1437 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1437 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 2004-2007 Freescale Semiconductor, Inc.
 | |
|  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
 | |
|  * Copyright 2009 Ilya Yanok, <yanok@emcraft.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
 | |
|  * MA 02110-1301, USA.
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <nand.h>
 | |
| #include <linux/err.h>
 | |
| #include <asm/io.h>
 | |
| #if defined(CONFIG_MX25) || defined(CONFIG_MX27) || defined(CONFIG_MX35)
 | |
| #include <asm/arch/imx-regs.h>
 | |
| #endif
 | |
| 
 | |
| #define DRIVER_NAME "mxc_nand"
 | |
| 
 | |
| /*
 | |
|  * TODO: Use same register defs here as nand_spl mxc nand driver.
 | |
|  */
 | |
| /*
 | |
|  * Register map and bit definitions for the Freescale NAND Flash Controller
 | |
|  * present in various i.MX devices.
 | |
|  *
 | |
|  * MX31 and MX27 have version 1 which has
 | |
|  * 	4 512 byte main buffers and
 | |
|  * 	4 16 byte spare buffers
 | |
|  * 	to support up to 2K byte pagesize nand.
 | |
|  * 	Reading or writing a 2K page requires 4 FDI/FDO cycles.
 | |
|  *
 | |
|  * MX25 has version 1.1 which has
 | |
|  * 	8 512 byte main buffers and
 | |
|  * 	8 64 byte spare buffers
 | |
|  * 	to support up to 4K byte pagesize nand.
 | |
|  * 	Reading or writing a 2K or 4K page requires only 1 FDI/FDO cycle.
 | |
|  *      Also some of registers are moved and/or changed meaning as seen below.
 | |
|  */
 | |
| #if defined(CONFIG_MX31) || defined(CONFIG_MX27)
 | |
| #define MXC_NFC_V1
 | |
| #elif defined(CONFIG_MX25) || defined(CONFIG_MX35)
 | |
| #define MXC_NFC_V1_1
 | |
| #else
 | |
| #warning "MXC NFC version not defined"
 | |
| #endif
 | |
| 
 | |
| #if defined(MXC_NFC_V1)
 | |
| #define NAND_MXC_NR_BUFS		4
 | |
| #define NAND_MXC_SPARE_BUF_SIZE		16
 | |
| #define NAND_MXC_REG_OFFSET		0xe00
 | |
| #define is_mxc_nfc_11() 		0
 | |
| #elif defined(MXC_NFC_V1_1)
 | |
| #define NAND_MXC_NR_BUFS		8
 | |
| #define NAND_MXC_SPARE_BUF_SIZE		64
 | |
| #define NAND_MXC_REG_OFFSET		0x1e00
 | |
| #define is_mxc_nfc_11() 		1
 | |
| #else
 | |
| #error "define CONFIG_NAND_MXC_VXXX to use mtd mxc nand driver"
 | |
| #endif
 | |
| struct nfc_regs {
 | |
| 	uint8_t main_area[NAND_MXC_NR_BUFS][0x200];
 | |
| 	uint8_t spare_area[NAND_MXC_NR_BUFS][NAND_MXC_SPARE_BUF_SIZE];
 | |
| 	/*
 | |
| 	 * reserved size is offset of nfc registers
 | |
| 	 * minus total main and spare sizes
 | |
| 	 */
 | |
| 	uint8_t reserved1[NAND_MXC_REG_OFFSET
 | |
| 		- NAND_MXC_NR_BUFS * (512 + NAND_MXC_SPARE_BUF_SIZE)];
 | |
| #if defined(MXC_NFC_V1)
 | |
| 	uint16_t nfc_buf_size;
 | |
| 	uint16_t reserved2;
 | |
| 	uint16_t nfc_buf_addr;
 | |
| 	uint16_t nfc_flash_addr;
 | |
| 	uint16_t nfc_flash_cmd;
 | |
| 	uint16_t nfc_config;
 | |
| 	uint16_t nfc_ecc_status_result;
 | |
| 	uint16_t nfc_rsltmain_area;
 | |
| 	uint16_t nfc_rsltspare_area;
 | |
| 	uint16_t nfc_wrprot;
 | |
| 	uint16_t nfc_unlockstart_blkaddr;
 | |
| 	uint16_t nfc_unlockend_blkaddr;
 | |
| 	uint16_t nfc_nf_wrprst;
 | |
| 	uint16_t nfc_config1;
 | |
| 	uint16_t nfc_config2;
 | |
| #elif defined(MXC_NFC_V1_1)
 | |
| 	uint16_t reserved2[2];
 | |
| 	uint16_t nfc_buf_addr;
 | |
| 	uint16_t nfc_flash_addr;
 | |
| 	uint16_t nfc_flash_cmd;
 | |
| 	uint16_t nfc_config;
 | |
| 	uint16_t nfc_ecc_status_result;
 | |
| 	uint16_t nfc_ecc_status_result2;
 | |
| 	uint16_t nfc_spare_area_size;
 | |
| 	uint16_t nfc_wrprot;
 | |
| 	uint16_t reserved3[2];
 | |
| 	uint16_t nfc_nf_wrprst;
 | |
| 	uint16_t nfc_config1;
 | |
| 	uint16_t nfc_config2;
 | |
| 	uint16_t reserved4;
 | |
| 	uint16_t nfc_unlockstart_blkaddr;
 | |
| 	uint16_t nfc_unlockend_blkaddr;
 | |
| 	uint16_t nfc_unlockstart_blkaddr1;
 | |
| 	uint16_t nfc_unlockend_blkaddr1;
 | |
| 	uint16_t nfc_unlockstart_blkaddr2;
 | |
| 	uint16_t nfc_unlockend_blkaddr2;
 | |
| 	uint16_t nfc_unlockstart_blkaddr3;
 | |
| 	uint16_t nfc_unlockend_blkaddr3;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register
 | |
|  * for Command operation
 | |
|  */
 | |
| #define NFC_CMD            0x1
 | |
| 
 | |
| /*
 | |
|  * Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register
 | |
|  * for Address operation
 | |
|  */
 | |
| #define NFC_ADDR           0x2
 | |
| 
 | |
| /*
 | |
|  * Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register
 | |
|  * for Input operation
 | |
|  */
 | |
| #define NFC_INPUT          0x4
 | |
| 
 | |
| /*
 | |
|  * Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register
 | |
|  * for Data Output operation
 | |
|  */
 | |
| #define NFC_OUTPUT         0x8
 | |
| 
 | |
| /*
 | |
|  * Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register
 | |
|  * for Read ID operation
 | |
|  */
 | |
| #define NFC_ID             0x10
 | |
| 
 | |
| /*
 | |
|  * Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register
 | |
|  * for Read Status operation
 | |
|  */
 | |
| #define NFC_STATUS         0x20
 | |
| 
 | |
| /*
 | |
|  * Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read
 | |
|  * Status operation
 | |
|  */
 | |
| #define NFC_INT            0x8000
 | |
| 
 | |
| #ifdef MXC_NFC_V1_1
 | |
| #define NFC_4_8N_ECC	(1 << 0)
 | |
| #else
 | |
| #define NFC_4_8N_ECC	0
 | |
| #endif
 | |
| #define NFC_SP_EN           (1 << 2)
 | |
| #define NFC_ECC_EN          (1 << 3)
 | |
| #define NFC_BIG             (1 << 5)
 | |
| #define NFC_RST             (1 << 6)
 | |
| #define NFC_CE              (1 << 7)
