822 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			822 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * This file is part of UBIFS.
 | |
|  *
 | |
|  * Copyright (C) 2006-2008 Nokia Corporation.
 | |
|  *
 | |
|  * Authors: Artem Bityutskiy (Битюцкий Артём)
 | |
|  *          Adrian Hunter
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file implements UBIFS superblock. The superblock is stored at the first
 | |
|  * LEB of the volume and is never changed by UBIFS. Only user-space tools may
 | |
|  * change it. The superblock node mostly contains geometry information.
 | |
|  */
 | |
| 
 | |
| #include "ubifs.h"
 | |
| #ifndef __UBOOT__
 | |
| #include <log.h>
 | |
| #include <dm/devres.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/math64.h>
 | |
| #else
 | |
| 
 | |
| #include <linux/compat.h>
 | |
| #include <linux/err.h>
 | |
| #include <ubi_uboot.h>
 | |
| #include <linux/stat.h>
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Default journal size in logical eraseblocks as a percent of total
 | |
|  * flash size.
 | |
|  */
 | |
| #define DEFAULT_JNL_PERCENT 5
 | |
| 
 | |
| /* Default maximum journal size in bytes */
 | |
| #define DEFAULT_MAX_JNL (32*1024*1024)
 | |
| 
 | |
| /* Default indexing tree fanout */
 | |
| #define DEFAULT_FANOUT 8
 | |
| 
 | |
| /* Default number of data journal heads */
 | |
| #define DEFAULT_JHEADS_CNT 1
 | |
| 
 | |
| /* Default positions of different LEBs in the main area */
 | |
| #define DEFAULT_IDX_LEB  0
 | |
| #define DEFAULT_DATA_LEB 1
 | |
| #define DEFAULT_GC_LEB   2
 | |
| 
 | |
| /* Default number of LEB numbers in LPT's save table */
 | |
| #define DEFAULT_LSAVE_CNT 256
 | |
| 
 | |
| /* Default reserved pool size as a percent of maximum free space */
 | |
| #define DEFAULT_RP_PERCENT 5
 | |
| 
 | |
| /* The default maximum size of reserved pool in bytes */
 | |
| #define DEFAULT_MAX_RP_SIZE (5*1024*1024)
 | |
| 
 | |
| /* Default time granularity in nanoseconds */
 | |
| #define DEFAULT_TIME_GRAN 1000000000
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| /**
 | |
|  * create_default_filesystem - format empty UBI volume.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function creates default empty file-system. Returns zero in case of
 | |
|  * success and a negative error code in case of failure.
 | |
|  */
 | |
| static int create_default_filesystem(struct ubifs_info *c)
 | |
| {
 | |
| 	struct ubifs_sb_node *sup;
 | |
| 	struct ubifs_mst_node *mst;
 | |
| 	struct ubifs_idx_node *idx;
 | |
| 	struct ubifs_branch *br;
 | |
| 	struct ubifs_ino_node *ino;
 | |
| 	struct ubifs_cs_node *cs;
 | |
| 	union ubifs_key key;
 | |
| 	int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
 | |
| 	int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
 | |
| 	int min_leb_cnt = UBIFS_MIN_LEB_CNT;
 | |
| 	long long tmp64, main_bytes;
 | |
| 	__le64 tmp_le64;
 | |
| 
 | |
| 	/* Some functions called from here depend on the @c->key_len filed */
 | |
| 	c->key_len = UBIFS_SK_LEN;
 | |
| 
 | |
| 	/*
 | |
| 	 * First of all, we have to calculate default file-system geometry -
 | |
| 	 * log size, journal size, etc.
 | |
| 	 */
 | |
| 	if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
 | |
| 		/* We can first multiply then divide and have no overflow */
 | |
| 		jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
 | |
| 	else
 | |
| 		jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
 | |
| 
 | |
| 	if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
 | |
| 		jnl_lebs = UBIFS_MIN_JNL_LEBS;
 | |
| 	if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
 | |
| 		jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * The log should be large enough to fit reference nodes for all bud
 | |
| 	 * LEBs. Because buds do not have to start from the beginning of LEBs
 | |
| 	 * (half of the LEB may contain committed data), the log should
 | |
| 	 * generally be larger, make it twice as large.
