976 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			976 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * This implementation is based on code from uClibc-0.9.30.3 but was
 | |
|  * modified and extended for use within U-Boot.
 | |
|  *
 | |
|  * Copyright (C) 2010-2013 Wolfgang Denk <wd@denx.de>
 | |
|  *
 | |
|  * Original license header:
 | |
|  *
 | |
|  * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
 | |
|  * This file is part of the GNU C Library.
 | |
|  * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
 | |
|  *
 | |
|  * The GNU C Library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * The GNU C Library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with the GNU C Library; if not, write to the Free
 | |
|  * Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
 | |
|  * 02111-1307 USA.
 | |
|  */
 | |
| 
 | |
| #include <errno.h>
 | |
| #include <malloc.h>
 | |
| 
 | |
| #ifdef USE_HOSTCC		/* HOST build */
 | |
| # include <string.h>
 | |
| # include <assert.h>
 | |
| # include <ctype.h>
 | |
| 
 | |
| # ifndef debug
 | |
| #  ifdef DEBUG
 | |
| #   define debug(fmt,args...)	printf(fmt ,##args)
 | |
| #  else
 | |
| #   define debug(fmt,args...)
 | |
| #  endif
 | |
| # endif
 | |
| #else				/* U-Boot build */
 | |
| # include <common.h>
 | |
| # include <linux/string.h>
 | |
| # include <linux/ctype.h>
 | |
| #endif
 | |
| 
 | |
| #ifndef	CONFIG_ENV_MIN_ENTRIES	/* minimum number of entries */
 | |
| #define	CONFIG_ENV_MIN_ENTRIES 64
 | |
| #endif
 | |
| #ifndef	CONFIG_ENV_MAX_ENTRIES	/* maximum number of entries */
 | |
| #define	CONFIG_ENV_MAX_ENTRIES 512
 | |
| #endif
 | |
| 
 | |
| #include <env_callback.h>
 | |
| #include <env_flags.h>
 | |
| #include <search.h>
 | |
| #include <slre.h>
 | |
| 
 | |
| /*
 | |
|  * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
 | |
|  * [Knuth]	      The Art of Computer Programming, part 3 (6.4)
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The reentrant version has no static variables to maintain the state.
 | |
|  * Instead the interface of all functions is extended to take an argument
 | |
|  * which describes the current status.
 | |
|  */
 | |
| 
 | |
| typedef struct _ENTRY {
 | |
| 	int used;
 | |
| 	ENTRY entry;
 | |
| } _ENTRY;
 | |
| 
 | |
| 
 | |
| static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep,
 | |
| 	int idx);
 | |
| 
 | |
| /*
 | |
|  * hcreate()
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * For the used double hash method the table size has to be a prime. To
 | |
|  * correct the user given table size we need a prime test.  This trivial
 | |
|  * algorithm is adequate because
 | |
|  * a)  the code is (most probably) called a few times per program run and
 | |
|  * b)  the number is small because the table must fit in the core
 | |
|  * */
 | |
| static int isprime(unsigned int number)
 | |
| {
 | |
| 	/* no even number will be passed */
 | |
| 	unsigned int div = 3;
 | |
| 
 | |
| 	while (div * div < number && number % div != 0)
 | |
| 		div += 2;
 | |
| 
 | |
| 	return number % div != 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Before using the hash table we must allocate memory for it.
 | |
|  * Test for an existing table are done. We allocate one element
 | |
|  * more as the found prime number says. This is done for more effective
 | |
|  * indexing as explained in the comment for the hsearch function.
 | |
|  * The contents of the table is zeroed, especially the field used
 | |
|  * becomes zero.
 | |
|  */
 | |
| 
 | |
| int hcreate_r(size_t nel, struct hsearch_data *htab)
 | |
| {
 | |
| 	/* Test for correct arguments.  */
 | |
| 	if (htab == NULL) {
 | |
| 		__set_errno(EINVAL);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* There is still another table active. Return with error. */
 | |
| 	if (htab->table != NULL)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Change nel to the first prime number not smaller as nel. */
 | |
| 	nel |= 1;		/* make odd */
 | |
| 	while (!isprime(nel))
 | |
| 		nel += 2;
 | |
| 
 | |
| 	htab->size = nel;
 | |
| 	htab->filled = 0;
 | |
| 
 | |
| 	/* allocate memory and zero out */
 | |
| 	htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY));
 | |
| 	if (htab->table == NULL)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* everything went alright */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * hdestroy()
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * After using the hash table it has to be destroyed. The used memory can
 | |
|  * be freed and the local static variable can be marked as not used.
