834 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			834 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (c) 2010-2015, NVIDIA CORPORATION.  All rights reserved.
 | |
|  */
 | |
| 
 | |
| /* Tegra SoC common clock control functions */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <div64.h>
 | |
| #include <dm.h>
 | |
| #include <errno.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/arch/clock.h>
 | |
| #include <asm/arch/tegra.h>
 | |
| #include <asm/arch-tegra/ap.h>
 | |
| #include <asm/arch-tegra/clk_rst.h>
 | |
| #include <asm/arch-tegra/pmc.h>
 | |
| #include <asm/arch-tegra/timer.h>
 | |
| 
 | |
| /*
 | |
|  * This is our record of the current clock rate of each clock. We don't
 | |
|  * fill all of these in since we are only really interested in clocks which
 | |
|  * we use as parents.
 | |
|  */
 | |
| static unsigned pll_rate[CLOCK_ID_COUNT];
 | |
| 
 | |
| /*
 | |
|  * The oscillator frequency is fixed to one of four set values. Based on this
 | |
|  * the other clocks are set up appropriately.
 | |
|  */
 | |
| static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
 | |
| 	13000000,
 | |
| 	19200000,
 | |
| 	12000000,
 | |
| 	26000000,
 | |
| 	38400000,
 | |
| 	48000000,
 | |
| };
 | |
| 
 | |
| /* return 1 if a peripheral ID is in range */
 | |
| #define clock_type_id_isvalid(id) ((id) >= 0 && \
 | |
| 		(id) < CLOCK_TYPE_COUNT)
 | |
| 
 | |
| char pllp_valid = 1;	/* PLLP is set up correctly */
 | |
| 
 | |
| /* return 1 if a periphc_internal_id is in range */
 | |
| #define periphc_internal_id_isvalid(id) ((id) >= 0 && \
 | |
| 		(id) < PERIPHC_COUNT)
 | |
| 
 | |
| /* number of clock outputs of a PLL */
 | |
| static const u8 pll_num_clkouts[] = {
 | |
| 	1,	/* PLLC */
 | |
| 	1,	/* PLLM */
 | |
| 	4,	/* PLLP */
 | |
| 	1,	/* PLLA */
 | |
| 	0,	/* PLLU */
 | |
| 	0,	/* PLLD */
 | |
| };
 | |
| 
 | |
| int clock_get_osc_bypass(void)
 | |
| {
 | |
| 	struct clk_rst_ctlr *clkrst =
 | |
| 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	reg = readl(&clkrst->crc_osc_ctrl);
 | |
| 	return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
 | |
| }
 | |
| 
 | |
| /* Returns a pointer to the registers of the given pll */
 | |
| static struct clk_pll *get_pll(enum clock_id clkid)
 | |
| {
 | |
| 	struct clk_rst_ctlr *clkrst =
 | |
| 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 | |
| 
 | |
| 	assert(clock_id_is_pll(clkid));
 | |
| 	if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) {
 | |
| 		debug("%s: Invalid PLL %d\n", __func__, clkid);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return &clkrst->crc_pll[clkid];
 | |
| }
 | |
| 
 | |
| __weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
 | |
| 		u32 *divp, u32 *cpcon, u32 *lfcon)
 | |
| {
 | |
| 	struct clk_pll *pll = get_pll(clkid);
 | |
| 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
 | |
| 	u32 data;
 | |
| 
 | |
| 	assert(clkid != CLOCK_ID_USB);
 | |
| 
 | |
| 	/* Safety check, adds to code size but is small */
 | |
| 	if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
 | |
| 		return -1;
 | |
| 	data = readl(&pll->pll_base);
 | |
| 	*divm = (data >> pllinfo->m_shift) & pllinfo->m_mask;
 | |
| 	*divn = (data >> pllinfo->n_shift) & pllinfo->n_mask;
 | |
| 	*divp = (data >> pllinfo->p_shift) & pllinfo->p_mask;
 | |
| 	data = readl(&pll->pll_misc);
 | |
| 	/* NOTE: On T210, cpcon/lfcon no longer exist, moved to KCP/KVCO */
 | |
| 	*cpcon = (data >> pllinfo->kcp_shift) & pllinfo->kcp_mask;
 | |
| 	*lfcon = (data >> pllinfo->kvco_shift) & pllinfo->kvco_mask;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
 | |
| 		u32 divp, u32 cpcon, u32 lfcon)
 | |
| {
 | |
| 	struct clk_pll *pll = NULL;
 | |
| 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
 | |
| 	struct clk_pll_simple *simple_pll = NULL;
 | |
| 	u32 misc_data, data;
 | |
| 
 | |
| 	if (clkid < (enum clock_id)TEGRA_CLK_PLLS) {
 | |
| 		pll = get_pll(clkid);
 | |
| 	} else {
 | |
| 		simple_pll = clock_get_simple_pll(clkid);
 | |
| 		if (!simple_pll) {
 | |
| 			debug("%s: Uknown simple PLL %d\n", __func__, clkid);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * pllinfo has the m/n/p and kcp/kvco mask and shift
 | |
| 	 * values for all of the PLLs used in U-Boot, with any
 | |
| 	 * SoC differences accounted for.