 | |
| 	 */
 | |
| 	tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
 | |
| 	log_lebs = tmp / c->leb_size;
 | |
| 	/* Plus one LEB reserved for commit */
 | |
| 	log_lebs += 1;
 | |
| 	if (c->leb_cnt - min_leb_cnt > 8) {
 | |
| 		/* And some extra space to allow writes while committing */
 | |
| 		log_lebs += 1;
 | |
| 		min_leb_cnt += 1;
 | |
| 	}
 | |
| 
 | |
| 	max_buds = jnl_lebs - log_lebs;
 | |
| 	if (max_buds < UBIFS_MIN_BUD_LEBS)
 | |
| 		max_buds = UBIFS_MIN_BUD_LEBS;
 | |
| 
 | |
| 	/*
 | |
| 	 * Orphan nodes are stored in a separate area. One node can store a lot
 | |
| 	 * of orphan inode numbers, but when new orphan comes we just add a new
 | |
| 	 * orphan node. At some point the nodes are consolidated into one
 | |
| 	 * orphan node.
 | |
| 	 */
 | |
| 	orph_lebs = UBIFS_MIN_ORPH_LEBS;
 | |
| 	if (c->leb_cnt - min_leb_cnt > 1)
 | |
| 		/*
 | |
| 		 * For debugging purposes it is better to have at least 2
 | |
| 		 * orphan LEBs, because the orphan subsystem would need to do
 | |
| 		 * consolidations and would be stressed more.
 | |
| 		 */
 | |
| 		orph_lebs += 1;
 | |
| 
 | |
| 	main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
 | |
| 	main_lebs -= orph_lebs;
 | |
| 
 | |
| 	lpt_first = UBIFS_LOG_LNUM + log_lebs;
 | |
| 	c->lsave_cnt = DEFAULT_LSAVE_CNT;
 | |
| 	c->max_leb_cnt = c->leb_cnt;
 | |
| 	err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
 | |
| 				    &big_lpt);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
 | |
| 		lpt_first + lpt_lebs - 1);
 | |
| 
 | |
| 	main_first = c->leb_cnt - main_lebs;
 | |
| 
 | |
| 	/* Create default superblock */
 | |
| 	tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
 | |
| 	sup = kzalloc(tmp, GFP_KERNEL);
 | |
| 	if (!sup)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	tmp64 = (long long)max_buds * c->leb_size;
 | |
| 	if (big_lpt)
 | |
| 		sup_flags |= UBIFS_FLG_BIGLPT;
 | |
| 
 | |
| 	sup->ch.node_type  = UBIFS_SB_NODE;
 | |
| 	sup->key_hash      = UBIFS_KEY_HASH_R5;
 | |
| 	sup->flags         = cpu_to_le32(sup_flags);
 | |
| 	sup->min_io_size   = cpu_to_le32(c->min_io_size);
 | |
| 	sup->leb_size      = cpu_to_le32(c->leb_size);
 | |
| 	sup->leb_cnt       = cpu_to_le32(c->leb_cnt);
 | |
| 	sup->max_leb_cnt   = cpu_to_le32(c->max_leb_cnt);
 | |
| 	sup->max_bud_bytes = cpu_to_le64(tmp64);
 | |
| 	sup->log_lebs      = cpu_to_le32(log_lebs);
 | |
| 	sup->lpt_lebs      = cpu_to_le32(lpt_lebs);
 | |
| 	sup->orph_lebs     = cpu_to_le32(orph_lebs);
 | |
| 	sup->jhead_cnt     = cpu_to_le32(DEFAULT_JHEADS_CNT);
 | |
| 	sup->fanout        = cpu_to_le32(DEFAULT_FANOUT);
 | |
| 	sup->lsave_cnt     = cpu_to_le32(c->lsave_cnt);
 | |
| 	sup->fmt_version   = cpu_to_le32(UBIFS_FORMAT_VERSION);
 | |
| 	sup->time_gran     = cpu_to_le32(DEFAULT_TIME_GRAN);
 | |
| 	if (c->mount_opts.override_compr)
 | |
| 		sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
 | |
| 	else
 | |
| 		sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO);
 | |
| 
 | |
| 	generate_random_uuid(sup->uuid);
 | |
| 
 | |
| 	main_bytes = (long long)main_lebs * c->leb_size;
 | |
| 	tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100);
 | |
| 	if (tmp64 > DEFAULT_MAX_RP_SIZE)
 | |
| 		tmp64 = DEFAULT_MAX_RP_SIZE;
 | |
| 	sup->rp_size = cpu_to_le64(tmp64);
 | |
| 	sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
 | |
| 
 | |
| 	err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0);
 | |
