824 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			824 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Freescale Enhanced Local Bus Controller FCM NAND driver
 | |
|  *
 | |
|  * Copyright (c) 2006-2008 Freescale Semiconductor
 | |
|  *
 | |
|  * Authors: Nick Spence <nick.spence@freescale.com>,
 | |
|  *          Scott Wood <scottwood@freescale.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <malloc.h>
 | |
| 
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/mtd/nand.h>
 | |
| #include <linux/mtd/nand_ecc.h>
 | |
| 
 | |
| #include <asm/io.h>
 | |
| #include <asm/errno.h>
 | |
| 
 | |
| #ifdef VERBOSE_DEBUG
 | |
| #define DEBUG_ELBC
 | |
| #define vdbg(format, arg...) printf("DEBUG: " format, ##arg)
 | |
| #else
 | |
| #define vdbg(format, arg...) do {} while (0)
 | |
| #endif
 | |
| 
 | |
| /* Can't use plain old DEBUG because the linux mtd
 | |
|  * headers define it as a macro.
 | |
|  */
 | |
| #ifdef DEBUG_ELBC
 | |
| #define dbg(format, arg...) printf("DEBUG: " format, ##arg)
 | |
| #else
 | |
| #define dbg(format, arg...) do {} while (0)
 | |
| #endif
 | |
| 
 | |
| #define MAX_BANKS 8
 | |
| #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
 | |
| #define FCM_TIMEOUT_MSECS 10 /* Maximum number of mSecs to wait for FCM */
 | |
| 
 | |
| #define LTESR_NAND_MASK (LTESR_FCT | LTESR_PAR | LTESR_CC)
 | |
| 
 | |
| struct fsl_elbc_ctrl;
 | |
| 
 | |
| /* mtd information per set */
 | |
| 
 | |
| struct fsl_elbc_mtd {
 | |
| 	struct mtd_info mtd;
 | |
| 	struct nand_chip chip;
 | |
| 	struct fsl_elbc_ctrl *ctrl;
 | |
| 
 | |
| 	struct device *dev;
 | |
| 	int bank;               /* Chip select bank number           */
 | |
| 	u8 __iomem *vbase;      /* Chip select base virtual address  */
 | |
| 	int page_size;          /* NAND page size (0=512, 1=2048)    */
 | |
| 	unsigned int fmr;       /* FCM Flash Mode Register value     */
 | |
| };
 | |
| 
 | |
| /* overview of the fsl elbc controller */
 | |
| 
 | |
| struct fsl_elbc_ctrl {
 | |
| 	struct nand_hw_control controller;
 | |
| 	struct fsl_elbc_mtd *chips[MAX_BANKS];
 | |
| 
 | |
| 	/* device info */
 | |
| 	fsl_lbc_t *regs;
 | |
| 	u8 __iomem *addr;        /* Address of assigned FCM buffer        */
 | |
| 	unsigned int page;       /* Last page written to / read from      */
 | |
| 	unsigned int read_bytes; /* Number of bytes read during command   */
 | |
| 	unsigned int column;     /* Saved column from SEQIN               */
 | |
| 	unsigned int index;      /* Pointer to next byte to 'read'        */
 | |
| 	unsigned int status;     /* status read from LTESR after last op  */
 | |
| 	unsigned int mdr;        /* UPM/FCM Data Register value           */
 | |
| 	unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
 | |
| 	unsigned int oob;        /* Non zero if operating on OOB data     */
 | |
| 	uint8_t *oob_poi;        /* Place to write ECC after read back    */
 | |
| };
 | |
| 
 | |
| /* These map to the positions used by the FCM hardware ECC generator */
 | |
| 
 | |
| /* Small Page FLASH with FMR[ECCM] = 0 */
 | |
| static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
 | |
| 	.eccbytes = 3,
 | |
| 	.eccpos = {6, 7, 8},
 | |
| 	.oobfree = { {0, 5}, {9, 7} },
 | |
| };
 | |
| 
 | |
| /* Small Page FLASH with FMR[ECCM] = 1 */
 | |
| static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
 | |
| 	.eccbytes = 3,
 | |
| 	.eccpos = {8, 9, 10},
 | |
| 	.oobfree = { {0, 5}, {6, 2}, {11, 5} },
 | |
| };
 | |
| 
 | |
| /* Large Page FLASH with FMR[ECCM] = 0 */
 | |
| static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
 | |
| 	.eccbytes = 12,
 | |
| 	.eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
 | |
| 	.oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
 | |
| };
 | |
| 
 | |
| /* Large Page FLASH with FMR[ECCM] = 1 */
 | |
| static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
 | |
| 	.eccbytes = 12,
 | |
| 	.eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
 | |
| 	.oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
 | |
|  * 1, so we have to adjust bad block pattern. This pattern should be used for
 | |
|  * x8 chips only. So far hardware does not support x16 chips anyway.