 | |
|  */
 | |
| 
 | |
| void hdestroy_r(struct hsearch_data *htab)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* Test for correct arguments.  */
 | |
| 	if (htab == NULL) {
 | |
| 		__set_errno(EINVAL);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* free used memory */
 | |
| 	for (i = 1; i <= htab->size; ++i) {
 | |
| 		if (htab->table[i].used > 0) {
 | |
| 			ENTRY *ep = &htab->table[i].entry;
 | |
| 
 | |
| 			free((void *)ep->key);
 | |
| 			free(ep->data);
 | |
| 		}
 | |
| 	}
 | |
| 	free(htab->table);
 | |
| 
 | |
| 	/* the sign for an existing table is an value != NULL in htable */
 | |
| 	htab->table = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * hsearch()
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This is the search function. It uses double hashing with open addressing.
 | |
|  * The argument item.key has to be a pointer to an zero terminated, most
 | |
|  * probably strings of chars. The function for generating a number of the
 | |
|  * strings is simple but fast. It can be replaced by a more complex function
 | |
|  * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
 | |
|  *
 | |
|  * We use an trick to speed up the lookup. The table is created by hcreate
 | |
|  * with one more element available. This enables us to use the index zero
 | |
|  * special. This index will never be used because we store the first hash
 | |
|  * index in the field used where zero means not used. Every other value
 | |
|  * means used. The used field can be used as a first fast comparison for
 | |
|  * equality of the stored and the parameter value. This helps to prevent
 | |
|  * unnecessary expensive calls of strcmp.
 | |
|  *
 | |
|  * This implementation differs from the standard library version of
 | |
|  * this function in a number of ways:
 | |
|  *
 | |
|  * - While the standard version does not make any assumptions about
 | |
|  *   the type of the stored data objects at all, this implementation
 | |
|  *   works with NUL terminated strings only.
 | |
|  * - Instead of storing just pointers to the original objects, we
 | |
|  *   create local copies so the caller does not need to care about the
 | |
|  *   data any more.
 | |
|  * - The standard implementation does not provide a way to update an
 | |
|  *   existing entry.  This version will create a new entry or update an
 | |
|  *   existing one when both "action == ENTER" and "item.data != NULL".
 | |
|  * - Instead of returning 1 on success, we return the index into the
 | |
|  *   internal hash table, which is also guaranteed to be positive.
 | |
|  *   This allows us direct access to the found hash table slot for
 | |
|  *   example for functions like hdelete().
 | |
|  */
 | |
| 
 | |
| int hmatch_r(const char *match, int last_idx, ENTRY ** retval,
 | |
| 	     struct hsearch_data *htab)
 | |
| {
 | |
| 	unsigned int idx;
 | |
| 	size_t key_len = strlen(match);
 | |
| 
 | |
| 	for (idx = last_idx + 1; idx < htab->size; ++idx) {
 | |
| 		if (htab->table[idx].used <= 0)
 | |
| 			continue;
 | |
| 		if (!strncmp(match, htab->table[idx].entry.key, key_len)) {
 | |
| 			*retval = &htab->table[idx].entry;
 | |
| 			return idx;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	__set_errno(ESRCH);
 | |
| 	*retval = NULL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare an existing entry with the desired key, and overwrite if the action
 | |
|  * is ENTER.  This is simply a helper function for hsearch_r().
