 right_bound_idx[2] = {0, 0};
 | 
						|
	u8 left_bound_found = 0;
 | 
						|
	u8 right_bound_found = 0;
 | 
						|
	u8 intermittent = 0;
 | 
						|
	u8 value;
 | 
						|
 | 
						|
	for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) {
 | 
						|
		for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) {
 | 
						|
			value = dqs_gating[byte][gsl_idx][gps_idx];
 | 
						|
			if (value == 1 && left_bound_found == 0) {
 | 
						|
				left_bound_idx[0] = gsl_idx;
 | 
						|
				left_bound_idx[1] = gps_idx;
 | 
						|
				left_bound_found = 1;
 | 
						|
			} else if (value == 0 &&
 | 
						|
				   left_bound_found == 1 &&
 | 
						|
				   !right_bound_found) {
 | 
						|
				if (gps_idx == 0) {
 | 
						|
					right_bound_idx[0] = gsl_idx - 1;
 | 
						|
					right_bound_idx[1] = MAX_GPS_IDX;
 | 
						|
				} else {
 | 
						|
					right_bound_idx[0] = gsl_idx;
 | 
						|
					right_bound_idx[1] = gps_idx - 1;
 | 
						|
				}
 | 
						|
				right_bound_found = 1;
 | 
						|
			} else if (value == 1 &&
 | 
						|
				   right_bound_found == 1) {
 | 
						|
				intermittent = 1;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* if only ppppppp is found, there is no mid region. */
 | 
						|
	if (left_bound_idx[0] == 0 && left_bound_idx[1] == 0 &&
 | 
						|
	    right_bound_idx[0] == 0 && right_bound_idx[1] == 0)
 | 
						|
		intermittent = 1;
 | 
						|
 | 
						|
	/*if we found a regular fail pass fail pattern ffppppppff
 | 
						|
	 * or pppppff  or ffppppp
 | 
						|
	 */
 | 
						|
	if (!intermittent) {
 | 
						|
		/*if we found a regular fail pass fail pattern ffppppppff
 | 
						|
		 * or pppppff  or ffppppp
 | 
						|
		 */
 | 
						|
		if (left_bound_found || right_bound_found) {
 | 
						|
			log_debug("idx0(%d): %d %d      idx1(%d) : %d %d\n",
 | 
						|
				  left_bound_found,
 | 
						|
				  right_bound_idx[0], left_bound_idx[0],
 | 
						|
				  right_bound_found,
 | 
						|
				  right_bound_idx[1], left_bound_idx[1]);
 | 
						|
			dqs_gate_values[byte][0] =
 | 
						|
				(right_bound_idx[0] + left_bound_idx[0]) / 2;
 | 
						|
			dqs_gate_values[byte][1] =
 | 
						|
				(right_bound_idx[1] + left_bound_idx[1]) / 2;
 | 
						|
			/* if we already lost 1/2gsl tuning,
 | 
						|
			 * let's try to recover by ++ on gps
 | 
						|
			 */
 | 
						|
			if (((right_bound_idx[0] +
 | 
						|
			      left_bound_idx[0]) % 2 == 1) &&
 | 
						|
			    dqs_gate_values[byte][1] != MAX_GPS_IDX)
 | 
						|
				dqs_gate_values[byte][1]++;
 | 
						|
			/* if we already lost 1/2gsl tuning and gps is on max*/
 | 
						|
			else if (((right_bound_idx[0] +
 | 
						|
				   left_bound_idx[0]) % 2 == 1) &&
 | 
						|
				 dqs_gate_values[byte][1] == MAX_GPS_IDX) {
 | 
						|
				dqs_gate_values[byte][1] = 0;
 | 
						|
				dqs_gate_values[byte][0]++;
 | 
						|
			}
 | 
						|
			/* if we have gsl left and write limit too close
 | 
						|
			 * (difference=1)
 | 
						|
			 */
 | 
						|
			if (((right_bound_idx[0] - left_bound_idx[0]) == 1)) {
 | 
						|
				dqs_gate_values[byte][1] = (left_bound_idx[1] +
 | 
						|
							    right_bound_idx[1] +
 | 
						|
							    4) / 2;
 | 
						|
				if (dqs_gate_values[byte][1] >= 4) {
 | 
						|
					dqs_gate_values[byte][0] =
 | 
						|
						right_bound_idx[0];
 | 
						|
					dqs_gate_values[byte][1] -= 4;
 | 
						|
				} else {
 | 
						|
					dqs_gate_values[byte][0] =
 | 
						|
						left_bound_idx[0];
 | 
						|
				}
 | 
						|
			}
 | 
						|
			log_debug("*******calculating mid region: system latency: %d  phase: %d********\n",
 | 
						|
				  dqs_gate_values[byte][0],
 | 
						|
				  dqs_gate_values[byte][1]);
 | 
						|
			log_debug("*******the nominal values were system latency: 0  phase: 2*******\n");
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/* if intermitant, restore defaut values */
 | 
						|
		log_debug("dqs gating:no regular fail/pass/fail found. defaults values restored.\n");
 | 
						|
		dqs_gate_values[byte][0] = 0;
 | 
						|
		dqs_gate_values[byte][1] = 2;