 | |
| #define NFC_ONE_CYCLE       (1 << 8)
 | |
| 
 | |
| typedef enum {false, true} bool;
 | |
| 
 | |
| struct mxc_nand_host {
 | |
| 	struct mtd_info		mtd;
 | |
| 	struct nand_chip	*nand;
 | |
| 
 | |
| 	struct nfc_regs __iomem	*regs;
 | |
| 	int			spare_only;
 | |
| 	int			status_request;
 | |
| 	int			pagesize_2k;
 | |
| 	int			clk_act;
 | |
| 	uint16_t		col_addr;
 | |
| 	unsigned int		page_addr;
 | |
| };
 | |
| 
 | |
| static struct mxc_nand_host mxc_host;
 | |
| static struct mxc_nand_host *host = &mxc_host;
 | |
| 
 | |
| /* Define delays in microsec for NAND device operations */
 | |
| #define TROP_US_DELAY   2000
 | |
| /* Macros to get byte and bit positions of ECC */
 | |
| #define COLPOS(x)  ((x) >> 3)
 | |
| #define BITPOS(x) ((x) & 0xf)
 | |
| 
 | |
| /* Define single bit Error positions in Main & Spare area */
 | |
| #define MAIN_SINGLEBIT_ERROR 0x4
 | |
| #define SPARE_SINGLEBIT_ERROR 0x1
 | |
| 
 | |
| /* OOB placement block for use with hardware ecc generation */
 | |
| #if defined(MXC_NFC_V1)
 | |
| #ifndef CONFIG_SYS_NAND_LARGEPAGE
 | |
| static struct nand_ecclayout nand_hw_eccoob = {
 | |
| 	.eccbytes = 5,
 | |
| 	.eccpos = {6, 7, 8, 9, 10},
 | |
| 	.oobfree = { {0, 5}, {11, 5}, }
 | |
| };
 | |
| #else
 | |
| static struct nand_ecclayout nand_hw_eccoob2k = {
 | |
| 	.eccbytes = 20,
 | |
| 	.eccpos = {
 | |
| 		6, 7, 8, 9, 10,
 | |
| 		22, 23, 24, 25, 26,
 | |
| 		38, 39, 40, 41, 42,
 | |
| 		54, 55, 56, 57, 58,
 | |
| 	},
 | |
| 	.oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} },
 | |
| };
 | |
| #endif
 | |
| #elif defined(MXC_NFC_V1_1)
 | |
| #ifndef CONFIG_SYS_NAND_LARGEPAGE
 | |
| static struct nand_ecclayout nand_hw_eccoob = {
 | |
| 	.eccbytes = 9,
 | |
| 	.eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
 | |
| 	.oobfree = { {2, 5} }
 | |
| };
 | |
| #else
 | |
| static struct nand_ecclayout nand_hw_eccoob2k = {
 | |
| 	.eccbytes = 36,
 | |
| 	.eccpos = {
 | |
| 		7, 8, 9, 10, 11, 12, 13, 14, 15,
 | |
| 		23, 24, 25, 26, 27, 28, 29, 30, 31,
 | |
| 		39, 40, 41, 42, 43, 44, 45, 46, 47,
 | |
| 		55, 56, 57, 58, 59, 60, 61, 62, 63,
 | |
| 	},
 | |
| 	.oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} },
 | |
| };
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MX27
 | |
| static int is_16bit_nand(void)
 | |
| {
 | |
| 	struct system_control_regs *sc_regs =
 | |
| 		(struct system_control_regs *)IMX_SYSTEM_CTL_BASE;
 | |
| 
 | |
| 	if (readl(&sc_regs->fmcr) & NF_16BIT_SEL)
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| #elif defined(CONFIG_MX31)
 | |
| static int is_16bit_nand(void)
 | |
| {
 | |
| 	struct clock_control_regs *sc_regs =
 | |
| 		(struct clock_control_regs *)CCM_BASE;
 | |
| 
 | |
| 	if (readl(&sc_regs->rcsr) & CCM_RCSR_NF16B)
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| #elif defined(CONFIG_MX25) || defined(CONFIG_MX35)
 | |
| static int is_16bit_nand(void)
 | |
| {
 | |
| 	struct ccm_regs *ccm =
 | |
| 		(struct ccm_regs *)IMX_CCM_BASE;
 | |
| 
 | |
| 	if (readl(&ccm->rcsr) & CCM_RCSR_NF_16BIT_SEL)
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| #else
 | |
| #warning "8/16 bit NAND autodetection not supported"
 | |
| static int is_16bit_nand(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size)
 | |
| {
 | |
| 	uint32_t *d = dest;
 | |
| 
 | |
| 	size >>= 2;
 | |
| 	while (size--)
 | |
| 		__raw_writel(__raw_readl(source++), d++);
 | |
| 	return dest;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function polls the NANDFC to wait for the basic operation to
 | |
|  * complete by checking the INT bit of config2 register.
 | |
|  */
 | |
| static void wait_op_done(struct mxc_nand_host *host, int max_retries,
 | |
| 				uint16_t param)
 | |
| {
 | |
| 	uint32_t tmp;
 | |
| 
 | |
| 	while (max_retries-- > 0) {
 | |
| 		if (readw(&host->regs->nfc_config2) & NFC_INT) {
 | |
| 			tmp = readw(&host->regs->nfc_config2);
 | |
| 			tmp  &= ~NFC_INT;
 | |
| 			writew(tmp, &host->regs->nfc_config2);
 | |
| 			break;
 | |
| 		}
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 	if (max_retries < 0) {
 | |
| 		MTDDEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
 | |
| 				__func__, param);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function issues the specified command to the NAND device and
 | |
|  * waits for completion.
 | |
|  */
 | |
| static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
 | |
| {
 | |
| 	MTDDEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd);
 | |
| 
 | |
| 	writew(cmd, &host->regs->nfc_flash_cmd);
 | |
| 	writew(NFC_CMD, &host->regs->nfc_config2);
 | |
| 
 | |
| 	/* Wait for operation to complete */
 | |
| 	wait_op_done(host, TROP_US_DELAY, cmd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function sends an address (or partial address) to the
 | |
|  * NAND device. The address is used to select the source/destination for
 | |
|  * a NAND command.
 | |
|  */
 | |
| static void send_addr(struct mxc_nand_host *host, uint16_t addr)
 | |
| {
 | |
| 	MTDDEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x)\n", addr);
 | |
| 
 | |
| 	writew(addr, &host->regs->nfc_flash_addr);
 | |
| 	writew(NFC_ADDR, &host->regs->nfc_config2);
 | |
| 
 | |
| 	/* Wait for operation to complete */
 | |
| 	wait_op_done(host, TROP_US_DELAY, addr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function requests the NANDFC to initiate the transfer
 | |
|  * of data currently in the NANDFC RAM buffer to the NAND device.