 | |
|  */
 | |
| static inline int _compare_and_overwrite_entry(ENTRY item, ACTION action,
 | |
| 	ENTRY **retval, struct hsearch_data *htab, int flag,
 | |
| 	unsigned int hval, unsigned int idx)
 | |
| {
 | |
| 	if (htab->table[idx].used == hval
 | |
| 	    && strcmp(item.key, htab->table[idx].entry.key) == 0) {
 | |
| 		/* Overwrite existing value? */
 | |
| 		if ((action == ENTER) && (item.data != NULL)) {
 | |
| 			/* check for permission */
 | |
| 			if (htab->change_ok != NULL && htab->change_ok(
 | |
| 			    &htab->table[idx].entry, item.data,
 | |
| 			    env_op_overwrite, flag)) {
 | |
| 				debug("change_ok() rejected setting variable "
 | |
| 					"%s, skipping it!\n", item.key);
 | |
| 				__set_errno(EPERM);
 | |
| 				*retval = NULL;
 | |
| 				return 0;
 | |
| 			}
 | |
| 
 | |
| 			/* If there is a callback, call it */
 | |
| 			if (htab->table[idx].entry.callback &&
 | |
| 			    htab->table[idx].entry.callback(item.key,
 | |
| 			    item.data, env_op_overwrite, flag)) {
 | |
| 				debug("callback() rejected setting variable "
 | |
| 					"%s, skipping it!\n", item.key);
 | |
| 				__set_errno(EINVAL);
 | |
| 				*retval = NULL;
 | |
| 				return 0;
 | |
| 			}
 | |
| 
 | |
| 			free(htab->table[idx].entry.data);
 | |
| 			htab->table[idx].entry.data = strdup(item.data);
 | |
| 			if (!htab->table[idx].entry.data) {
 | |
| 				__set_errno(ENOMEM);
 | |
| 				*retval = NULL;
 | |
| 				return 0;
 | |
| 			}
 | |
| 		}
 | |
| 		/* return found entry */
 | |
| 		*retval = &htab->table[idx].entry;
 | |
| 		return idx;
 | |
| 	}
 | |
| 	/* keep searching */
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval,
 | |
| 	      struct hsearch_data *htab, int flag)
 | |
| {
 | |
| 	unsigned int hval;
 | |
| 	unsigned int count;
 | |
| 	unsigned int len = strlen(item.key);
 | |
| 	unsigned int idx;
 | |
| 	unsigned int first_deleted = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Compute an value for the given string. Perhaps use a better method. */
 | |
| 	hval = len;
 | |
| 	count = len;
 | |
| 	while (count-- > 0) {
 | |
| 		hval <<= 4;
 | |
| 		hval += item.key[count];
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * First hash function:
 | |
| 	 * simply take the modul but prevent zero.
 | |
| 	 */
 | |
| 	hval %= htab->size;
 | |
| 	if (hval == 0)
 | |
| 		++hval;
 | |
| 
 | |
| 	/* The first index tried. */
 | |
| 	idx = hval;
 | |
| 
 | |
| 	if (htab->table[idx].used) {
 | |
| 		/*
 | |
| 		 * Further action might be required according to the
 | |
| 		 * action value.
 | |
| 		 */
 | |
| 		unsigned hval2;
 | |
| 
 | |
| 		if (htab->table[idx].used == -1
 | |
| 		    && !first_deleted)
 | |
| 			first_deleted = idx;
 | |
| 
 | |
| 		ret = _compare_and_overwrite_entry(item, action, retval, htab,
 | |
| 			flag, hval, idx);
 | |
| 		if (ret != -1)
 | |
| 			return ret;
 | |
| 
 | |
| 		/*
 | |
| 		 * Second hash function:
 | |
| 		 * as suggested in [Knuth]
 | |
| 		 */
 | |
| 		hval2 = 1 + hval % (htab->size - 2);
 | |
| 
 | |
| 		do {
 | |
| 			/*
 | |
| 			 * Because SIZE is prime this guarantees to
 | |
| 			 * step through all available indices.
 | |
| 			 */
 | |
| 			if (idx <= hval2)
 | |
| 				idx = htab->size + idx - hval2;
 | |
| 			else
 | |
| 				idx -= hval2;
 | |
| 
 | |
| 			/*
 | |
| 			 * If we visited all entries leave the loop
 | |
| 			 * unsuccessfully.
 | |
| 			 */
 | |
| 			if (idx == hval)
 | |
| 				break;
 | |
| 
 | |
| 			/* If entry is found use it. */
 | |
| 			ret = _compare_and_overwrite_entry(item, action, retval,
 | |
| 				htab, flag, hval, idx);
 | |
| 			if (ret != -1)
 | |
| 				return ret;
 | |
| 		}
 | |
| 		while (htab->table[idx].used);
 | |
| 	}
 | |
| 
 | |
| 	/* An empty bucket has been found. */
 | |
| 	if (action == ENTER) {
 | |
| 		/*
 | |
| 		 * If table is full and another entry should be
 | |
| 		 * entered return with error.