| 	kfree(sup);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dbg_gen("default superblock created at LEB 0:0");
 | |
| 
 | |
| 	/* Create default master node */
 | |
| 	mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
 | |
| 	if (!mst)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mst->ch.node_type = UBIFS_MST_NODE;
 | |
| 	mst->log_lnum     = cpu_to_le32(UBIFS_LOG_LNUM);
 | |
| 	mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
 | |
| 	mst->cmt_no       = 0;
 | |
| 	mst->root_lnum    = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
 | |
| 	mst->root_offs    = 0;
 | |
| 	tmp = ubifs_idx_node_sz(c, 1);
 | |
| 	mst->root_len     = cpu_to_le32(tmp);
 | |
| 	mst->gc_lnum      = cpu_to_le32(main_first + DEFAULT_GC_LEB);
 | |
| 	mst->ihead_lnum   = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
 | |
| 	mst->ihead_offs   = cpu_to_le32(ALIGN(tmp, c->min_io_size));
 | |
| 	mst->index_size   = cpu_to_le64(ALIGN(tmp, 8));
 | |
| 	mst->lpt_lnum     = cpu_to_le32(c->lpt_lnum);
 | |
| 	mst->lpt_offs     = cpu_to_le32(c->lpt_offs);
 | |
| 	mst->nhead_lnum   = cpu_to_le32(c->nhead_lnum);
 | |
| 	mst->nhead_offs   = cpu_to_le32(c->nhead_offs);
 | |
| 	mst->ltab_lnum    = cpu_to_le32(c->ltab_lnum);
 | |
| 	mst->ltab_offs    = cpu_to_le32(c->ltab_offs);
 | |
| 	mst->lsave_lnum   = cpu_to_le32(c->lsave_lnum);
 | |
| 	mst->lsave_offs   = cpu_to_le32(c->lsave_offs);
 | |
| 	mst->lscan_lnum   = cpu_to_le32(main_first);
 | |
| 	mst->empty_lebs   = cpu_to_le32(main_lebs - 2);
 | |
| 	mst->idx_lebs     = cpu_to_le32(1);
 | |
| 	mst->leb_cnt      = cpu_to_le32(c->leb_cnt);
 | |
| 
 | |
| 	/* Calculate lprops statistics */
 | |
| 	tmp64 = main_bytes;
 | |
| 	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
 | |
| 	tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
 | |
| 	mst->total_free = cpu_to_le64(tmp64);
 | |
| 
 | |
| 	tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
 | |
| 	ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
 | |
| 			  UBIFS_INO_NODE_SZ;
 | |
| 	tmp64 += ino_waste;
 | |
| 	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
 | |
| 	mst->total_dirty = cpu_to_le64(tmp64);
 | |
| 
 | |
| 	/*  The indexing LEB does not contribute to dark space */
 | |
| 	tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm);
 | |
| 	mst->total_dark = cpu_to_le64(tmp64);
 | |
| 
 | |
| 	mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
 | |
| 
 | |
| 	err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0);
 | |
| 	if (err) {
 | |
| 		kfree(mst);
 | |
| 		return err;
 | |
| 	}
 | |
| 	err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1,
 | |
| 			       0);
 | |
| 	kfree(mst);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
 | |
| 
 | |
| 	/* Create the root indexing node */
 | |
| 	tmp = ubifs_idx_node_sz(c, 1);
 | |
| 	idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
 | |
| 	if (!idx)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
 | |
| 	c->key_hash = key_r5_hash;
 | |
| 
 | |
| 	idx->ch.node_type = UBIFS_IDX_NODE;
 | |
| 	idx->child_cnt = cpu_to_le16(1);
 | |
| 	ino_key_init(c, &key, UBIFS_ROOT_INO);
 | |
| 	br = ubifs_idx_branch(c, idx, 0);
 | |
| 	key_write_idx(c, &key, &br->key);
 | |
| 	br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
 | |
| 	br->len  = cpu_to_le32(UBIFS_INO_NODE_SZ);
 | |
| 	err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0);
 | |
| 	kfree(idx);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dbg_gen("default root indexing node created LEB %d:0",