 | |
|  */
 | |
| static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
 | |
| 			int spare_only)
 | |
| {
 | |
| 	if (spare_only)
 | |
| 		MTDDEBUG(MTD_DEBUG_LEVEL1, "send_prog_page (%d)\n", spare_only);
 | |
| 
 | |
| 	if (is_mxc_nfc_11()) {
 | |
| 		int i;
 | |
| 		/*
 | |
| 		 *  The controller copies the 64 bytes of spare data from
 | |
| 		 *  the first 16 bytes of each of the 4 64 byte spare buffers.
 | |
| 		 *  Copy the contiguous data starting in spare_area[0] to
 | |
| 		 *  the four spare area buffers.
 | |
| 		 */
 | |
| 		for (i = 1; i < 4; i++) {
 | |
| 			void __iomem *src = &host->regs->spare_area[0][i * 16];
 | |
| 			void __iomem *dst = &host->regs->spare_area[i][0];
 | |
| 
 | |
| 			mxc_nand_memcpy32(dst, src, 16);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	writew(buf_id, &host->regs->nfc_buf_addr);
 | |
| 
 | |
| 	/* Configure spare or page+spare access */
 | |
| 	if (!host->pagesize_2k) {
 | |
| 		uint16_t config1 = readw(&host->regs->nfc_config1);
 | |
| 		if (spare_only)
 | |
| 			config1 |= NFC_SP_EN;
 | |
| 		else
 | |
| 			config1 &= ~(NFC_SP_EN);
 | |
| 		writew(config1, &host->regs->nfc_config1);
 | |
| 	}
 | |
| 
 | |
| 	writew(NFC_INPUT, &host->regs->nfc_config2);
 | |
| 
 | |
| 	/* Wait for operation to complete */
 | |
| 	wait_op_done(host, TROP_US_DELAY, spare_only);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Requests NANDFC to initiate the transfer of data from the
 | |
|  * NAND device into in the NANDFC ram buffer.
 | |
|  */
 | |
| static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
 | |
| 		int spare_only)
 | |
| {
 | |
| 	MTDDEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
 | |
| 
 | |
| 	writew(buf_id, &host->regs->nfc_buf_addr);
 | |
| 
 | |
| 	/* Configure spare or page+spare access */
 | |
| 	if (!host->pagesize_2k) {
 | |
| 		uint32_t config1 = readw(&host->regs->nfc_config1);
 | |
| 		if (spare_only)
 | |
| 			config1 |= NFC_SP_EN;
 | |
| 		else
 | |
| 			config1 &= ~NFC_SP_EN;
 | |
| 		writew(config1, &host->regs->nfc_config1);
 | |
| 	}
 | |
| 
 | |
| 	writew(NFC_OUTPUT, &host->regs->nfc_config2);
 | |
| 
 | |
| 	/* Wait for operation to complete */
 | |
| 	wait_op_done(host, TROP_US_DELAY, spare_only);
 | |
| 
 | |
| 	if (is_mxc_nfc_11()) {
 | |
| 		int i;
 | |
| 
 | |
| 		/*
 | |
| 		 *  The controller copies the 64 bytes of spare data to
 | |
| 		 *  the first 16 bytes of each of the 4 spare buffers.
 | |
| 		 *  Make the data contiguous starting in spare_area[0].
 | |
| 		 */
 | |
| 		for (i = 1; i < 4; i++) {
 | |
| 			void __iomem *src = &host->regs->spare_area[i][0];
 | |
| 			void __iomem *dst = &host->regs->spare_area[0][i * 16];
 | |
| 
 | |
| 			mxc_nand_memcpy32(dst, src, 16);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Request the NANDFC to perform a read of the NAND device ID. */
 | |
| static void send_read_id(struct mxc_nand_host *host)
 | |
| {
 | |
| 	uint16_t tmp;
 | |
| 
 | |
| 	/* NANDFC buffer 0 is used for device ID output */
 | |
| 	writew(0x0, &host->regs->nfc_buf_addr);
 | |
| 
 | |
| 	/* Read ID into main buffer */
 | |
| 	tmp = readw(&host->regs->nfc_config1);
 | |
| 	tmp &= ~NFC_SP_EN;
 | |
| 	writew(tmp, &host->regs->nfc_config1);
 | |
| 
 | |
| 	writew(NFC_ID, &host->regs->nfc_config2);
 | |
| 
 | |
| 	/* Wait for operation to complete */
 | |
| 	wait_op_done(host, TROP_US_DELAY, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function requests the NANDFC to perform a read of the
 | |
|  * NAND device status and returns the current status.
 | |
|  */
 | |
| static uint16_t get_dev_status(struct mxc_nand_host *host)
 | |
| {
 | |
| 	void __iomem *main_buf = host->regs->main_area[1];
 | |
| 	uint32_t store;
 | |
| 	uint16_t ret, tmp;
 | |
| 	/* Issue status request to NAND device */
 | |
| 
 | |
| 	/* store the main area1 first word, later do recovery */
 | |
| 	store = readl(main_buf);
 | |
| 	/* NANDFC buffer 1 is used for device status */
 | |
| 	writew(1, &host->regs->nfc_buf_addr);
 | |
| 
 | |
| 	/* Read status into main buffer */
 | |
| 	tmp = readw(&host->regs->nfc_config1);
 | |
| 	tmp &= ~NFC_SP_EN;
 | |
| 	writew(tmp, &host->regs->nfc_config1);
 | |
| 
 | |
| 	writew(NFC_STATUS, &host->regs->nfc_config2);
 | |
| 
 | |
| 	/* Wait for operation to complete */
 | |
| 	wait_op_done(host, TROP_US_DELAY, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 *  Status is placed in first word of main buffer
 | |
| 	 * get status, then recovery area 1 data
 | |
| 	 */
 | |
| 	ret = readw(main_buf);
 | |
| 	writel(store, main_buf);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* This function is used by upper layer to checks if device is ready */
 | |
| static int mxc_nand_dev_ready(struct mtd_info *mtd)
 | |
| {
 | |
| 	/*
 | |
| 	 * NFC handles R/B internally. Therefore, this function
 | |
| 	 * always returns status as ready.