 | |
| 		 */
 | |
| 		if (htab->filled == htab->size) {
 | |
| 			__set_errno(ENOMEM);
 | |
| 			*retval = NULL;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Create new entry;
 | |
| 		 * create copies of item.key and item.data
 | |
| 		 */
 | |
| 		if (first_deleted)
 | |
| 			idx = first_deleted;
 | |
| 
 | |
| 		htab->table[idx].used = hval;
 | |
| 		htab->table[idx].entry.key = strdup(item.key);
 | |
| 		htab->table[idx].entry.data = strdup(item.data);
 | |
| 		if (!htab->table[idx].entry.key ||
 | |
| 		    !htab->table[idx].entry.data) {
 | |
| 			__set_errno(ENOMEM);
 | |
| 			*retval = NULL;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		++htab->filled;
 | |
| 
 | |
| 		/* This is a new entry, so look up a possible callback */
 | |
| 		env_callback_init(&htab->table[idx].entry);
 | |
| 		/* Also look for flags */
 | |
| 		env_flags_init(&htab->table[idx].entry);
 | |
| 
 | |
| 		/* check for permission */
 | |
| 		if (htab->change_ok != NULL && htab->change_ok(
 | |
| 		    &htab->table[idx].entry, item.data, env_op_create, flag)) {
 | |
| 			debug("change_ok() rejected setting variable "
 | |
| 				"%s, skipping it!\n", item.key);
 | |
| 			_hdelete(item.key, htab, &htab->table[idx].entry, idx);
 | |
| 			__set_errno(EPERM);
 | |
| 			*retval = NULL;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		/* If there is a callback, call it */
 | |
| 		if (htab->table[idx].entry.callback &&
 | |
| 		    htab->table[idx].entry.callback(item.key, item.data,
 | |
| 		    env_op_create, flag)) {
 | |
| 			debug("callback() rejected setting variable "
 | |
| 				"%s, skipping it!\n", item.key);
 | |
| 			_hdelete(item.key, htab, &htab->table[idx].entry, idx);
 | |
| 			__set_errno(EINVAL);
 | |
| 			*retval = NULL;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		/* return new entry */
 | |
| 		*retval = &htab->table[idx].entry;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	__set_errno(ESRCH);
 | |
| 	*retval = NULL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * hdelete()
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The standard implementation of hsearch(3) does not provide any way
 | |
|  * to delete any entries from the hash table.  We extend the code to
 | |
|  * do that.
 | |
|  */
 | |
| 
 | |
| static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep,
 | |
| 	int idx)
 | |
| {
 | |
| 	/* free used ENTRY */
 | |
| 	debug("hdelete: DELETING key \"%s\"\n", key);
 | |
| 	free((void *)ep->key);
 | |
| 	free(ep->data);
 | |
| 	ep->callback = NULL;
 | |
| 	ep->flags = 0;
 | |
| 	htab->table[idx].used = -1;
 | |
| 
 | |
| 	--htab->filled;
 | |
| }
 | |
| 
 | |
| int hdelete_r(const char *key, struct hsearch_data *htab, int flag)
 | |
| {
 | |
| 	ENTRY e, *ep;
 | |
| 	int idx;
 | |
| 
 | |
| 	debug("hdelete: DELETE key \"%s\"\n", key);
 | |
| 
 | |
| 	e.key = (char *)key;
 | |
| 
 | |
| 	idx = hsearch_r(e, FIND, &ep, htab, 0);
 | |
| 	if (idx == 0) {
 | |
| 		__set_errno(ESRCH);
 | |
| 		return 0;	/* not found */
 | |
| 	}
 | |
| 
 | |
| 	/* Check for permission */
 | |
| 	if (htab->change_ok != NULL &&
 | |
| 	    htab->change_ok(ep, NULL, env_op_delete, flag)) {
 | |
| 		debug("change_ok() rejected deleting variable "
 | |
| 			"%s, skipping it!\n", key);
 | |
| 		__set_errno(EPERM);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* If there is a callback, call it */
 | |
| 	if (htab->table[idx].entry.callback &&
 | |
| 	    htab->table[idx].entry.callback(key, NULL, env_op_delete, flag)) {
 | |
| 		debug("callback() rejected deleting variable "
 | |
| 			"%s, skipping it!\n", key);
 | |
| 		__set_errno(EINVAL);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	_hdelete(key, htab, ep, idx);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * hexport()
 | |
|  */
 | |
| 
 | |
| #ifndef CONFIG_SPL_BUILD
 | |
| /*
 | |
|  * Export the data stored in the hash table in linearized form.
 | |
|  *
 | |
|  * Entries are exported as "name=value" strings, separated by an
 | |
|  * arbitrary (non-NUL, of course) separator character. This allows to
 | |
|  * use this function both when formatting the U-Boot environment for
 | |
|  * external storage (using '\0' as separator), but also when using it
 | |
|  * for the "printenv" command to print all variables, simply by using
 | |
|  * as '\n" as separator. This can also be used for new features like
 | |
|  * exporting the environment data as text file, including the option
 | |
|  * for later re-import.
 | |
|  *
 | |
|  * The entries in the result list will be sorted by ascending key
 | |
|  * values.