 | |
|  */
 | |
| static u8 scan_ff_pattern[] = { 0xff, };
 | |
| 
 | |
| static struct nand_bbt_descr largepage_memorybased = {
 | |
| 	.options = 0,
 | |
| 	.offs = 0,
 | |
| 	.len = 1,
 | |
| 	.pattern = scan_ff_pattern,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
 | |
|  * interfere with ECC positions, that's why we implement our own descriptors.
 | |
|  * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
 | |
|  */
 | |
| static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
 | |
| static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
 | |
| 
 | |
| static struct nand_bbt_descr bbt_main_descr = {
 | |
| 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
 | |
| 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
 | |
| 	.offs =	11,
 | |
| 	.len = 4,
 | |
| 	.veroffs = 15,
 | |
| 	.maxblocks = 4,
 | |
| 	.pattern = bbt_pattern,
 | |
| };
 | |
| 
 | |
| static struct nand_bbt_descr bbt_mirror_descr = {
 | |
| 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
 | |
| 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
 | |
| 	.offs =	11,
 | |
| 	.len = 4,
 | |
| 	.veroffs = 15,
 | |
| 	.maxblocks = 4,
 | |
| 	.pattern = mirror_pattern,
 | |
| };
 | |
| 
 | |
| /*=================================*/
 | |
| 
 | |
| /*
 | |
|  * Set up the FCM hardware block and page address fields, and the fcm
 | |
|  * structure addr field to point to the correct FCM buffer in memory
 | |
|  */
 | |
| static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd->priv;
 | |
| 	struct fsl_elbc_mtd *priv = chip->priv;
 | |
| 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 | |
| 	fsl_lbc_t *lbc = ctrl->regs;
 | |
| 	int buf_num;
 | |
| 
 | |
| 	ctrl->page = page_addr;
 | |
| 
 | |
| 	if (priv->page_size) {
 | |
| 		out_be32(&lbc->fbar, page_addr >> 6);
 | |
| 		out_be32(&lbc->fpar,
 | |
| 			 ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
 | |
| 			 (oob ? FPAR_LP_MS : 0) | column);
 | |
| 		buf_num = (page_addr & 1) << 2;
 | |
| 	} else {
 | |
| 		out_be32(&lbc->fbar, page_addr >> 5);
 | |
| 		out_be32(&lbc->fpar,
 | |
| 			 ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
 | |
| 			 (oob ? FPAR_SP_MS : 0) | column);
 | |
| 		buf_num = page_addr & 7;
 | |
| 	}
 | |
| 
 | |
| 	ctrl->addr = priv->vbase + buf_num * 1024;
 | |
| 	ctrl->index = column;
 | |
| 
 | |
| 	/* for OOB data point to the second half of the buffer */
 | |
| 	if (oob)
 | |
| 		ctrl->index += priv->page_size ? 2048 : 512;
 | |
| 
 | |
| 	vdbg("set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
 | |
| 	     "index %x, pes %d ps %d\n",
 | |
| 	     buf_num, ctrl->addr, priv->vbase, ctrl->index,
 | |
| 	     chip->phys_erase_shift, chip->page_shift);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * execute FCM command and wait for it to complete
 | |
|  */
 | |
| static int fsl_elbc_run_command(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd->priv;
 | |
| 	struct fsl_elbc_mtd *priv = chip->priv;
 | |
| 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 | |
| 	fsl_lbc_t *lbc = ctrl->regs;
 | |
| 	long long end_tick;
 | |
| 	u32 ltesr;
 | |
| 
 | |
| 	/* Setup the FMR[OP] to execute without write protection */
 | |
| 	out_be32(&lbc->fmr, priv->fmr | 3);