 | |
| 	 */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MXC_NAND_HWECC
 | |
| static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
 | |
| {
 | |
| 	/*
 | |
| 	 * If HW ECC is enabled, we turn it on during init. There is
 | |
| 	 * no need to enable again here.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| #ifdef MXC_NFC_V1_1
 | |
| static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
 | |
| {
 | |
| 	struct nand_chip *nand_chip = mtd->priv;
 | |
| 	struct mxc_nand_host *host = nand_chip->priv;
 | |
| 	uint16_t tmp = readw(&host->regs->nfc_config1);
 | |
| 
 | |
| 	if (on)
 | |
| 		tmp |= NFC_ECC_EN;
 | |
| 	else
 | |
| 		tmp &= ~NFC_ECC_EN;
 | |
| 	writew(tmp, &host->regs->nfc_config1);
 | |
| }
 | |
| 
 | |
| static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd,
 | |
| 				      struct nand_chip *chip,
 | |
| 				      int page, int sndcmd)
 | |
| {
 | |
| 	struct mxc_nand_host *host = chip->priv;
 | |
| 	uint8_t *buf = chip->oob_poi;
 | |
| 	int length = mtd->oobsize;
 | |
| 	int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
 | |
| 	uint8_t *bufpoi = buf;
 | |
| 	int i, toread;
 | |
| 
 | |
| 	MTDDEBUG(MTD_DEBUG_LEVEL0,
 | |
| 			"%s: Reading OOB area of page %u to oob %p\n",
 | |
| 			 __FUNCTION__, host->page_addr, buf);
 | |
| 
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
 | |
| 	for (i = 0; i < chip->ecc.steps; i++) {
 | |
| 		toread = min_t(int, length, chip->ecc.prepad);
 | |
| 		if (toread) {
 | |
| 			chip->read_buf(mtd, bufpoi, toread);
 | |
| 			bufpoi += toread;
 | |
| 			length -= toread;
 | |
| 		}
 | |
| 		bufpoi += chip->ecc.bytes;
 | |
| 		host->col_addr += chip->ecc.bytes;
 | |
| 		length -= chip->ecc.bytes;
 | |
| 
 | |
| 		toread = min_t(int, length, chip->ecc.postpad);
 | |
| 		if (toread) {
 | |
| 			chip->read_buf(mtd, bufpoi, toread);
 | |
| 			bufpoi += toread;
 | |
| 			length -= toread;
 | |
| 		}
 | |
| 	}
 | |
| 	if (length > 0)
 | |
| 		chip->read_buf(mtd, bufpoi, length);
 | |
| 
 | |
| 	_mxc_nand_enable_hwecc(mtd, 0);
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_READOOB,
 | |
| 			mtd->writesize + chip->ecc.prepad, page);
 | |
| 	bufpoi = buf + chip->ecc.prepad;
 | |
| 	length = mtd->oobsize - chip->ecc.prepad;
 | |
| 	for (i = 0; i < chip->ecc.steps; i++) {
 | |
| 		toread = min_t(int, length, chip->ecc.bytes);
 | |
| 		chip->read_buf(mtd, bufpoi, toread);
 | |
| 		bufpoi += eccpitch;
 | |
| 		length -= eccpitch;
 | |
| 		host->col_addr += chip->ecc.postpad + chip->ecc.prepad;
 | |
| 	}
 | |
| 	_mxc_nand_enable_hwecc(mtd, 1);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd,
 | |
| 					   struct nand_chip *chip,
 | |
| 					   uint8_t *buf,
 | |
| 					   int page)
 | |
| {
 | |
| 	struct mxc_nand_host *host = chip->priv;
 | |
| 	int eccsize = chip->ecc.size;
 | |
| 	int eccbytes = chip->ecc.bytes;
 | |
| 	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
 | |
| 	uint8_t *oob = chip->oob_poi;
 | |
| 	int steps, size;
 | |
| 	int n;
 | |
| 
 | |
| 	_mxc_nand_enable_hwecc(mtd, 0);
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, host->page_addr);
 | |
| 
 | |
| 	for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
 | |
| 		host->col_addr = n * eccsize;
 | |
| 		chip->read_buf(mtd, buf, eccsize);
 | |
| 		buf += eccsize;
 | |
| 
 | |
| 		host->col_addr = mtd->writesize + n * eccpitch;
 | |
| 		if (chip->ecc.prepad) {
 | |
| 			chip->read_buf(mtd, oob, chip->ecc.prepad);
 | |
| 			oob += chip->ecc.prepad;
 | |
| 		}
 | |
| 
 | |
| 		chip->read_buf(mtd, oob, eccbytes);
 | |
| 		oob += eccbytes;
 | |
| 
 | |
| 		if (chip->ecc.postpad) {
 | |
| 			chip->read_buf(mtd, oob, chip->ecc.postpad);
 | |
| 			oob += chip->ecc.postpad;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	size = mtd->oobsize - (oob - chip->oob_poi);
 | |
| 	if (size)
 | |
| 		chip->read_buf(mtd, oob, size);
 | |
| 	_mxc_nand_enable_hwecc(mtd, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mxc_nand_read_page_syndrome(struct mtd_info *mtd,
 | |
| 				       struct nand_chip *chip,
 | |
| 				       uint8_t *buf,
 | |
| 				       int page)
 | |
| {
 | |
| 	struct mxc_nand_host *host = chip->priv;
 | |
| 	int n, eccsize = chip->ecc.size;
 | |
| 	int eccbytes = chip->ecc.bytes;
 | |
| 	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
 | |
| 	int eccsteps = chip->ecc.steps;
 | |
| 	uint8_t *p = buf;
 | |
| 	uint8_t *oob = chip->oob_poi;
 | |
| 
 | |
| 	MTDDEBUG(MTD_DEBUG_LEVEL1, "Reading page %u to buf %p oob %p\n",
 | |
| 	      host->page_addr, buf, oob);
 | |
| 
 | |
| 	/* first read the data area and the available portion of OOB */
 | |
| 	for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
 | |
| 		int stat;
 | |
| 
 | |
| 		host->col_addr = n * eccsize;
 | |
| 
 | |
| 		chip->read_buf(mtd, p, eccsize);
 | |
| 
 | |
| 		host->col_addr = mtd->writesize + n * eccpitch;
 | |
| 
 | |
| 		if (chip->ecc.prepad) {
 | |
| 			chip->read_buf(mtd, oob, chip->ecc.prepad);
 | |
| 			oob += chip->ecc.prepad;
 | |
| 		}
 | |
| 
 | |
| 		stat = chip->ecc.correct(mtd, p, oob, NULL);
 | |
| 
 | |
| 		if (stat < 0)
 | |
| 			mtd->ecc_stats.failed++;
 | |
| 		else
 | |
| 			mtd->ecc_stats.corrected += stat;
 | |
| 		oob += eccbytes;
 | |
| 
 | |
| 		if (chip->ecc.postpad) {
 | |
| 			chip->read_buf(mtd, oob, chip->ecc.postpad);
 | |
| 			oob += chip->ecc.postpad;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate remaining oob bytes */
 | |
| 	n = mtd->oobsize - (oob - chip->oob_poi);
 | |
| 	if (n)
 | |
| 		chip->read_buf(mtd, oob, n);
 | |
| 
 | |
| 	/* Then switch ECC off and read the OOB area to get the ECC code */
 | |
| 	_mxc_nand_enable_hwecc(mtd, 0);
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, host->page_addr);
 | |
| 	eccsteps = chip->ecc.steps;
 | |
| 	oob = chip->oob_poi + chip->ecc.prepad;
 | |
| 	for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
 | |
| 		host->col_addr = mtd->writesize +
 | |
| 				 n * eccpitch +
 | |
| 				 chip->ecc.prepad;
 | |
| 		chip->read_buf(mtd, oob, eccbytes);
 | |
| 		oob += eccbytes + chip->ecc.postpad;
 | |
| 	}
 | |
| 	_mxc_nand_enable_hwecc(mtd, 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd,