 | |
|  *
 | |
|  * If the separator character is different from NUL, then any
 | |
|  * separator characters and backslash characters in the values will
 | |
|  * be escaped by a preceeding backslash in output. This is needed for
 | |
|  * example to enable multi-line values, especially when the output
 | |
|  * shall later be parsed (for example, for re-import).
 | |
|  *
 | |
|  * There are several options how the result buffer is handled:
 | |
|  *
 | |
|  * *resp  size
 | |
|  * -----------
 | |
|  *  NULL    0	A string of sufficient length will be allocated.
 | |
|  *  NULL   >0	A string of the size given will be
 | |
|  *		allocated. An error will be returned if the size is
 | |
|  *		not sufficient.  Any unused bytes in the string will
 | |
|  *		be '\0'-padded.
 | |
|  * !NULL    0	The user-supplied buffer will be used. No length
 | |
|  *		checking will be performed, i. e. it is assumed that
 | |
|  *		the buffer size will always be big enough. DANGEROUS.
 | |
|  * !NULL   >0	The user-supplied buffer will be used. An error will
 | |
|  *		be returned if the size is not sufficient.  Any unused
 | |
|  *		bytes in the string will be '\0'-padded.
 | |
|  */
 | |
| 
 | |
| static int cmpkey(const void *p1, const void *p2)
 | |
| {
 | |
| 	ENTRY *e1 = *(ENTRY **) p1;
 | |
| 	ENTRY *e2 = *(ENTRY **) p2;
 | |
| 
 | |
| 	return (strcmp(e1->key, e2->key));
 | |
| }
 | |
| 
 | |
| static int match_string(int flag, const char *str, const char *pat, void *priv)
 | |
| {
 | |
| 	switch (flag & H_MATCH_METHOD) {
 | |
| 	case H_MATCH_IDENT:
 | |
| 		if (strcmp(str, pat) == 0)
 | |
| 			return 1;
 | |
| 		break;
 | |
| 	case H_MATCH_SUBSTR:
 | |
| 		if (strstr(str, pat))
 | |
| 			return 1;
 | |
| 		break;
 | |
| #ifdef CONFIG_REGEX
 | |
| 	case H_MATCH_REGEX:
 | |
| 		{
 | |
| 			struct slre *slrep = (struct slre *)priv;
 | |
| 			struct cap caps[slrep->num_caps + 2];
 | |
| 
 | |
| 			if (slre_match(slrep, str, strlen(str), caps))
 | |
| 				return 1;
 | |
| 		}
 | |
| 		break;
 | |
| #endif
 | |
| 	default:
 | |
| 		printf("## ERROR: unsupported match method: 0x%02x\n",
 | |
| 			flag & H_MATCH_METHOD);
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int match_entry(ENTRY *ep, int flag,
 | |
| 		 int argc, char * const argv[])
 | |
| {
 | |
| 	int arg;
 | |
| 	void *priv = NULL;
 | |
| 
 | |
| 	for (arg = 1; arg < argc; ++arg) {
 | |
| #ifdef CONFIG_REGEX
 | |
| 		struct slre slre;
 | |
| 
 | |
| 		if (slre_compile(&slre, argv[arg]) == 0) {
 | |
| 			printf("Error compiling regex: %s\n", slre.err_str);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		priv = (void *)&slre;
 | |
| #endif
 | |
| 		if (flag & H_MATCH_KEY) {
 | |
| 			if (match_string(flag, ep->key, argv[arg], priv))
 | |
| 				return 1;
 | |
| 		}
 | |
| 		if (flag & H_MATCH_DATA) {
 | |
| 			if (match_string(flag, ep->data, argv[arg], priv))
 | |
| 				return 1;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| ssize_t hexport_r(struct hsearch_data *htab, const char sep, int flag,
 | |
| 		 char **resp, size_t size,
 | |
| 		 int argc, char * const argv[])
 | |
| {
 | |
| 	ENTRY *list[htab->size];
 | |
| 	char *res, *p;
 | |
| 	size_t totlen;
 | |
| 	int i, n;
 | |
| 
 | |
| 	/* Test for correct arguments.  */
 | |
| 	if ((resp == NULL) || (htab == NULL)) {
 | |
| 		__set_errno(EINVAL);
 | |
| 		return (-1);
 | |
| 	}
 | |
| 
 | |
| 	debug("EXPORT  table = %p, htab.size = %d, htab.filled = %d, "
 | |
| 		"size = %zu\n", htab, htab->size, htab->filled, size);
 | |
| 	/*
 | |
| 	 * Pass 1:
 | |
| 	 * search used entries,
 | |
| 	 * save addresses and compute total length
 | |
| 	 */
 | |
| 	for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) {
 | |
| 
 | |
| 		if (htab->table[i].used > 0) {
 | |
| 			ENTRY *ep = &htab->table[i].entry;
 | |
| 			int found = match_entry(ep, flag, argc, argv);
 | |
| 
 | |
| 			if ((argc > 0) && (found == 0))
 | |
| 				continue;
 | |
| 
 | |
| 			if ((flag & H_HIDE_DOT) && ep->key[0] == '.')