 | |
| 		main_first + DEFAULT_IDX_LEB);
 | |
| 
 | |
| 	/* Create default root inode */
 | |
| 	tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
 | |
| 	ino = kzalloc(tmp, GFP_KERNEL);
 | |
| 	if (!ino)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
 | |
| 	ino->ch.node_type = UBIFS_INO_NODE;
 | |
| 	ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
 | |
| 	ino->nlink = cpu_to_le32(2);
 | |
| 	tmp_le64 = cpu_to_le64(CURRENT_TIME_SEC.tv_sec);
 | |
| 	ino->atime_sec   = tmp_le64;
 | |
| 	ino->ctime_sec   = tmp_le64;
 | |
| 	ino->mtime_sec   = tmp_le64;
 | |
| 	ino->atime_nsec  = 0;
 | |
| 	ino->ctime_nsec  = 0;
 | |
| 	ino->mtime_nsec  = 0;
 | |
| 	ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
 | |
| 	ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
 | |
| 
 | |
| 	/* Set compression enabled by default */
 | |
| 	ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
 | |
| 
 | |
| 	err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
 | |
| 			       main_first + DEFAULT_DATA_LEB, 0);
 | |
| 	kfree(ino);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dbg_gen("root inode created at LEB %d:0",
 | |
| 		main_first + DEFAULT_DATA_LEB);
 | |
| 
 | |
| 	/*
 | |
| 	 * The first node in the log has to be the commit start node. This is
 | |
| 	 * always the case during normal file-system operation. Write a fake
 | |
| 	 * commit start node to the log.
 | |
| 	 */
 | |
| 	tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size);
 | |
| 	cs = kzalloc(tmp, GFP_KERNEL);
 | |
| 	if (!cs)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	cs->ch.node_type = UBIFS_CS_NODE;
 | |
| 	err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0);
 | |
| 	kfree(cs);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	ubifs_msg(c, "default file-system created");
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * validate_sb - validate superblock node.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @sup: superblock node
 | |
|  *
 | |
|  * This function validates superblock node @sup. Since most of data was read
 | |
|  * from the superblock and stored in @c, the function validates fields in @c
 | |
|  * instead. Returns zero in case of success and %-EINVAL in case of validation
 | |
|  * failure.
 | |
|  */
 | |
| static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
 | |
| {
 | |
| 	long long max_bytes;
 | |
| 	int err = 1, min_leb_cnt;
 | |
| 
 | |
| 	if (!c->key_hash) {
 | |
| 		err = 2;
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
 | |
| 		err = 3;
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
 | |
| 		ubifs_err(c, "min. I/O unit mismatch: %d in superblock, %d real",
 | |
| 			  le32_to_cpu(sup->min_io_size), c->min_io_size);
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	if (le32_to_cpu(sup->leb_size) != c->leb_size) {
 | |
| 		ubifs_err(c, "LEB size mismatch: %d in superblock, %d real",
 | |
| 			  le32_to_cpu(sup->leb_size), c->leb_size);
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
 | |
| 	    c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
 | |
| 	    c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
 | |
| 	    c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
 | |
| 		err = 4;
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate minimum allowed amount of main area LEBs. This is very
 | |
| 	 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
 | |
| 	 * have just read from the superblock.