 | |
| 				       struct nand_chip *chip, int page)
 | |
| {
 | |
| 	struct mxc_nand_host *host = chip->priv;
 | |
| 	int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
 | |
| 	int length = mtd->oobsize;
 | |
| 	int i, len, status, steps = chip->ecc.steps;
 | |
| 	const uint8_t *bufpoi = chip->oob_poi;
 | |
| 
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
 | |
| 	for (i = 0; i < steps; i++) {
 | |
| 		len = min_t(int, length, eccpitch);
 | |
| 
 | |
| 		chip->write_buf(mtd, bufpoi, len);
 | |
| 		bufpoi += len;
 | |
| 		length -= len;
 | |
| 		host->col_addr += chip->ecc.prepad + chip->ecc.postpad;
 | |
| 	}
 | |
| 	if (length > 0)
 | |
| 		chip->write_buf(mtd, bufpoi, length);
 | |
| 
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 | |
| 	status = chip->waitfunc(mtd, chip);
 | |
| 	return status & NAND_STATUS_FAIL ? -EIO : 0;
 | |
| }
 | |
| 
 | |
| static void mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd,
 | |
| 					     struct nand_chip *chip,
 | |
| 					     const uint8_t *buf)
 | |
| {
 | |
| 	struct mxc_nand_host *host = chip->priv;
 | |
| 	int eccsize = chip->ecc.size;
 | |
| 	int eccbytes = chip->ecc.bytes;
 | |
| 	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
 | |
| 	uint8_t *oob = chip->oob_poi;
 | |
| 	int steps, size;
 | |
| 	int n;
 | |
| 
 | |
| 	for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
 | |
| 		host->col_addr = n * eccsize;
 | |
| 		chip->write_buf(mtd, buf, eccsize);
 | |
| 		buf += eccsize;
 | |
| 
 | |
| 		host->col_addr = mtd->writesize + n * eccpitch;
 | |
| 
 | |
| 		if (chip->ecc.prepad) {
 | |
| 			chip->write_buf(mtd, oob, chip->ecc.prepad);
 | |
| 			oob += chip->ecc.prepad;
 | |
| 		}
 | |
| 
 | |
| 		host->col_addr += eccbytes;
 | |
| 		oob += eccbytes;
 | |
| 
 | |
| 		if (chip->ecc.postpad) {
 | |
| 			chip->write_buf(mtd, oob, chip->ecc.postpad);
 | |
| 			oob += chip->ecc.postpad;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	size = mtd->oobsize - (oob - chip->oob_poi);
 | |
| 	if (size)
 | |
| 		chip->write_buf(mtd, oob, size);
 | |
| }
 | |
| 
 | |
| static void mxc_nand_write_page_syndrome(struct mtd_info *mtd,
 | |
| 					 struct nand_chip *chip,
 | |
| 					 const uint8_t *buf)
 | |
| {
 | |
| 	struct mxc_nand_host *host = chip->priv;
 | |
| 	int i, n, eccsize = chip->ecc.size;
 | |
| 	int eccbytes = chip->ecc.bytes;
 | |
| 	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
 | |
| 	int eccsteps = chip->ecc.steps;
 | |
| 	const uint8_t *p = buf;
 | |
| 	uint8_t *oob = chip->oob_poi;
 | |
| 
 | |
| 	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
 | |
| 
 | |
| 	for (i = n = 0;
 | |
| 	     eccsteps;
 | |
| 	     n++, eccsteps--, i += eccbytes, p += eccsize) {
 | |
| 		host->col_addr = n * eccsize;
 | |
| 
 | |
| 		chip->write_buf(mtd, p, eccsize);
 | |
| 
 | |
| 		host->col_addr = mtd->writesize + n * eccpitch;
 | |
| 
 | |
| 		if (chip->ecc.prepad) {
 | |
| 			chip->write_buf(mtd, oob, chip->ecc.prepad);
 | |
| 			oob += chip->ecc.prepad;
 | |
| 		}
 | |
| 
 | |
| 		chip->write_buf(mtd, oob, eccbytes);
 | |
| 		oob += eccbytes;
 | |
| 
 | |
| 		if (chip->ecc.postpad) {
 | |
| 			chip->write_buf(mtd, oob, chip->ecc.postpad);
 | |
| 			oob += chip->ecc.postpad;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate remaining oob bytes */
 | |
| 	i = mtd->oobsize - (oob - chip->oob_poi);
 | |
| 	if (i)
 | |
| 		chip->write_buf(mtd, oob, i);
 | |
| }
 | |
| 
 | |
| static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
 | |
| 				 u_char *read_ecc, u_char *calc_ecc)
 | |
| {
 | |
| 	struct nand_chip *nand_chip = mtd->priv;
 | |
| 	struct mxc_nand_host *host = nand_chip->priv;
 | |
| 	uint16_t ecc_status = readw(&host->regs->nfc_ecc_status_result);
 | |
| 	int subpages = mtd->writesize / nand_chip->subpagesize;
 | |
| 	int pg2blk_shift = nand_chip->phys_erase_shift -
 | |
| 			   nand_chip->page_shift;
 | |
| 
 | |
| 	do {
 | |
| 		if ((ecc_status & 0xf) > 4) {
 | |
| 			static int last_bad = -1;
 | |
| 
 | |
| 			if (last_bad != host->page_addr >> pg2blk_shift) {
 | |
| 				last_bad = host->page_addr >> pg2blk_shift;
 | |
| 				printk(KERN_DEBUG
 | |
| 				       "MXC_NAND: HWECC uncorrectable ECC error"
 | |
| 				       " in block %u page %u subpage %d\n",
 | |
| 				       last_bad, host->page_addr,
 | |
| 				       mtd->writesize / nand_chip->subpagesize
 | |
| 					    - subpages);
 | |
| 			}
 | |
| 			return -1;
 | |
| 		}
 | |
| 		ecc_status >>= 4;
 | |
| 		subpages--;
 | |
| 	} while (subpages > 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| #define mxc_nand_read_page_syndrome NULL
 | |
| #define mxc_nand_read_page_raw_syndrome NULL
 | |
| #define mxc_nand_read_oob_syndrome NULL
 | |
| #define mxc_nand_write_page_syndrome NULL
 | |
| #define mxc_nand_write_page_raw_syndrome NULL
 | |
| #define mxc_nand_write_oob_syndrome NULL
 | |
| #define mxc_nfc_11_nand_correct_data NULL
 | |
| 
 | |
| static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
 | |
| 				 u_char *read_ecc, u_char *calc_ecc)
 | |
| {
 | |
| 	struct nand_chip *nand_chip = mtd->priv;
 | |
| 	struct mxc_nand_host *host = nand_chip->priv;
 | |
| 
 | |
| 	/*
 | |
| 	 * 1-Bit errors are automatically corrected in HW.  No need for
 | |
| 	 * additional correction.  2-Bit errors cannot be corrected by
 | |
| 	 * HW ECC, so we need to return failure
 | |
| 	 */
 | |
| 	uint16_t ecc_status = readw(&host->regs->nfc_ecc_status_result);
 | |
| 
 | |
| 	if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
 | |
| 		MTDDEBUG(MTD_DEBUG_LEVEL0,
 | |
| 		      "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 | |
| 				  u_char *ecc_code)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static u_char mxc_nand_read_byte(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *nand_chip = mtd->priv;
 | |
| 	struct mxc_nand_host *host = nand_chip->priv;
 | |
| 	uint8_t ret = 0;
 | |
| 	uint16_t col;
 | |
| 	uint16_t __iomem *main_buf =
 | |
| 		(uint16_t __iomem *)host->regs->main_area[0];
 | |
| 	uint16_t __iomem *spare_buf =
 | |
| 		(uint16_t __iomem *)host->regs->spare_area[0];
 | |
| 	union {