 | |
| 				continue;
 | |
| 
 | |
| 			list[n++] = ep;
 | |
| 
 | |
| 			totlen += strlen(ep->key) + 2;
 | |
| 
 | |
| 			if (sep == '\0') {
 | |
| 				totlen += strlen(ep->data);
 | |
| 			} else {	/* check if escapes are needed */
 | |
| 				char *s = ep->data;
 | |
| 
 | |
| 				while (*s) {
 | |
| 					++totlen;
 | |
| 					/* add room for needed escape chars */
 | |
| 					if ((*s == sep) || (*s == '\\'))
 | |
| 						++totlen;
 | |
| 					++s;
 | |
| 				}
 | |
| 			}
 | |
| 			totlen += 2;	/* for '=' and 'sep' char */
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef DEBUG
 | |
| 	/* Pass 1a: print unsorted list */
 | |
| 	printf("Unsorted: n=%d\n", n);
 | |
| 	for (i = 0; i < n; ++i) {
 | |
| 		printf("\t%3d: %p ==> %-10s => %s\n",
 | |
| 		       i, list[i], list[i]->key, list[i]->data);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* Sort list by keys */
 | |
| 	qsort(list, n, sizeof(ENTRY *), cmpkey);
 | |
| 
 | |
| 	/* Check if the user supplied buffer size is sufficient */
 | |
| 	if (size) {
 | |
| 		if (size < totlen + 1) {	/* provided buffer too small */
 | |
| 			printf("Env export buffer too small: %zu, "
 | |
| 				"but need %zu\n", size, totlen + 1);
 | |
| 			__set_errno(ENOMEM);
 | |
| 			return (-1);
 | |
| 		}
 | |
| 	} else {
 | |
| 		size = totlen + 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if the user provided a buffer */
 | |
| 	if (*resp) {
 | |
| 		/* yes; clear it */
 | |
| 		res = *resp;
 | |
| 		memset(res, '\0', size);
 | |
| 	} else {
 | |
| 		/* no, allocate and clear one */
 | |
| 		*resp = res = calloc(1, size);
 | |
| 		if (res == NULL) {
 | |
| 			__set_errno(ENOMEM);
 | |
| 			return (-1);
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Pass 2:
 | |
| 	 * export sorted list of result data
 | |
| 	 */
 | |
| 	for (i = 0, p = res; i < n; ++i) {
 | |
| 		const char *s;
 | |
| 
 | |
| 		s = list[i]->key;
 | |
| 		while (*s)
 | |
| 			*p++ = *s++;
 | |
| 		*p++ = '=';
 | |
| 
 | |
| 		s = list[i]->data;
 | |
| 
 | |
| 		while (*s) {
 | |
| 			if ((*s == sep) || (*s == '\\'))
 | |
| 				*p++ = '\\';	/* escape */
 | |
| 			*p++ = *s++;
 | |
| 		}
 | |
| 		*p++ = sep;
 | |
| 	}
 | |
| 	*p = '\0';		/* terminate result */
 | |
| 
 | |
| 	return size;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * himport()
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Check whether variable 'name' is amongst vars[],
 | |
|  * and remove all instances by setting the pointer to NULL
 | |
|  */
 | |
| static int drop_var_from_set(const char *name, int nvars, char * vars[])
 | |
| {
 | |
| 	int i = 0;
 | |
| 	int res = 0;
 | |
| 
 | |
| 	/* No variables specified means process all of them */
 | |
| 	if (nvars == 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	for (i = 0; i < nvars; i++) {
 | |
| 		if (vars[i] == NULL)
 | |
| 			continue;
 | |
| 		/* If we found it, delete all of them */
 | |
| 		if (!strcmp(name, vars[i])) {
 | |
| 			vars[i] = NULL;
 | |
| 			res = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!res)
 | |
| 		debug("Skipping non-listed variable %s\n", name);
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Import linearized data into hash table.
 | |
|  *
 | |
|  * This is the inverse function to hexport(): it takes a linear list
 | |
|  * of "name=value" pairs and creates hash table entries from it.