 | |
| 	if (ctrl->use_mdr)
 | |
| 		out_be32(&lbc->mdr, ctrl->mdr);
 | |
| 
 | |
| 	vdbg("fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
 | |
| 	     in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
 | |
| 	vdbg("fsl_elbc_run_command: fbar=%08x fpar=%08x "
 | |
| 	     "fbcr=%08x bank=%d\n",
 | |
| 	     in_be32(&lbc->fbar), in_be32(&lbc->fpar),
 | |
| 	     in_be32(&lbc->fbcr), priv->bank);
 | |
| 
 | |
| 	/* execute special operation */
 | |
| 	out_be32(&lbc->lsor, priv->bank);
 | |
| 
 | |
| 	/* wait for FCM complete flag or timeout */
 | |
| 	end_tick = usec2ticks(FCM_TIMEOUT_MSECS * 1000) + get_ticks();
 | |
| 
 | |
| 	ltesr = 0;
 | |
| 	while (end_tick > get_ticks()) {
 | |
| 		ltesr = in_be32(&lbc->ltesr);
 | |
| 		if (ltesr & LTESR_CC)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	ctrl->status = ltesr & LTESR_NAND_MASK;
 | |
| 	out_be32(&lbc->ltesr, ctrl->status);
 | |
| 	out_be32(&lbc->lteatr, 0);
 | |
| 
 | |
| 	/* store mdr value in case it was needed */
 | |
| 	if (ctrl->use_mdr)
 | |
| 		ctrl->mdr = in_be32(&lbc->mdr);
 | |
| 
 | |
| 	ctrl->use_mdr = 0;
 | |
| 
 | |
| 	vdbg("fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
 | |
| 	     ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
 | |
| 
 | |
| 	/* returns 0 on success otherwise non-zero) */
 | |
| 	return ctrl->status == LTESR_CC ? 0 : -EIO;
 | |
| }
 | |
| 
 | |
| static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
 | |
| {
 | |
| 	struct fsl_elbc_mtd *priv = chip->priv;
 | |
| 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 | |
| 	fsl_lbc_t *lbc = ctrl->regs;
 | |
| 
 | |
| 	if (priv->page_size) {
 | |
| 		out_be32(&lbc->fir,
 | |
| 			 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
 | |
| 			 (FIR_OP_CA  << FIR_OP1_SHIFT) |
 | |
| 			 (FIR_OP_PA  << FIR_OP2_SHIFT) |
 | |
| 			 (FIR_OP_CW1 << FIR_OP3_SHIFT) |
 | |
| 			 (FIR_OP_RBW << FIR_OP4_SHIFT));
 | |
| 
 | |
| 		out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
 | |
| 				    (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
 | |
| 	} else {
 | |
| 		out_be32(&lbc->fir,
 | |
| 			 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
 | |
| 			 (FIR_OP_CA  << FIR_OP1_SHIFT) |
 | |
| 			 (FIR_OP_PA  << FIR_OP2_SHIFT) |
 | |
| 			 (FIR_OP_RBW << FIR_OP3_SHIFT));
 | |
| 
 | |
| 		if (oob)
 | |
| 			out_be32(&lbc->fcr,
 | |
| 				 NAND_CMD_READOOB << FCR_CMD0_SHIFT);
 | |
| 		else
 | |
| 			out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* cmdfunc send commands to the FCM */
 | |
| static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
 | |
| 			     int column, int page_addr)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd->priv;
 | |
| 	struct fsl_elbc_mtd *priv = chip->priv;
 | |
| 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 | |
| 	fsl_lbc_t *lbc = ctrl->regs;
 | |
| 
 | |
| 	ctrl->use_mdr = 0;
 | |
| 
 | |
| 	/* clear the read buffer */
 | |
| 	ctrl->read_bytes = 0;
 | |
| 	if (command != NAND_CMD_PAGEPROG)
 | |
| 		ctrl->index = 0;
 | |
| 
 | |
| 	switch (command) {
 | |
| 	/* READ0 and READ1 read the entire buffer to use hardware ECC. */
 | |
| 	case NAND_CMD_READ1:
 | |
| 		column += 256;
 | |
| 
 | |
| 	/* fall-through */
 | |