 | |
| 	 */
 | |
| 	min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
 | |
| 	min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
 | |
| 
 | |
| 	if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
 | |
| 		ubifs_err(c, "bad LEB count: %d in superblock, %d on UBI volume, %d minimum required",
 | |
| 			  c->leb_cnt, c->vi.size, min_leb_cnt);
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	if (c->max_leb_cnt < c->leb_cnt) {
 | |
| 		ubifs_err(c, "max. LEB count %d less than LEB count %d",
 | |
| 			  c->max_leb_cnt, c->leb_cnt);
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
 | |
| 		ubifs_err(c, "too few main LEBs count %d, must be at least %d",
 | |
| 			  c->main_lebs, UBIFS_MIN_MAIN_LEBS);
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS;
 | |
| 	if (c->max_bud_bytes < max_bytes) {
 | |
| 		ubifs_err(c, "too small journal (%lld bytes), must be at least %lld bytes",
 | |
| 			  c->max_bud_bytes, max_bytes);
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	max_bytes = (long long)c->leb_size * c->main_lebs;
 | |
| 	if (c->max_bud_bytes > max_bytes) {
 | |
| 		ubifs_err(c, "too large journal size (%lld bytes), only %lld bytes available in the main area",
 | |
| 			  c->max_bud_bytes, max_bytes);
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
 | |
| 	    c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
 | |
| 		err = 9;
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	if (c->fanout < UBIFS_MIN_FANOUT ||
 | |
| 	    ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
 | |
| 		err = 10;
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
 | |
| 	    c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
 | |
| 	    c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
 | |
| 		err = 11;
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
 | |
| 	    c->orph_lebs + c->main_lebs != c->leb_cnt) {
 | |
| 		err = 12;
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	if (c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
 | |
| 		err = 13;
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	if (c->rp_size < 0 || max_bytes < c->rp_size) {
 | |
| 		err = 14;
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	if (le32_to_cpu(sup->time_gran) > 1000000000 ||
 | |
| 	    le32_to_cpu(sup->time_gran) < 1) {
 | |
| 		err = 15;
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| failed:
 | |
| 	ubifs_err(c, "bad superblock, error %d", err);
 | |
| 	ubifs_dump_node(c, sup);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_read_sb_node - read superblock node.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function returns a pointer to the superblock node or a negative error
 | |
|  * code. Note, the user of this function is responsible of kfree()'ing the
 | |
|  * returned superblock buffer.
 | |
|  */
 | |
| struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
 | |
| {
 | |
| 	struct ubifs_sb_node *sup;
 | |
| 	int err;
 | |
| 
 | |
| 	sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
 | |
| 	if (!sup)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
 | |
| 			      UBIFS_SB_LNUM, 0);
 | |
| 	if (err) {
 | |
| 		kfree(sup);
 | |
| 		return ERR_PTR(err);
 | |
| 	}
 | |
| 
 | |
| 	return sup;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_write_sb_node - write superblock node.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @sup: superblock node read with 'ubifs_read_sb_node()'
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
 | |
| {
 | |
| 	int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
 | |
| 
 | |
| 	ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1);
 | |
| 	return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_read_superblock - read superblock.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function finds, reads and checks the superblock. If an empty UBI volume
 | |
|  * is being mounted, this function creates default superblock. Returns zero in
 | |
|  * case of success, and a negative error code in case of failure.
 | |
|  */
 | |
| int ubifs_read_superblock(struct ubifs_info *c)
 | |
| {
 | |
| 	int err, sup_flags;
 | |
| 	struct ubifs_sb_node *sup;
 | |
| 
 | |
| 	if (c->empty) {
 | |
| #ifndef __UBOOT__
 | |
| 		err = create_default_filesystem(c);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| #else
 | |
| 		printf("No UBIFS filesystem found!\n");
 | |
| 		return -1;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	sup = ubifs_read_sb_node(c);
 | |
| 	if (IS_ERR(sup))
 | |
| 		return PTR_ERR(sup);
 | |
| 
 | |
| 	c->fmt_version = le32_to_cpu(sup->fmt_version);
 | |
| 	c->ro_compat_version = le32_to_cpu(sup->ro_compat_version);
 | |
| 
 | |
| 	/*
 | |
| 	 * The software supports all previous versions but not future versions,
 | |
| 	 * due to the unavailability of time-travelling equipment.
 | |
| 	 */
 | |
| 	if (c->fmt_version > UBIFS_FORMAT_VERSION) {
 | |
| 		ubifs_assert(!c->ro_media || c->ro_mount);
 | |
| 		if (!c->ro_mount ||
 | |
| 		    c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
 | |
| 			ubifs_err(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
 | |
| 				  c->fmt_version, c->ro_compat_version,
 | |
| 				  UBIFS_FORMAT_VERSION,
 | |
| 				  UBIFS_RO_COMPAT_VERSION);
 | |
| 			if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
 | |
| 				ubifs_msg(c, "only R/O mounting is possible");
 | |
| 				err = -EROFS;
 | |
| 			} else
 | |
| 				err = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The FS is mounted R/O, and the media format is
 | |
| 		 * R/O-compatible with the UBIFS implementation, so we can
 | |
| 		 * mount.