 | 
						|
	}
 | 
						|
	set_r0dgsl_delay(phy, byte, dqs_gate_values[byte][0]);
 | 
						|
	set_r0dgps_delay(phy, byte, dqs_gate_values[byte][1]);
 | 
						|
	printf("Byte %d, R0DGSL = %d, R0DGPS = %d\n",
 | 
						|
	       byte, dqs_gate_values[byte][0], dqs_gate_values[byte][1]);
 | 
						|
 | 
						|
	/* return 0 if intermittent or if both left_bound
 | 
						|
	 * and right_bound are not found
 | 
						|
	 */
 | 
						|
	return !(intermittent || (left_bound_found && right_bound_found));
 | 
						|
}
 | 
						|
 | 
						|
static enum test_result read_dqs_gating(struct stm32mp1_ddrctl *ctl,
 | 
						|
					struct stm32mp1_ddrphy *phy,
 | 
						|
					char *string)
 | 
						|
{
 | 
						|
	/* stores the log of pass/fail */
 | 
						|
	u8 dqs_gating[NUM_BYTES][MAX_GSL_IDX + 1][MAX_GPS_IDX + 1];
 | 
						|
	u8 byte, gsl_idx, gps_idx = 0;
 | 
						|
	struct BIST_result result;
 | 
						|
	u8 success = 0;
 | 
						|
	u8 nb_bytes = get_nb_bytes(ctl);
 | 
						|
 | 
						|
	memset(dqs_gating, 0x0, sizeof(dqs_gating));
 | 
						|
 | 
						|
	/*disable dqs drift compensation*/
 | 
						|
	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
 | 
						|
	/*disable all bytes*/
 | 
						|
	/* disable automatic power down of dll and ios when disabling a byte
 | 
						|
	 * (to avoid having to add programming and  delay
 | 
						|
	 * for a dll re-lock when later re-enabling a disabled byte lane)
 | 
						|
	 */
 | 
						|
	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
 | 
						|
 | 
						|
	/* disable all data bytes */
 | 
						|
	clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
 | 
						|
	clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
 | 
						|
	clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
 | 
						|
	clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
 | 
						|
 | 
						|
	/* config the bist block */
 | 
						|
	config_BIST(ctl, phy);
 | 
						|
 | 
						|
	for (byte = 0; byte < nb_bytes; byte++) {
 | 
						|
		if (ctrlc()) {
 | 
						|
			sprintf(string, "interrupted at byte %d/%d",
 | 
						|
				byte + 1, nb_bytes);
 | 
						|
			return TEST_FAILED;
 | 
						|
		}
 | 
						|
		/* enable byte x (dxngcr, bit dxen) */
 | 
						|
		setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN);
 | 
						|
 | 
						|
		/* select the byte lane for comparison of read data */
 | 
						|
		BIST_datx8_sel(phy, byte);
 | 
						|
		for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) {
 | 
						|
			for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) {
 | 
						|
				if (ctrlc()) {
 | 
						|
					sprintf(string,
 | 
						|
						"interrupted at byte %d/%d",
 | 
						|
						byte + 1, nb_bytes);
 | 
						|
					return TEST_FAILED;
 | 
						|
				}
 | 
						|
				/* write cfg to dxndqstr */
 | 
						|
				set_r0dgsl_delay(phy, byte, gsl_idx);
 | 
						|
				set_r0dgps_delay(phy, byte, gps_idx);
 | 
						|
 | 
						|
				BIST_test(phy, byte, &result);
 | 
						|
				success = result.test_result;
 | 
						|
				if (success)
 | 
						|
					dqs_gating[byte][gsl_idx][gps_idx] = 1;
 | 
						|
				itm_soft_reset(phy);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		set_midpoint_read_dqs_gating(phy, byte, dqs_gating);
 | 
						|
		/* dummy reads */
 | 
						|
		readl(0xc0000000);
 | 
						|
		readl(0xc0000000);
 | 
						|
	}
 | 
						|
 | 
						|
	/* re-enable drift compensation */
 | 
						|
	/* setbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); */
 | 
						|
	return TEST_PASSED;
 | 
						|
}
 | 
						|
 | 
						|
/****************************************************************
 | 
						|
 * TEST
 | 
						|
 ****************************************************************
 | 
						|
 */
 | 
						|
static enum test_result do_read_dqs_gating(struct stm32mp1_ddrctl *ctl,
 | 
						|
					   struct stm32mp1_ddrphy *phy,
 | 
						|
					   char *string, int argc,
 | 
						|
					   char *argv[])
 | 
						|
{
 | 
						|
	u32 rfshctl3 = readl(&ctl->rfshctl3);
 | 
						|
	u32 pwrctl = readl(&ctl->pwrctl);