| 	case NAND_CMD_READ0:
 | |
| 		vdbg("fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
 | |
| 		     " 0x%x, column: 0x%x.\n", page_addr, column);
 | |
| 
 | |
| 		out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
 | |
| 		set_addr(mtd, 0, page_addr, 0);
 | |
| 
 | |
| 		ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 | |
| 		ctrl->index += column;
 | |
| 
 | |
| 		fsl_elbc_do_read(chip, 0);
 | |
| 		fsl_elbc_run_command(mtd);
 | |
| 		return;
 | |
| 
 | |
| 	/* READOOB reads only the OOB because no ECC is performed. */
 | |
| 	case NAND_CMD_READOOB:
 | |
| 		vdbg("fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
 | |
| 		     " 0x%x, column: 0x%x.\n", page_addr, column);
 | |
| 
 | |
| 		out_be32(&lbc->fbcr, mtd->oobsize - column);
 | |
| 		set_addr(mtd, column, page_addr, 1);
 | |
| 
 | |
| 		ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 | |
| 
 | |
| 		fsl_elbc_do_read(chip, 1);
 | |
| 		fsl_elbc_run_command(mtd);
 | |
| 
 | |
| 		return;
 | |
| 
 | |
| 	/* READID must read all 5 possible bytes while CEB is active */
 | |
| 	case NAND_CMD_READID:
 | |
| 		vdbg("fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
 | |
| 
 | |
| 		out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
 | |
| 				    (FIR_OP_UA  << FIR_OP1_SHIFT) |
 | |
| 				    (FIR_OP_RBW << FIR_OP2_SHIFT));
 | |
| 		out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
 | |
| 		/* 5 bytes for manuf, device and exts */
 | |
| 		out_be32(&lbc->fbcr, 5);
 | |
| 		ctrl->read_bytes = 5;
 | |
| 		ctrl->use_mdr = 1;
 | |
| 		ctrl->mdr = 0;
 | |
| 
 | |
| 		set_addr(mtd, 0, 0, 0);
 | |
| 		fsl_elbc_run_command(mtd);
 | |
| 		return;
 | |
| 
 | |
| 	/* ERASE1 stores the block and page address */
 | |
| 	case NAND_CMD_ERASE1:
 | |
| 		vdbg("fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
 | |
| 		     "page_addr: 0x%x.\n", page_addr);
 | |
| 		set_addr(mtd, 0, page_addr, 0);
 | |
| 		return;
 | |
| 
 | |
| 	/* ERASE2 uses the block and page address from ERASE1 */
 | |
| 	case NAND_CMD_ERASE2:
 | |
| 		vdbg("fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
 | |
| 
 | |
| 		out_be32(&lbc->fir,
 | |
| 			 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
 | |
| 			 (FIR_OP_PA  << FIR_OP1_SHIFT) |
 | |
| 			 (FIR_OP_CM1 << FIR_OP2_SHIFT));
 | |
| 
 | |
| 		out_be32(&lbc->fcr,
 | |
| 			 (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
 | |
| 			 (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
 | |
| 
 | |
| 		out_be32(&lbc->fbcr, 0);
 | |
| 		ctrl->read_bytes = 0;
 | |
| 
 | |
| 		fsl_elbc_run_command(mtd);
 | |
| 		return;
 | |
| 
 | |
| 	/* SEQIN sets up the addr buffer and all registers except the length */
 | |
| 	case NAND_CMD_SEQIN: {
 | |
| 		u32 fcr;
 | |
| 		vdbg("fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
 | |
| 		     "page_addr: 0x%x, column: 0x%x.\n",
 | |
| 		     page_addr, column);
 | |
| 
 | |
| 		ctrl->column = column;
 | |
| 		ctrl->oob = 0;
 | |
| 
 | |
| 		if (priv->page_size) {
 | |
| 			fcr = (NAND_CMD_SEQIN << FCR_CMD0_SHIFT) |
 | |
| 			      (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT);
 | |
| 
 | |
| 			out_be32(&lbc->fir,
 | |
| 				 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