 | |
| 		uint16_t word;
 | |
| 		uint8_t bytes[2];
 | |
| 	} nfc_word;
 | |
| 
 | |
| 	/* Check for status request */
 | |
| 	if (host->status_request)
 | |
| 		return get_dev_status(host) & 0xFF;
 | |
| 
 | |
| 	/* Get column for 16-bit access */
 | |
| 	col = host->col_addr >> 1;
 | |
| 
 | |
| 	/* If we are accessing the spare region */
 | |
| 	if (host->spare_only)
 | |
| 		nfc_word.word = readw(&spare_buf[col]);
 | |
| 	else
 | |
| 		nfc_word.word = readw(&main_buf[col]);
 | |
| 
 | |
| 	/* Pick upper/lower byte of word from RAM buffer */
 | |
| 	ret = nfc_word.bytes[host->col_addr & 0x1];
 | |
| 
 | |
| 	/* Update saved column address */
 | |
| 	if (nand_chip->options & NAND_BUSWIDTH_16)
 | |
| 		host->col_addr += 2;
 | |
| 	else
 | |
| 		host->col_addr++;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *nand_chip = mtd->priv;
 | |
| 	struct mxc_nand_host *host = nand_chip->priv;
 | |
| 	uint16_t col, ret;
 | |
| 	uint16_t __iomem *p;
 | |
| 
 | |
| 	MTDDEBUG(MTD_DEBUG_LEVEL3,
 | |
| 	      "mxc_nand_read_word(col = %d)\n", host->col_addr);
 | |
| 
 | |
| 	col = host->col_addr;
 | |
| 	/* Adjust saved column address */
 | |
| 	if (col < mtd->writesize && host->spare_only)
 | |
| 		col += mtd->writesize;
 | |
| 
 | |
| 	if (col < mtd->writesize) {
 | |
| 		p = (uint16_t __iomem *)(host->regs->main_area[0] +
 | |
| 				(col >> 1));
 | |
| 	} else {
 | |
| 		p = (uint16_t __iomem *)(host->regs->spare_area[0] +
 | |
| 				((col - mtd->writesize) >> 1));
 | |
| 	}
 | |
| 
 | |
| 	if (col & 1) {
 | |
| 		union {
 | |
| 			uint16_t word;
 | |
| 			uint8_t bytes[2];
 | |
| 		} nfc_word[3];
 | |
| 
 | |
| 		nfc_word[0].word = readw(p);
 | |
| 		nfc_word[1].word = readw(p + 1);
 | |
| 
 | |
| 		nfc_word[2].bytes[0] = nfc_word[0].bytes[1];
 | |
| 		nfc_word[2].bytes[1] = nfc_word[1].bytes[0];
 | |
| 
 | |
| 		ret = nfc_word[2].word;
 | |
| 	} else {
 | |
| 		ret = readw(p);
 | |
| 	}
 | |
| 
 | |
| 	/* Update saved column address */
 | |
| 	host->col_addr = col + 2;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write data of length len to buffer buf. The data to be
 | |
|  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
 | |
|  * Operation by the NFC, the data is written to NAND Flash
 | |
|  */
 | |
| static void mxc_nand_write_buf(struct mtd_info *mtd,
 | |
| 				const u_char *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *nand_chip = mtd->priv;
 | |
| 	struct mxc_nand_host *host = nand_chip->priv;
 | |
| 	int n, col, i = 0;
 | |
| 
 | |
| 	MTDDEBUG(MTD_DEBUG_LEVEL3,
 | |
| 	      "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
 | |
| 	      len);
 | |
| 
 | |
| 	col = host->col_addr;
 | |
| 
 | |
| 	/* Adjust saved column address */
 | |
| 	if (col < mtd->writesize && host->spare_only)
 | |
| 		col += mtd->writesize;
 | |
| 
 | |
| 	n = mtd->writesize + mtd->oobsize - col;
 | |
| 	n = min(len, n);
 | |
| 
 | |
| 	MTDDEBUG(MTD_DEBUG_LEVEL3,
 | |
| 	      "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
 | |
| 
 | |
| 	while (n > 0) {
 | |
| 		void __iomem *p;
 | |
| 
 | |
| 		if (col < mtd->writesize) {
 | |
| 			p = host->regs->main_area[0] + (col & ~3);
 | |
| 		} else {
 | |
| 			p = host->regs->spare_area[0] -
 | |
| 						mtd->writesize + (col & ~3);
 | |
| 		}
 | |
| 
 | |
| 		MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
 | |
| 		      __LINE__, p);
 | |
| 
 | |
| 		if (((col | (unsigned long)&buf[i]) & 3) || n < 4) {
 | |
| 			union {
 | |
| 				uint32_t word;
 | |
| 				uint8_t bytes[4];
 | |
| 			} nfc_word;
 | |
| 
 | |
| 			nfc_word.word = readl(p);
 | |
| 			nfc_word.bytes[col & 3] = buf[i++];
 | |
| 			n--;
 | |
| 			col++;
 | |
| 
 | |
| 			writel(nfc_word.word, p);
 | |
| 		} else {
 | |
| 			int m = mtd->writesize - col;
 | |
| 
 | |
| 			if (col >= mtd->writesize)
 | |
| 				m += mtd->oobsize;
 | |
| 
 | |
| 			m = min(n, m) & ~3;
 | |
| 
 | |
| 			MTDDEBUG(MTD_DEBUG_LEVEL3,
 | |
| 			      "%s:%d: n = %d, m = %d, i = %d, col = %d\n",
 | |
| 			      __func__,  __LINE__, n, m, i, col);
 | |
| 
 | |
| 			mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m);
 | |
| 			col += m;
 | |
| 			i += m;
 | |
| 			n -= m;
 | |
| 		}
 | |
| 	}
 | |
| 	/* Update saved column address */
 | |
| 	host->col_addr = col;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the data buffer from the NAND Flash. To read the data from NAND
 | |
|  * Flash first the data output cycle is initiated by the NFC, which copies
 | |
|  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
 | |
|  */
 | |
| static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *nand_chip = mtd->priv;
 | |
| 	struct mxc_nand_host *host = nand_chip->priv;
 | |
| 	int n, col, i = 0;
 | |
| 
 | |
| 	MTDDEBUG(MTD_DEBUG_LEVEL3,
 | |
| 	      "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);
 | |
| 
 | |
| 	col = host->col_addr;
 | |
| 
 | |
| 	/* Adjust saved column address */
 | |
| 	if (col < mtd->writesize && host->spare_only)
 | |
| 		col += mtd->writesize;
 | |
| 
 | |
| 	n = mtd->writesize + mtd->oobsize - col;
 | |
| 	n = min(len, n);
 | |
| 
 | |
| 	while (n > 0) {
 | |
| 		void __iomem *p;
 | |
| 
 | |
| 		if (col < mtd->writesize) {
 | |
| 			p = host->regs->main_area[0] + (col & ~3);
 | |
| 		} else {
 | |
| 			p = host->regs->spare_area[0] -
 | |
| 					mtd->writesize + (col & ~3);
 | |
| 		}
 | |
| 
 | |
| 		if (((col | (int)&buf[i]) & 3) || n < 4) {
 | |
| 			union {
 | |
| 				uint32_t word;
 | |
| 				uint8_t bytes[4];
 | |
| 			} nfc_word;
 | |
| 
 | |
| 			nfc_word.word = readl(p);
 | |
| 			buf[i++] = nfc_word.bytes[col & 3];
 | |
| 			n--;
 | |
| 			col++;
 | |
| 		} else {
 | |
| 			int m = mtd->writesize - col;
 | |
| 
 | |
| 			if (col >= mtd->writesize)
 | |
| 				m += mtd->oobsize;
 | |
| 
 | |
| 			m = min(n, m) & ~3;
 | |
| 			mxc_nand_memcpy32((uint32_t *)&buf[i], p, m);
 | |
| 
 | |
| 			col += m;
 | |
| 			i += m;
 | |
| 			n -= m;
 | |
| 		}
 | |
| 	}
 | |
| 	/* Update saved column address */
 | |
| 	host->col_addr = col;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used by the upper layer to verify the data in NAND Flash
 | |
|  * with the data in the buf.