 | |
| 		 */
 | |
| 		c->rw_incompat = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (c->fmt_version < 3) {
 | |
| 		ubifs_err(c, "on-flash format version %d is not supported",
 | |
| 			  c->fmt_version);
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	switch (sup->key_hash) {
 | |
| 	case UBIFS_KEY_HASH_R5:
 | |
| 		c->key_hash = key_r5_hash;
 | |
| 		c->key_hash_type = UBIFS_KEY_HASH_R5;
 | |
| 		break;
 | |
| 
 | |
| 	case UBIFS_KEY_HASH_TEST:
 | |
| 		c->key_hash = key_test_hash;
 | |
| 		c->key_hash_type = UBIFS_KEY_HASH_TEST;
 | |
| 		break;
 | |
| 	};
 | |
| 
 | |
| 	c->key_fmt = sup->key_fmt;
 | |
| 
 | |
| 	switch (c->key_fmt) {
 | |
| 	case UBIFS_SIMPLE_KEY_FMT:
 | |
| 		c->key_len = UBIFS_SK_LEN;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ubifs_err(c, "unsupported key format");
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	c->leb_cnt       = le32_to_cpu(sup->leb_cnt);
 | |
| 	c->max_leb_cnt   = le32_to_cpu(sup->max_leb_cnt);
 | |
| 	c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
 | |
| 	c->log_lebs      = le32_to_cpu(sup->log_lebs);
 | |
| 	c->lpt_lebs      = le32_to_cpu(sup->lpt_lebs);
 | |
| 	c->orph_lebs     = le32_to_cpu(sup->orph_lebs);
 | |
| 	c->jhead_cnt     = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
 | |
| 	c->fanout        = le32_to_cpu(sup->fanout);
 | |
| 	c->lsave_cnt     = le32_to_cpu(sup->lsave_cnt);
 | |
| 	c->rp_size       = le64_to_cpu(sup->rp_size);
 | |
| #ifndef __UBOOT__
 | |
| 	c->rp_uid        = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid));
 | |
| 	c->rp_gid        = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid));
 | |
| #else
 | |
| 	c->rp_uid.val    = le32_to_cpu(sup->rp_uid);
 | |
| 	c->rp_gid.val    = le32_to_cpu(sup->rp_gid);
 | |
| #endif
 | |
| 	sup_flags        = le32_to_cpu(sup->flags);
 | |
| 	if (!c->mount_opts.override_compr)
 | |
| 		c->default_compr = le16_to_cpu(sup->default_compr);
 | |
| 
 | |
| 	c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
 | |
| 	memcpy(&c->uuid, &sup->uuid, 16);
 | |
| 	c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
 | |
| 	c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
 | |
| 
 | |
| 	/* Automatically increase file system size to the maximum size */
 | |
| 	c->old_leb_cnt = c->leb_cnt;
 | |
| 	if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
 | |
| 		c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
 | |
| 		if (c->ro_mount)
 | |
| 			dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
 | |
| 				c->old_leb_cnt,	c->leb_cnt);
 | |
| #ifndef __UBOOT__
 | |
| 		else {
 | |
| 			dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs",
 | |
| 				c->old_leb_cnt, c->leb_cnt);
 | |
| 			sup->leb_cnt = cpu_to_le32(c->leb_cnt);
 | |
| 			err = ubifs_write_sb_node(c, sup);
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 			c->old_leb_cnt = c->leb_cnt;
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	c->log_bytes = (long long)c->log_lebs * c->leb_size;
 | |
| 	c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
 | |
| 	c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
 | |
| 	c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
 | |
| 	c->orph_first = c->lpt_last + 1;
 | |
| 	c->orph_last = c->orph_first + c->orph_lebs - 1;
 | |
| 	c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
 | |
| 	c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
 | |
| 	c->main_first = c->leb_cnt - c->main_lebs;
 | |
| 
 | |
| 	err = validate_sb(c, sup);
 | |
| out:
 | |
| 	kfree(sup);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fixup_leb - fixup/unmap an LEB containing free space.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @lnum: the LEB number to fix up
 | |
|  * @len: number of used bytes in LEB (starting at offset 0)
 | |
|  *
 | |
|  * This function reads the contents of the given LEB number @lnum, then fixes
 | |
|  * it up, so that empty min. I/O units in the end of LEB are actually erased on
 | |
|  * flash (rather than being just all-0xff real data). If the LEB is completely
 | |
|  * empty, it is simply unmapped.