 | |
| 				 (FIR_OP_CA  << FIR_OP1_SHIFT) |
 | |
| 				 (FIR_OP_PA  << FIR_OP2_SHIFT) |
 | |
| 				 (FIR_OP_WB  << FIR_OP3_SHIFT) |
 | |
| 				 (FIR_OP_CW1 << FIR_OP4_SHIFT));
 | |
| 		} else {
 | |
| 			fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
 | |
| 			      (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
 | |
| 
 | |
| 			out_be32(&lbc->fir,
 | |
| 				 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
 | |
| 				 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
 | |
| 				 (FIR_OP_CA  << FIR_OP2_SHIFT) |
 | |
| 				 (FIR_OP_PA  << FIR_OP3_SHIFT) |
 | |
| 				 (FIR_OP_WB  << FIR_OP4_SHIFT) |
 | |
| 				 (FIR_OP_CW1 << FIR_OP5_SHIFT));
 | |
| 
 | |
| 			if (column >= mtd->writesize) {
 | |
| 				/* OOB area --> READOOB */
 | |
| 				column -= mtd->writesize;
 | |
| 				fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
 | |
| 				ctrl->oob = 1;
 | |
| 			} else if (column < 256) {
 | |
| 				/* First 256 bytes --> READ0 */
 | |
| 				fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
 | |
| 			} else {
 | |
| 				/* Second 256 bytes --> READ1 */
 | |
| 				fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		out_be32(&lbc->fcr, fcr);
 | |
| 		set_addr(mtd, column, page_addr, ctrl->oob);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
 | |
| 	case NAND_CMD_PAGEPROG: {
 | |
| 		int full_page;
 | |
| 		vdbg("fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
 | |
| 		     "writing %d bytes.\n", ctrl->index);
 | |
| 
 | |
| 		/* if the write did not start at 0 or is not a full page
 | |
| 		 * then set the exact length, otherwise use a full page
 | |
| 		 * write so the HW generates the ECC.
 | |
| 		 */
 | |
| 		if (ctrl->oob || ctrl->column != 0 ||
 | |
| 		    ctrl->index != mtd->writesize + mtd->oobsize) {
 | |
| 			out_be32(&lbc->fbcr, ctrl->index);
 | |
| 			full_page = 0;
 | |
| 		} else {
 | |
| 			out_be32(&lbc->fbcr, 0);
 | |
| 			full_page = 1;
 | |
| 		}
 | |
| 
 | |
| 		fsl_elbc_run_command(mtd);
 | |
| 
 | |
| 		/* Read back the page in order to fill in the ECC for the
 | |
| 		 * caller.  Is this really needed?
 | |
| 		 */
 | |
| 		if (full_page && ctrl->oob_poi) {
 | |
| 			out_be32(&lbc->fbcr, 3);
 | |
| 			set_addr(mtd, 6, page_addr, 1);
 | |
| 
 | |
| 			ctrl->read_bytes = mtd->writesize + 9;
 | |
| 
 | |
| 			fsl_elbc_do_read(chip, 1);
 | |
| 			fsl_elbc_run_command(mtd);
 | |
| 
 | |
| 			memcpy_fromio(ctrl->oob_poi + 6,
 | |
| 				      &ctrl->addr[ctrl->index], 3);
 | |
| 			ctrl->index += 3;
 | |
| 		}
 | |
| 
 | |
| 		ctrl->oob_poi = NULL;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* CMD_STATUS must read the status byte while CEB is active */
 | |
| 	/* Note - it does not wait for the ready line */
 | |
| 	case NAND_CMD_STATUS:
 | |
| 		out_be32(&lbc->fir,
 | |
| 			 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 | |
| 			 (FIR_OP_RBW << FIR_OP1_SHIFT));
 | |
| 		out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
 | |
| 		out_be32(&lbc->fbcr, 1);
 | |
| 		set_addr(mtd, 0, 0, 0);
 | |
| 		ctrl->read_bytes = 1;
 | |
| 
 | |
| 		fsl_elbc_run_command(mtd);
 | |
| 
 | |
| 		/* The chip always seems to report that it is
 | |
| 		 * write-protected, even when it is not.