 | |
|  *
 | |
|  * Entries without "value", i. e. consisting of only "name" or
 | |
|  * "name=", will cause this entry to be deleted from the hash table.
 | |
|  *
 | |
|  * The "flag" argument can be used to control the behaviour: when the
 | |
|  * H_NOCLEAR bit is set, then an existing hash table will kept, i. e.
 | |
|  * new data will be added to an existing hash table; otherwise, old
 | |
|  * data will be discarded and a new hash table will be created.
 | |
|  *
 | |
|  * The separator character for the "name=value" pairs can be selected,
 | |
|  * so we both support importing from externally stored environment
 | |
|  * data (separated by NUL characters) and from plain text files
 | |
|  * (entries separated by newline characters).
 | |
|  *
 | |
|  * To allow for nicely formatted text input, leading white space
 | |
|  * (sequences of SPACE and TAB chars) is ignored, and entries starting
 | |
|  * (after removal of any leading white space) with a '#' character are
 | |
|  * considered comments and ignored.
 | |
|  *
 | |
|  * [NOTE: this means that a variable name cannot start with a '#'
 | |
|  * character.]
 | |
|  *
 | |
|  * When using a non-NUL separator character, backslash is used as
 | |
|  * escape character in the value part, allowing for example for
 | |
|  * multi-line values.
 | |
|  *
 | |
|  * In theory, arbitrary separator characters can be used, but only
 | |
|  * '\0' and '\n' have really been tested.
 | |
|  */
 | |
| 
 | |
| int himport_r(struct hsearch_data *htab,
 | |
| 		const char *env, size_t size, const char sep, int flag,
 | |
| 		int nvars, char * const vars[])
 | |
| {
 | |
| 	char *data, *sp, *dp, *name, *value;
 | |
| 	char *localvars[nvars];
 | |
| 	int i;
 | |
| 
 | |
| 	/* Test for correct arguments.  */
 | |
| 	if (htab == NULL) {
 | |
| 		__set_errno(EINVAL);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* we allocate new space to make sure we can write to the array */
 | |
| 	if ((data = malloc(size)) == NULL) {
 | |
| 		debug("himport_r: can't malloc %zu bytes\n", size);
 | |
| 		__set_errno(ENOMEM);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	memcpy(data, env, size);
 | |
| 	dp = data;
 | |
| 
 | |
| 	/* make a local copy of the list of variables */
 | |
| 	if (nvars)
 | |
| 		memcpy(localvars, vars, sizeof(vars[0]) * nvars);
 | |
| 
 | |
| 	if ((flag & H_NOCLEAR) == 0) {
 | |
| 		/* Destroy old hash table if one exists */
 | |
| 		debug("Destroy Hash Table: %p table = %p\n", htab,
 | |
| 		       htab->table);
 | |
| 		if (htab->table)
 | |
| 			hdestroy_r(htab);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Create new hash table (if needed).  The computation of the hash
 | |
| 	 * table size is based on heuristics: in a sample of some 70+
 | |
| 	 * existing systems we found an average size of 39+ bytes per entry
 | |
| 	 * in the environment (for the whole key=value pair). Assuming a
 | |
| 	 * size of 8 per entry (= safety factor of ~5) should provide enough
 | |
| 	 * safety margin for any existing environment definitions and still
 | |
| 	 * allow for more than enough dynamic additions. Note that the
 | |
| 	 * "size" argument is supposed to give the maximum enviroment size
 | |
| 	 * (CONFIG_ENV_SIZE).  This heuristics will result in
 | |
| 	 * unreasonably large numbers (and thus memory footprint) for
 | |
| 	 * big flash environments (>8,000 entries for 64 KB
 | |
| 	 * envrionment size), so we clip it to a reasonable value.
 | |
| 	 * On the other hand we need to add some more entries for free
 | |
| 	 * space when importing very small buffers. Both boundaries can
 | |
| 	 * be overwritten in the board config file if needed.