 | 
						|
	u32 derateen = readl(&ctl->derateen);
 | 
						|
	enum test_result res;
 | 
						|
 | 
						|
	writel(0x0, &ctl->derateen);
 | 
						|
	stm32mp1_refresh_disable(ctl);
 | 
						|
 | 
						|
	res = read_dqs_gating(ctl, phy, string);
 | 
						|
 | 
						|
	stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
 | 
						|
	writel(derateen, &ctl->derateen);
 | 
						|
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
static enum test_result do_bit_deskew(struct stm32mp1_ddrctl *ctl,
 | 
						|
				      struct stm32mp1_ddrphy *phy,
 | 
						|
				      char *string, int argc, char *argv[])
 | 
						|
{
 | 
						|
	u32 rfshctl3 = readl(&ctl->rfshctl3);
 | 
						|
	u32 pwrctl = readl(&ctl->pwrctl);
 | 
						|
	u32 derateen = readl(&ctl->derateen);
 | 
						|
	enum test_result res;
 | 
						|
 | 
						|
	writel(0x0, &ctl->derateen);
 | 
						|
	stm32mp1_refresh_disable(ctl);
 | 
						|
 | 
						|
	res = bit_deskew(ctl, phy, string);
 | 
						|
 | 
						|
	stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
 | 
						|
	writel(derateen, &ctl->derateen);
 | 
						|
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
static enum test_result do_eye_training(struct stm32mp1_ddrctl *ctl,
 | 
						|
					struct stm32mp1_ddrphy *phy,
 | 
						|
					char *string, int argc, char *argv[])
 | 
						|
{
 | 
						|
	u32 rfshctl3 = readl(&ctl->rfshctl3);
 | 
						|
	u32 pwrctl = readl(&ctl->pwrctl);
 | 
						|
	u32 derateen = readl(&ctl->derateen);
 | 
						|
	enum test_result res;
 | 
						|
 | 
						|
	writel(0x0, &ctl->derateen);
 | 
						|
	stm32mp1_refresh_disable(ctl);
 | 
						|
 | 
						|
	res = eye_training(ctl, phy, string);
 | 
						|
 | 
						|
	stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
 | 
						|
	writel(derateen, &ctl->derateen);
 | 
						|
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
static enum test_result do_display(struct stm32mp1_ddrctl *ctl,
 | 
						|
				   struct stm32mp1_ddrphy *phy,
 | 
						|
				   char *string, int argc, char *argv[])
 | 
						|
{
 | 
						|
	int byte;
 | 
						|
	u8 nb_bytes = get_nb_bytes(ctl);
 | 
						|
 | 
						|
	for (byte = 0; byte < nb_bytes; byte++)
 | 
						|
		display_reg_results(phy, byte);
 | 
						|
 | 
						|
	return TEST_PASSED;
 | 
						|
}
 | 
						|
 | 
						|
static enum test_result do_bist_config(struct stm32mp1_ddrctl *ctl,
 | 
						|
				       struct stm32mp1_ddrphy *phy,
 | 
						|
				       char *string, int argc, char *argv[])
 | 
						|
{
 | 
						|
	unsigned long value;
 | 
						|
 | 
						|
	if (argc > 0) {
 | 
						|
		if (strict_strtoul(argv[0], 0, &value) < 0) {
 | 
						|
			sprintf(string, "invalid nbErr %s", argv[0]);
 | 
						|
			return TEST_FAILED;
 | 
						|
		}
 | 
						|
		BIST_error_max = value;
 | 
						|
	}
 | 
						|
	if (argc > 1) {
 | 
						|
		if (strict_strtoul(argv[1], 0, &value) < 0) {
 | 
						|
			sprintf(string, "invalid Seed %s", argv[1]);
 | 
						|
			return TEST_FAILED;
 | 
						|
		}
 | 
						|
		BIST_seed = value;
 | 
						|
	}
 | 
						|
	printf("Bist.nbErr = %d\n", BIST_error_max);
 | 
						|
	if (BIST_seed)
 | 
						|
		printf("Bist.Seed = 0x%x\n", BIST_seed);
 | 
						|
	else
 | 
						|
		printf("Bist.Seed = random\n");
 | 
						|
 | 
						|
	return TEST_PASSED;
 | 
						|
}
 | 
						|
 | 
						|
/****************************************************************
 | 
						|
 * TEST Description
 | 
						|
 ****************************************************************
 | 
						|
 */
 | 
						|
 | 
						|
const struct test_desc tuning[] = {
 | 
						|
	{do_read_dqs_gating, "Read DQS gating",
 | 
						|
		"software read DQS Gating", "", 0 },
 | 
						|
	{do_bit_deskew, "Bit de-skew", "", "", 0 },
 | 
						|
	{do_eye_training, "Eye Training", "or DQS training", "", 0 },
 | 
						|
	{do_display, "Display registers", "", "", 0 },
 | 
						|
	{do_bist_config, "Bist config", "[nbErr] [seed]",
 | 
						|
	 "configure Bist test", 2},
 | 
						|
};
 | 
						|
 | 
						|
const int tuning_nb = ARRAY_SIZE(tuning);
 |