 | |
| 		 */
 | |
| 		out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP);
 | |
| 		return;
 | |
| 
 | |
| 	/* RESET without waiting for the ready line */
 | |
| 	case NAND_CMD_RESET:
 | |
| 		dbg("fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
 | |
| 		out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
 | |
| 		out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
 | |
| 		fsl_elbc_run_command(mtd);
 | |
| 		return;
 | |
| 
 | |
| 	default:
 | |
| 		printf("fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
 | |
| 			command);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
 | |
| {
 | |
| 	/* The hardware does not seem to support multiple
 | |
| 	 * chips per bank.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write buf to the FCM Controller Data Buffer
 | |
|  */
 | |
| static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd->priv;
 | |
| 	struct fsl_elbc_mtd *priv = chip->priv;
 | |
| 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 | |
| 	unsigned int bufsize = mtd->writesize + mtd->oobsize;
 | |
| 
 | |
| 	if (len <= 0) {
 | |
| 		printf("write_buf of %d bytes", len);
 | |
| 		ctrl->status = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if ((unsigned int)len > bufsize - ctrl->index) {
 | |
| 		printf("write_buf beyond end of buffer "
 | |
| 		       "(%d requested, %u available)\n",
 | |
| 		       len, bufsize - ctrl->index);
 | |
| 		len = bufsize - ctrl->index;
 | |
| 	}
 | |
| 
 | |
| 	memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
 | |
| 	/*
 | |
| 	 * This is workaround for the weird elbc hangs during nand write,
 | |
| 	 * Scott Wood says: "...perhaps difference in how long it takes a
 | |
| 	 * write to make it through the localbus compared to a write to IMMR
 | |
| 	 * is causing problems, and sync isn't helping for some reason."
 | |
| 	 * Reading back the last byte helps though.
 | |
| 	 */
 | |
| 	in_8(&ctrl->addr[ctrl->index] + len - 1);
 | |
| 
 | |
| 	ctrl->index += len;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * read a byte from either the FCM hardware buffer if it has any data left
 | |
|  * otherwise issue a command to read a single byte.
 | |
|  */
 | |
| static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd->priv;
 | |
| 	struct fsl_elbc_mtd *priv = chip->priv;
 | |
| 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 | |
| 
 | |
| 	/* If there are still bytes in the FCM, then use the next byte. */
 | |
| 	if (ctrl->index < ctrl->read_bytes)
 | |
| 		return in_8(&ctrl->addr[ctrl->index++]);
 | |
| 
 | |
| 	printf("read_byte beyond end of buffer\n");
 | |
| 	return ERR_BYTE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read from the FCM Controller Data Buffer
 | |
|  */
 | |
| static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd->priv;
 | |
| 	struct fsl_elbc_mtd *priv = chip->priv;
 | |
| 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 | |
| 	int avail;
 | |
| 
 | |
| 	if (len < 0)
 | |
| 		return;
 | |
| 
 | |
| 	avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
 | |
| 	memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
 | |
| 	ctrl->index += avail;
 | |
| 
 | |
| 	if (len > avail)
 | |
| 		printf("read_buf beyond end of buffer "
 | |
| 		       "(%d requested, %d available)\n",
 | |
| 		       len, avail);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Verify buffer against the FCM Controller Data Buffer
 | |
|  */
 | |
| static int fsl_elbc_verify_buf(struct mtd_info *mtd,
 | |
| 			       const u_char *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd->priv;
 | |
| 	struct fsl_elbc_mtd *priv = chip->priv;
 | |
| 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 | |
| 	int i;
 | |
| 
 | |
| 	if (len < 0) {
 | |
| 		printf("write_buf of %d bytes", len);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
 | |
| 		printf("verify_buf beyond end of buffer "
 | |
| 		       "(%d requested, %u available)\n",
 | |
| 		       len, ctrl->read_bytes - ctrl->index);
 | |
| 
 | |
| 		ctrl->index = ctrl->read_bytes;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < len; i++)
 | |
| 		if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
 | |
| 			break;
 | |
| 
 | |
| 	ctrl->index += len;
 | |
| 	return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
 | |
| }
 | |
| 
 | |
| /* This function is called after Program and Erase Operations to
 | |
|  * check for success or failure.