 | |
|  */
 | |
| static int mxc_nand_verify_buf(struct mtd_info *mtd,
 | |
| 				const u_char *buf, int len)
 | |
| {
 | |
| 	u_char tmp[256];
 | |
| 	uint bsize;
 | |
| 
 | |
| 	while (len) {
 | |
| 		bsize = min(len, 256);
 | |
| 		mxc_nand_read_buf(mtd, tmp, bsize);
 | |
| 
 | |
| 		if (memcmp(buf, tmp, bsize))
 | |
| 			return 1;
 | |
| 
 | |
| 		buf += bsize;
 | |
| 		len -= bsize;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is used by upper layer for select and
 | |
|  * deselect of the NAND chip
 | |
|  */
 | |
| static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
 | |
| {
 | |
| 	struct nand_chip *nand_chip = mtd->priv;
 | |
| 	struct mxc_nand_host *host = nand_chip->priv;
 | |
| 
 | |
| 	switch (chip) {
 | |
| 	case -1:
 | |
| 		/* TODO: Disable the NFC clock */
 | |
| 		if (host->clk_act)
 | |
| 			host->clk_act = 0;
 | |
| 		break;
 | |
| 	case 0:
 | |
| 		/* TODO: Enable the NFC clock */
 | |
| 		if (!host->clk_act)
 | |
| 			host->clk_act = 1;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used by the upper layer to write command to NAND Flash for
 | |
|  * different operations to be carried out on NAND Flash
 | |
|  */
 | |
| void mxc_nand_command(struct mtd_info *mtd, unsigned command,
 | |
| 				int column, int page_addr)
 | |
| {
 | |
| 	struct nand_chip *nand_chip = mtd->priv;
 | |
| 	struct mxc_nand_host *host = nand_chip->priv;
 | |
| 
 | |
| 	MTDDEBUG(MTD_DEBUG_LEVEL3,
 | |
| 	      "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
 | |
| 	      command, column, page_addr);
 | |
| 
 | |
| 	/* Reset command state information */
 | |
| 	host->status_request = false;
 | |
| 
 | |
| 	/* Command pre-processing step */
 | |
| 	switch (command) {
 | |
| 
 | |
| 	case NAND_CMD_STATUS:
 | |
| 		host->col_addr = 0;
 | |
| 		host->status_request = true;
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_READ0:
 | |
| 		host->page_addr = page_addr;
 | |
| 		host->col_addr = column;
 | |
| 		host->spare_only = false;
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_READOOB:
 | |
| 		host->col_addr = column;
 | |
| 		host->spare_only = true;
 | |
| 		if (host->pagesize_2k)
 | |
| 			command = NAND_CMD_READ0; /* only READ0 is valid */
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_SEQIN:
 | |
| 		if (column >= mtd->writesize) {
 | |
| 			/*
 | |
| 			 * before sending SEQIN command for partial write,
 | |
| 			 * we need read one page out. FSL NFC does not support
 | |
| 			 * partial write. It always sends out 512+ecc+512+ecc
 | |
| 			 * for large page nand flash. But for small page nand
 | |
| 			 * flash, it does support SPARE ONLY operation.
 | |
| 			 */
 | |
| 			if (host->pagesize_2k) {
 | |
| 				/* call ourself to read a page */
 | |
| 				mxc_nand_command(mtd, NAND_CMD_READ0, 0,
 | |
| 						page_addr);
 | |
| 			}
 | |
| 
 | |
| 			host->col_addr = column - mtd->writesize;
 | |
| 			host->spare_only = true;
 | |
| 
 | |
| 			/* Set program pointer to spare region */
 | |
| 			if (!host->pagesize_2k)
 | |
| 				send_cmd(host, NAND_CMD_READOOB);
 | |
| 		} else {
 | |
| 			host->spare_only = false;
 | |
| 			host->col_addr = column;
 | |
| 
 | |
| 			/* Set program pointer to page start */
 | |
| 			if (!host->pagesize_2k)
 | |
| 				send_cmd(host, NAND_CMD_READ0);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_PAGEPROG:
 | |
| 		send_prog_page(host, 0, host->spare_only);
 | |
| 
 | |
| 		if (host->pagesize_2k && !is_mxc_nfc_11()) {
 | |
| 			/* data in 4 areas */
 | |
| 			send_prog_page(host, 1, host->spare_only);
 | |
| 			send_prog_page(host, 2, host->spare_only);
 | |
| 			send_prog_page(host, 3, host->spare_only);
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Write out the command to the device. */
 | |
| 	send_cmd(host, command);
 | |
| 
 | |
| 	/* Write out column address, if necessary */
 | |
| 	if (column != -1) {
 | |
| 		/*
 | |
| 		 * MXC NANDFC can only perform full page+spare or
 | |
| 		 * spare-only read/write. When the upper layers perform
 | |
| 		 * a read/write buffer operation, we will use the saved
 | |
| 		 * column address to index into the full page.