 | |
| 	 *
 | |
| 	 * Preserve EN_LOCKDET, etc.
 | |
| 	 */
 | |
| 	if (pll)
 | |
| 		misc_data = readl(&pll->pll_misc);
 | |
| 	else
 | |
| 		misc_data = readl(&simple_pll->pll_misc);
 | |
| 	misc_data &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
 | |
| 	misc_data |= cpcon << pllinfo->kcp_shift;
 | |
| 	misc_data &= ~(pllinfo->kvco_mask << pllinfo->kvco_shift);
 | |
| 	misc_data |= lfcon << pllinfo->kvco_shift;
 | |
| 
 | |
| 	data = (divm << pllinfo->m_shift) | (divn << pllinfo->n_shift);
 | |
| 	data |= divp << pllinfo->p_shift;
 | |
| 	data |= (1 << PLL_ENABLE_SHIFT);	/* BYPASS s/b 0 already */
 | |
| 
 | |
| 	if (pll) {
 | |
| 		writel(misc_data, &pll->pll_misc);
 | |
| 		writel(data, &pll->pll_base);
 | |
| 	} else {
 | |
| 		writel(misc_data, &simple_pll->pll_misc);
 | |
| 		writel(data, &simple_pll->pll_base);
 | |
| 	}
 | |
| 
 | |
| 	/* calculate the stable time */
 | |
| 	return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
 | |
| }
 | |
| 
 | |
| void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
 | |
| 			unsigned divisor)
 | |
| {
 | |
| 	u32 *reg = get_periph_source_reg(periph_id);
 | |
| 	u32 value;
 | |
| 
 | |
| 	value = readl(reg);
 | |
| 
 | |
| 	value &= ~OUT_CLK_SOURCE_31_30_MASK;
 | |
| 	value |= source << OUT_CLK_SOURCE_31_30_SHIFT;
 | |
| 
 | |
| 	value &= ~OUT_CLK_DIVISOR_MASK;
 | |
| 	value |= divisor << OUT_CLK_DIVISOR_SHIFT;
 | |
| 
 | |
| 	writel(value, reg);
 | |
| }
 | |
| 
 | |
| int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits,
 | |
| 			     unsigned source)
 | |
| {
 | |
| 	u32 *reg = get_periph_source_reg(periph_id);
 | |
| 
 | |
| 	switch (mux_bits) {
 | |
| 	case MASK_BITS_31_30:
 | |
| 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
 | |
| 				source << OUT_CLK_SOURCE_31_30_SHIFT);
 | |
| 		break;
 | |
| 
 | |
| 	case MASK_BITS_31_29:
 | |
| 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
 | |
| 				source << OUT_CLK_SOURCE_31_29_SHIFT);
 | |
| 		break;
 | |
| 
 | |
| 	case MASK_BITS_31_28:
 | |
| 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
 | |
| 				source << OUT_CLK_SOURCE_31_28_SHIFT);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int clock_ll_get_source_bits(enum periph_id periph_id, int mux_bits)
 | |
| {
 | |
| 	u32 *reg = get_periph_source_reg(periph_id);
 | |
| 	u32 val = readl(reg);
 | |
| 
 | |
| 	switch (mux_bits) {
 | |
| 	case MASK_BITS_31_30:
 | |
| 		val >>= OUT_CLK_SOURCE_31_30_SHIFT;
 | |
| 		val &= OUT_CLK_SOURCE_31_30_MASK;
 | |
| 		return val;
 | |
| 	case MASK_BITS_31_29:
 | |
| 		val >>= OUT_CLK_SOURCE_31_29_SHIFT;
 | |
| 		val &= OUT_CLK_SOURCE_31_29_MASK;
 | |
| 		return val;
 | |
| 	case MASK_BITS_31_28:
 | |
| 		val >>= OUT_CLK_SOURCE_31_28_SHIFT;
 | |
| 		val &= OUT_CLK_SOURCE_31_28_MASK;
 | |
| 		return val;
 | |
| 	default:
 | |
| 		return -1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void clock_ll_set_source(enum periph_id periph_id, unsigned source)
 | |
| {
 | |
| 	clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Given the parent's rate and the required rate for the children, this works
 | |
|  * out the peripheral clock divider to use, in 7.1 binary format.