 | |
|  */
 | |
| static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
 | |
| {
 | |
| 	struct fsl_elbc_mtd *priv = chip->priv;
 | |
| 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 | |
| 	fsl_lbc_t *lbc = ctrl->regs;
 | |
| 
 | |
| 	if (ctrl->status != LTESR_CC)
 | |
| 		return NAND_STATUS_FAIL;
 | |
| 
 | |
| 	/* Use READ_STATUS command, but wait for the device to be ready */
 | |
| 	ctrl->use_mdr = 0;
 | |
| 	out_be32(&lbc->fir,
 | |
| 		 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
 | |
| 		 (FIR_OP_RBW << FIR_OP1_SHIFT));
 | |
| 	out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
 | |
| 	out_be32(&lbc->fbcr, 1);
 | |
| 	set_addr(mtd, 0, 0, 0);
 | |
| 	ctrl->read_bytes = 1;
 | |
| 
 | |
| 	fsl_elbc_run_command(mtd);
 | |
| 
 | |
| 	if (ctrl->status != LTESR_CC)
 | |
| 		return NAND_STATUS_FAIL;
 | |
| 
 | |
| 	/* The chip always seems to report that it is
 | |
| 	 * write-protected, even when it is not.
 | |
| 	 */
 | |
| 	out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP);
 | |
| 	return fsl_elbc_read_byte(mtd);
 | |
| }
 | |
| 
 | |
| static int fsl_elbc_read_page(struct mtd_info *mtd,
 | |
| 			      struct nand_chip *chip,
 | |
| 			      uint8_t *buf, int page)
 | |
| {
 | |
| 	fsl_elbc_read_buf(mtd, buf, mtd->writesize);
 | |
| 	fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
 | |
| 
 | |
| 	if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
 | |
| 		mtd->ecc_stats.failed++;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* ECC will be calculated automatically, and errors will be detected in
 | |
|  * waitfunc.
 | |
|  */
 | |
| static void fsl_elbc_write_page(struct mtd_info *mtd,
 | |
| 				struct nand_chip *chip,
 | |
| 				const uint8_t *buf)
 | |
| {
 | |
| 	struct fsl_elbc_mtd *priv = chip->priv;
 | |
| 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 | |
| 
 | |
| 	fsl_elbc_write_buf(mtd, buf, mtd->writesize);
 | |
| 	fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
 | |
| 
 | |
| 	ctrl->oob_poi = chip->oob_poi;
 | |
| }
 | |
| 
 | |
| static struct fsl_elbc_ctrl *elbc_ctrl;
 | |
| 
 | |
| static void fsl_elbc_ctrl_init(void)
 | |
| {
 | |
| 	elbc_ctrl = kzalloc(sizeof(*elbc_ctrl), GFP_KERNEL);
 | |
| 	if (!elbc_ctrl)
 | |
| 		return;
 | |
| 
 | |
| 	elbc_ctrl->regs = LBC_BASE_ADDR;
 | |
| 
 | |
| 	/* clear event registers */
 | |
| 	out_be32(&elbc_ctrl->regs->ltesr, LTESR_NAND_MASK);
 | |
| 	out_be32(&elbc_ctrl->regs->lteatr, 0);
 | |
| 
 | |
| 	/* Enable interrupts for any detected events */
 | |
| 	out_be32(&elbc_ctrl->regs->lteir, LTESR_NAND_MASK);
 | |
| 
 | |
| 	elbc_ctrl->read_bytes = 0;
 | |
| 	elbc_ctrl->index = 0;
 | |
| 	elbc_ctrl->addr = NULL;
 | |
| }
 | |
| 
 | |
| int board_nand_init(struct nand_chip *nand)
 | |
| {
 | |
| 	struct fsl_elbc_mtd *priv;
 | |
| 	uint32_t br = 0, or = 0;
 | |
| 
 | |
| 	if (!elbc_ctrl) {
 | |
| 		fsl_elbc_ctrl_init();
 | |
| 		if (!elbc_ctrl)
 | |
| 			return -1;
 | |
| 	}
 | |
| 
 | |
| 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
 | |
| 	if (!priv)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	priv->ctrl = elbc_ctrl;
 | |
| 	priv->vbase = nand->IO_ADDR_R;
 | |
| 
 | |
| 	/* Find which chip select it is connected to.  It'd be nice
 | |
| 	 * if we could pass more than one datum to the NAND driver...