 | |
| 		 */
 | |
| 		send_addr(host, 0);
 | |
| 		if (host->pagesize_2k)
 | |
| 			/* another col addr cycle for 2k page */
 | |
| 			send_addr(host, 0);
 | |
| 	}
 | |
| 
 | |
| 	/* Write out page address, if necessary */
 | |
| 	if (page_addr != -1) {
 | |
| 		u32 page_mask = nand_chip->pagemask;
 | |
| 		do {
 | |
| 			send_addr(host, page_addr & 0xFF);
 | |
| 			page_addr >>= 8;
 | |
| 			page_mask >>= 8;
 | |
| 		} while (page_mask);
 | |
| 	}
 | |
| 
 | |
| 	/* Command post-processing step */
 | |
| 	switch (command) {
 | |
| 
 | |
| 	case NAND_CMD_RESET:
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_READOOB:
 | |
| 	case NAND_CMD_READ0:
 | |
| 		if (host->pagesize_2k) {
 | |
| 			/* send read confirm command */
 | |
| 			send_cmd(host, NAND_CMD_READSTART);
 | |
| 			/* read for each AREA */
 | |
| 			send_read_page(host, 0, host->spare_only);
 | |
| 			if (!is_mxc_nfc_11()) {
 | |
| 				send_read_page(host, 1, host->spare_only);
 | |
| 				send_read_page(host, 2, host->spare_only);
 | |
| 				send_read_page(host, 3, host->spare_only);
 | |
| 			}
 | |
| 		} else {
 | |
| 			send_read_page(host, 0, host->spare_only);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_READID:
 | |
| 		host->col_addr = 0;
 | |
| 		send_read_id(host);
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_PAGEPROG:
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_STATUS:
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_ERASE2:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef MXC_NFC_V1_1
 | |
| static void mxc_setup_config1(void)
 | |
| {
 | |
| 	uint16_t tmp;
 | |
| 
 | |
| 	tmp = readw(&host->regs->nfc_config1);
 | |
| 	tmp |= NFC_ONE_CYCLE;
 | |
| 	tmp |= NFC_4_8N_ECC;
 | |
| 	writew(tmp, &host->regs->nfc_config1);
 | |
| 	if (host->pagesize_2k)
 | |
| 		writew(64/2, &host->regs->nfc_spare_area_size);
 | |
| 	else
 | |
| 		writew(16/2, &host->regs->nfc_spare_area_size);
 | |
| }
 | |
| #else
 | |
| #define mxc_setup_config1()
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
 | |
| 
 | |
| static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
 | |
| static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
 | |
| 
 | |
| static struct nand_bbt_descr bbt_main_descr = {
 | |
| 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
 | |
| 		   NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 | |
| 	.offs =	0,
 | |
| 	.len = 4,
 | |
| 	.veroffs = 4,
 | |
| 	.maxblocks = 4,
 | |
| 	.pattern = bbt_pattern,
 | |
| };
 | |
| 
 | |
| static struct nand_bbt_descr bbt_mirror_descr = {
 | |
| 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
 | |
| 		   NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 | |
| 	.offs =	0,
 | |
| 	.len = 4,
 | |
| 	.veroffs = 4,
 | |
| 	.maxblocks = 4,
 | |
| 	.pattern = mirror_pattern,
 | |
| };
 | |
| 
 | |
| #endif
 | |
| 
 | |
| int board_nand_init(struct nand_chip *this)
 | |
| {
 | |
| 	struct mtd_info *mtd;
 | |
| 	uint16_t tmp;
 | |
| 	int err = 0;
 | |
| 
 | |
| #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
 | |
| 	this->options |= NAND_USE_FLASH_BBT;
 | |
| 	this->bbt_td = &bbt_main_descr;
 | |
| 	this->bbt_md = &bbt_mirror_descr;
 | |
| #endif
 | |
| 
 | |
| 	/* structures must be linked */
 | |
| 	mtd = &host->mtd;
 | |
| 	mtd->priv = this;
 | |
| 	host->nand = this;
 | |
| 
 | |
| 	/* 5 us command delay time */
 | |
| 	this->chip_delay = 5;
 | |
| 
 | |
| 	this->priv = host;
 | |
| 	this->dev_ready = mxc_nand_dev_ready;
 | |
| 	this->cmdfunc = mxc_nand_command;
 | |
| 	this->select_chip = mxc_nand_select_chip;
 | |
| 	this->read_byte = mxc_nand_read_byte;
 | |
| 	this->read_word = mxc_nand_read_word;
 | |
| 	this->write_buf = mxc_nand_write_buf;
 | |
| 	this->read_buf = mxc_nand_read_buf;
 | |
| 	this->verify_buf = mxc_nand_verify_buf;
 | |
| 
 | |
| 	host->regs = (struct nfc_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
 | |
| 	host->clk_act = 1;
 | |
| 
 | |
| #ifdef CONFIG_MXC_NAND_HWECC
 | |
| 	this->ecc.calculate = mxc_nand_calculate_ecc;
 | |
| 	this->ecc.hwctl = mxc_nand_enable_hwecc;
 | |
| 	this->ecc.correct = mxc_nand_correct_data;
 | |
| 	if (is_mxc_nfc_11()) {
 | |
| 		this->ecc.mode = NAND_ECC_HW_SYNDROME;
 | |
| 		this->ecc.read_page = mxc_nand_read_page_syndrome;
 | |
| 		this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome;
 | |
| 		this->ecc.read_oob = mxc_nand_read_oob_syndrome;
 | |
| 		this->ecc.write_page = mxc_nand_write_page_syndrome;
 | |
| 		this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome;
 | |
| 		this->ecc.write_oob = mxc_nand_write_oob_syndrome;
 | |
| 		this->ecc.bytes = 9;
 | |
| 		this->ecc.prepad = 7;
 | |
| 	} else {
 | |
| 		this->ecc.mode = NAND_ECC_HW;
 | |
| 	}
 | |
| 
 | |
| 	host->pagesize_2k = 0;
 | |
| 
 | |
| 	this->ecc.size = 512;
 | |
| 	tmp = readw(&host->regs->nfc_config1);
 | |
| 	tmp |= NFC_ECC_EN;
 | |
| 	writew(tmp, &host->regs->nfc_config1);
 | |
| #else
 | |
| 	this->ecc.layout = &nand_soft_eccoob;
 | |
| 	this->ecc.mode = NAND_ECC_SOFT;
 | |
| 	tmp = readw(&host->regs->nfc_config1);
 | |
| 	tmp &= ~NFC_ECC_EN;
 | |
| 	writew(tmp, &host->regs->nfc_config1);
 | |
| #endif
 | |
| 	/* Reset NAND */
 | |
| 	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
 | |
| 
 | |
| 	/*
 | |
| 	 * preset operation
 | |
| 	 * Unlock the internal RAM Buffer
 | |
| 	 */
 | |
| 	writew(0x2, &host->regs->nfc_config);
 | |
| 
 | |
| 	/* Blocks to be unlocked */
 | |
| 	writew(0x0, &host->regs->nfc_unlockstart_blkaddr);
 | |
| 	/* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the
 | |
| 	 * unlockend_blkaddr, but the magic 0x4000 does not always work
 | |
| 	 * when writing more than some 32 megabytes (on 2k page nands)
 | |
| 	 * However 0xFFFF doesn't seem to have this kind
 | |
| 	 * of limitation (tried it back and forth several times).
 | |
| 	 * The linux kernel driver sets this to 0xFFFF for the v2 controller
 | |
| 	 * only, but probably this was not tested there for v1.
 | |
| 	 * The very same limitation seems to apply to this kernel driver.
 | |
| 	 * This might be NAND chip specific and the i.MX31 datasheet is
 | |
| 	 * extremely vague about the semantics of this register.
 | |
| 	 */
 | |
| 	writew(0xFFFF, &host->regs->nfc_unlockend_blkaddr);
 | |
| 
 | |
| 	/* Unlock Block Command for given address range */
 | |
| 	writew(0x4, &host->regs->nfc_wrprot);
 | |
| 
 | |
| 	/* NAND bus width determines access functions used by upper layer */
 | |
| 	if (is_16bit_nand())
 | |
| 		this->options |= NAND_BUSWIDTH_16;
 | |
| 
 | |
| #ifdef CONFIG_SYS_NAND_LARGEPAGE
 | |
| 	host->pagesize_2k = 1;
 | |
| 	this->ecc.layout = &nand_hw_eccoob2k;
 | |
| #else
 | |
| 	host->pagesize_2k = 0;
 | |
| 	this->ecc.layout = &nand_hw_eccoob;
 | |
| #endif
 | |
| 	mxc_setup_config1();
 | |
| 	return err;
 | |
| }
 |