 | |
|  */
 | |
| static int fixup_leb(struct ubifs_info *c, int lnum, int len)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	ubifs_assert(len >= 0);
 | |
| 	ubifs_assert(len % c->min_io_size == 0);
 | |
| 	ubifs_assert(len < c->leb_size);
 | |
| 
 | |
| 	if (len == 0) {
 | |
| 		dbg_mnt("unmap empty LEB %d", lnum);
 | |
| 		return ubifs_leb_unmap(c, lnum);
 | |
| 	}
 | |
| 
 | |
| 	dbg_mnt("fixup LEB %d, data len %d", lnum, len);
 | |
| 	err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return ubifs_leb_change(c, lnum, c->sbuf, len);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fixup_free_space - find & remap all LEBs containing free space.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function walks through all LEBs in the filesystem and fiexes up those
 | |
|  * containing free/empty space.
 | |
|  */
 | |
| static int fixup_free_space(struct ubifs_info *c)
 | |
| {
 | |
| 	int lnum, err = 0;
 | |
| 	struct ubifs_lprops *lprops;
 | |
| 
 | |
| 	ubifs_get_lprops(c);
 | |
| 
 | |
| 	/* Fixup LEBs in the master area */
 | |
| 	for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
 | |
| 		err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Unmap unused log LEBs */
 | |
| 	lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
 | |
| 	while (lnum != c->ltail_lnum) {
 | |
| 		err = fixup_leb(c, lnum, 0);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 		lnum = ubifs_next_log_lnum(c, lnum);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Fixup the log head which contains the only a CS node at the
 | |
| 	 * beginning.
 | |
| 	 */
 | |
| 	err = fixup_leb(c, c->lhead_lnum,
 | |
| 			ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size));
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Fixup LEBs in the LPT area */
 | |
| 	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
 | |
| 		int free = c->ltab[lnum - c->lpt_first].free;
 | |
| 
 | |
| 		if (free > 0) {
 | |
| 			err = fixup_leb(c, lnum, c->leb_size - free);
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Unmap LEBs in the orphans area */
 | |
| 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 | |
| 		err = fixup_leb(c, lnum, 0);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Fixup LEBs in the main area */
 | |
| 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 | |
| 		lprops = ubifs_lpt_lookup(c, lnum);
 | |
| 		if (IS_ERR(lprops)) {
 | |
| 			err = PTR_ERR(lprops);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (lprops->free > 0) {
 | |
| 			err = fixup_leb(c, lnum, c->leb_size - lprops->free);
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	ubifs_release_lprops(c);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_fixup_free_space - find & fix all LEBs with free space.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function fixes up LEBs containing free space on first mount, if the
 | |
|  * appropriate flag was set when the FS was created. Each LEB with one or more
 | |
|  * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
 | |
|  * the free space is actually erased. E.g., this is necessary for some NAND
 | |
|  * chips, since the free space may have been programmed like real "0xff" data
 | |
|  * (generating a non-0xff ECC), causing future writes to the not-really-erased
 | |
|  * NAND pages to behave badly. After the space is fixed up, the superblock flag
 | |
|  * is cleared, so that this is skipped for all future mounts.
 | |
|  */
 | |
| int ubifs_fixup_free_space(struct ubifs_info *c)
 | |
| {
 | |
| 	int err;
 | |
| 	struct ubifs_sb_node *sup;
 | |
| 
 | |
| 	ubifs_assert(c->space_fixup);
 | |
| 	ubifs_assert(!c->ro_mount);
 | |
| 
 | |
| 	ubifs_msg(c, "start fixing up free space");
 | |
| 
 | |
| 	err = fixup_free_space(c);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	sup = ubifs_read_sb_node(c);
 | |
| 	if (IS_ERR(sup))
 | |
| 		return PTR_ERR(sup);
 | |
| 
 | |
| 	/* Free-space fixup is no longer required */
 | |
| 	c->space_fixup = 0;
 | |
| 	sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
 | |
| 
 | |
| 	err = ubifs_write_sb_node(c, sup);
 | |
| 	kfree(sup);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	ubifs_msg(c, "free space fixup complete");
 | |
| 	return err;
 | |
| }
 |