 | |
| 	 */
 | |
| 	for (priv->bank = 0; priv->bank < MAX_BANKS; priv->bank++) {
 | |
| 		phys_addr_t base_addr = virt_to_phys(nand->IO_ADDR_R);
 | |
| 
 | |
| 		br = in_be32(&elbc_ctrl->regs->bank[priv->bank].br);
 | |
| 		or = in_be32(&elbc_ctrl->regs->bank[priv->bank].or);
 | |
| 
 | |
| 		if ((br & BR_V) && (br & BR_MSEL) == BR_MS_FCM &&
 | |
| 		    (br & or & BR_BA) == BR_PHYS_ADDR(base_addr))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (priv->bank >= MAX_BANKS) {
 | |
| 		printf("fsl_elbc_nand: address did not match any "
 | |
| 		       "chip selects\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	elbc_ctrl->chips[priv->bank] = priv;
 | |
| 
 | |
| 	/* fill in nand_chip structure */
 | |
| 	/* set up function call table */
 | |
| 	nand->read_byte = fsl_elbc_read_byte;
 | |
| 	nand->write_buf = fsl_elbc_write_buf;
 | |
| 	nand->read_buf = fsl_elbc_read_buf;
 | |
| 	nand->verify_buf = fsl_elbc_verify_buf;
 | |
| 	nand->select_chip = fsl_elbc_select_chip;
 | |
| 	nand->cmdfunc = fsl_elbc_cmdfunc;
 | |
| 	nand->waitfunc = fsl_elbc_wait;
 | |
| 
 | |
| 	/* set up nand options */
 | |
| 	nand->bbt_td = &bbt_main_descr;
 | |
| 	nand->bbt_md = &bbt_mirror_descr;
 | |
| 
 | |
|   	/* set up nand options */
 | |
| 	nand->options = NAND_NO_READRDY | NAND_NO_AUTOINCR |
 | |
| 			NAND_USE_FLASH_BBT;
 | |
| 
 | |
| 	nand->controller = &elbc_ctrl->controller;
 | |
| 	nand->priv = priv;
 | |
| 
 | |
| 	nand->ecc.read_page = fsl_elbc_read_page;
 | |
| 	nand->ecc.write_page = fsl_elbc_write_page;
 | |
| 
 | |
| #ifdef CONFIG_FSL_ELBC_FMR
 | |
| 	priv->fmr = CONFIG_FSL_ELBC_FMR;
 | |
| #else
 | |
| 	priv->fmr = (15 << FMR_CWTO_SHIFT) | (2 << FMR_AL_SHIFT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Hardware expects small page has ECCM0, large page has ECCM1
 | |
| 	 * when booting from NAND.  Board config can override if not
 | |
| 	 * booting from NAND.
 | |
| 	 */
 | |
| 	if (or & OR_FCM_PGS)
 | |
| 		priv->fmr |= FMR_ECCM;
 | |
| #endif
 | |
| 
 | |
| 	/* If CS Base Register selects full hardware ECC then use it */
 | |
| 	if ((br & BR_DECC) == BR_DECC_CHK_GEN) {
 | |
| 		nand->ecc.mode = NAND_ECC_HW;
 | |
| 
 | |
| 		nand->ecc.layout = (priv->fmr & FMR_ECCM) ?
 | |
| 				   &fsl_elbc_oob_sp_eccm1 :
 | |
| 				   &fsl_elbc_oob_sp_eccm0;
 | |
| 
 | |
| 		nand->ecc.size = 512;
 | |
| 		nand->ecc.bytes = 3;
 | |
| 		nand->ecc.steps = 1;
 | |
| 	} else {
 | |
| 		/* otherwise fall back to default software ECC */
 | |
| 		nand->ecc.mode = NAND_ECC_SOFT;
 | |
| 	}
 | |
| 
 | |
| 	/* Large-page-specific setup */
 | |
| 	if (or & OR_FCM_PGS) {
 | |
| 		priv->page_size = 1;
 | |
| 		nand->badblock_pattern = &largepage_memorybased;
 | |
| 
 | |
| 		/* adjust ecc setup if needed */
 | |
| 		if ((br & BR_DECC) == BR_DECC_CHK_GEN) {
 | |
| 			nand->ecc.steps = 4;
 | |
| 			nand->ecc.layout = (priv->fmr & FMR_ECCM) ?
 | |
| 					   &fsl_elbc_oob_lp_eccm1 :
 | |
| 					   &fsl_elbc_oob_lp_eccm0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 |