 | |
| 	 */
 | |
| 
 | |
| 	if (!htab->table) {
 | |
| 		int nent = CONFIG_ENV_MIN_ENTRIES + size / 8;
 | |
| 
 | |
| 		if (nent > CONFIG_ENV_MAX_ENTRIES)
 | |
| 			nent = CONFIG_ENV_MAX_ENTRIES;
 | |
| 
 | |
| 		debug("Create Hash Table: N=%d\n", nent);
 | |
| 
 | |
| 		if (hcreate_r(nent, htab) == 0) {
 | |
| 			free(data);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Parse environment; allow for '\0' and 'sep' as separators */
 | |
| 	do {
 | |
| 		ENTRY e, *rv;
 | |
| 
 | |
| 		/* skip leading white space */
 | |
| 		while (isblank(*dp))
 | |
| 			++dp;
 | |
| 
 | |
| 		/* skip comment lines */
 | |
| 		if (*dp == '#') {
 | |
| 			while (*dp && (*dp != sep))
 | |
| 				++dp;
 | |
| 			++dp;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* parse name */
 | |
| 		for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp)
 | |
| 			;
 | |
| 
 | |
| 		/* deal with "name" and "name=" entries (delete var) */
 | |
| 		if (*dp == '\0' || *(dp + 1) == '\0' ||
 | |
| 		    *dp == sep || *(dp + 1) == sep) {
 | |
| 			if (*dp == '=')
 | |
| 				*dp++ = '\0';
 | |
| 			*dp++ = '\0';	/* terminate name */
 | |
| 
 | |
| 			debug("DELETE CANDIDATE: \"%s\"\n", name);
 | |
| 			if (!drop_var_from_set(name, nvars, localvars))
 | |
| 				continue;
 | |
| 
 | |
| 			if (hdelete_r(name, htab, flag) == 0)
 | |
| 				debug("DELETE ERROR ##############################\n");
 | |
| 
 | |
| 			continue;
 | |
| 		}
 | |
| 		*dp++ = '\0';	/* terminate name */
 | |
| 
 | |
| 		/* parse value; deal with escapes */
 | |
| 		for (value = sp = dp; *dp && (*dp != sep); ++dp) {
 | |
| 			if ((*dp == '\\') && *(dp + 1))
 | |
| 				++dp;
 | |
| 			*sp++ = *dp;
 | |
| 		}
 | |
| 		*sp++ = '\0';	/* terminate value */
 | |
| 		++dp;
 | |
| 
 | |
| 		if (*name == 0) {
 | |
| 			debug("INSERT: unable to use an empty key\n");
 | |
| 			__set_errno(EINVAL);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		/* Skip variables which are not supposed to be processed */
 | |
| 		if (!drop_var_from_set(name, nvars, localvars))
 | |
| 			continue;
 | |
| 
 | |
| 		/* enter into hash table */
 | |
| 		e.key = name;
 | |
| 		e.data = value;
 | |
| 
 | |
| 		hsearch_r(e, ENTER, &rv, htab, flag);
 | |
| 		if (rv == NULL)
 | |
| 			printf("himport_r: can't insert \"%s=%s\" into hash table\n",
 | |
| 				name, value);
 | |
| 
 | |
| 		debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n",
 | |
| 			htab, htab->filled, htab->size,
 | |
| 			rv, name, value);
 | |
| 	} while ((dp < data + size) && *dp);	/* size check needed for text */
 | |
| 						/* without '\0' termination */
 | |
| 	debug("INSERT: free(data = %p)\n", data);
 | |
| 	free(data);
 | |
| 
 | |
| 	/* process variables which were not considered */
 | |
| 	for (i = 0; i < nvars; i++) {
 | |
| 		if (localvars[i] == NULL)
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * All variables which were not deleted from the variable list
 | |
| 		 * were not present in the imported env
 | |
| 		 * This could mean two things:
 | |
| 		 * a) if the variable was present in current env, we delete it
 | |
| 		 * b) if the variable was not present in current env, we notify
 | |
| 		 *    it might be a typo
 | |
| 		 */
 | |
| 		if (hdelete_r(localvars[i], htab, flag) == 0)
 | |
| 			printf("WARNING: '%s' neither in running nor in imported env!\n", localvars[i]);
 | |
| 		else
 | |
| 			printf("WARNING: '%s' not in imported env, deleting it!\n", localvars[i]);
 | |
| 	}
 | |
| 
 | |
| 	debug("INSERT: done\n");
 | |
| 	return 1;		/* everything OK */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * hwalk_r()
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Walk all of the entries in the hash, calling the callback for each one.
 | |
|  * this allows some generic operation to be performed on each element.
 | |
|  */
 | |
| int hwalk_r(struct hsearch_data *htab, int (*callback)(ENTRY *))
 | |
| {
 | |
| 	int i;
 | |
| 	int retval;
 | |
| 
 | |
| 	for (i = 1; i <= htab->size; ++i) {
 | |
| 		if (htab->table[i].used > 0) {
 | |
| 			retval = callback(&htab->table[i].entry);
 | |
| 			if (retval)
 | |
| 				return retval;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 |