 | |
|  *
 | |
|  * @param divider_bits	number of divider bits (8 or 16)
 | |
|  * @param parent_rate	clock rate of parent clock in Hz
 | |
|  * @param rate		required clock rate for this clock
 | |
|  * @return divider which should be used
 | |
|  */
 | |
| static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
 | |
| 			   unsigned long rate)
 | |
| {
 | |
| 	u64 divider = parent_rate * 2;
 | |
| 	unsigned max_divider = 1 << divider_bits;
 | |
| 
 | |
| 	divider += rate - 1;
 | |
| 	do_div(divider, rate);
 | |
| 
 | |
| 	if ((s64)divider - 2 < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((s64)divider - 2 >= max_divider)
 | |
| 		return -1;
 | |
| 
 | |
| 	return divider - 2;
 | |
| }
 | |
| 
 | |
| int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
 | |
| {
 | |
| 	struct clk_pll *pll = get_pll(clkid);
 | |
| 	int data = 0, div = 0, offset = 0;
 | |
| 
 | |
| 	if (!clock_id_is_pll(clkid))
 | |
| 		return -1;
 | |
| 
 | |
| 	if (pllout + 1 > pll_num_clkouts[clkid])
 | |
| 		return -1;
 | |
| 
 | |
| 	div = clk_get_divider(8, pll_rate[clkid], rate);
 | |
| 
 | |
| 	if (div < 0)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* out2 and out4 are in the high part of the register */
 | |
| 	if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
 | |
| 		offset = 16;
 | |
| 
 | |
| 	data = (div << PLL_OUT_RATIO_SHIFT) |
 | |
| 			PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
 | |
| 	clrsetbits_le32(&pll->pll_out[pllout >> 1],
 | |
| 			PLL_OUT_RATIO_MASK << offset, data << offset);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Given the parent's rate and the divider in 7.1 format, this works out the
 | |
|  * resulting peripheral clock rate.
 | |
|  *
 | |
|  * @param parent_rate	clock rate of parent clock in Hz
 | |
|  * @param divider which should be used in 7.1 format
 | |
|  * @return effective clock rate of peripheral
 | |
|  */
 | |
| static unsigned long get_rate_from_divider(unsigned long parent_rate,
 | |
| 					   int divider)
 | |
| {
 | |
| 	u64 rate;
 | |
| 
 | |
| 	rate = (u64)parent_rate * 2;
 | |
| 	do_div(rate, divider + 2);
 | |
| 	return rate;
 | |
| }
 | |
| 
 | |
| unsigned long clock_get_periph_rate(enum periph_id periph_id,
 | |
| 		enum clock_id parent)
 | |
| {
 | |
| 	u32 *reg = get_periph_source_reg(periph_id);
 | |
| 	unsigned parent_rate = pll_rate[parent];
 | |
| 	int div = (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT;
 | |
| 
 | |
| 	switch (periph_id) {
 | |
| 	case PERIPH_ID_UART1:
 | |
| 	case PERIPH_ID_UART2:
 | |
| 	case PERIPH_ID_UART3:
 | |
| 	case PERIPH_ID_UART4:
 | |
| 	case PERIPH_ID_UART5:
 | |
| #ifdef CONFIG_TEGRA20
 | |
| 		/* There's no divider for these clocks in this SoC. */
 | |
| 		return parent_rate;
 | |
| #else
 | |
| 		/*
 | |
| 		 * This undoes the +2 in get_rate_from_divider() which I
 | |
| 		 * believe is incorrect. Ideally we would fix
 | |
| 		 * get_rate_from_divider(), but... Removing the +2 from
 | |
| 		 * get_rate_from_divider() would probably require remove the -2
 | |
| 		 * from the tail of clk_get_divider() since I believe that's
 | |
| 		 * only there to invert get_rate_from_divider()'s +2. Observe
 | |
| 		 * how find_best_divider() uses those two functions together.
 | |
| 		 * However, doing so breaks other stuff, such as Seaboard's
 | |
| 		 * display, likely due to clock_set_pllout()'s call to
 | |
| 		 * clk_get_divider(). Attempting to fix that by making
 | |
| 		 * clock_set_pllout() subtract 2 from clk_get_divider()'s
 | |
| 		 * return value doesn't help. In summary this clock driver is
 | |
| 		 * quite broken but I'm afraid I have no idea how to fix it
 | |
| 		 * without completely replacing it.
 | |
| 		 *
 | |
| 		 * Be careful to avoid a divide by zero error.
 | |
| 		 */
 | |
| 		if (div >= 1)
 | |
| 			div -= 2;
 | |
| 		break;
 | |
| #endif
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return get_rate_from_divider(parent_rate, div);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Find the best available 7.1 format divisor given a parent clock rate and
 | |
|  * required child clock rate. This function assumes that a second-stage
 | |
|  * divisor is available which can divide by powers of 2 from 1 to 256.
 | |
|  *
 | |
|  * @param divider_bits	number of divider bits (8 or 16)
 | |
|  * @param parent_rate	clock rate of parent clock in Hz
 | |
|  * @param rate		required clock rate for this clock
 | |
|  * @param extra_div	value for the second-stage divisor (not set if this
 | |
|  *			function returns -1.
 | |
|  * @return divider which should be used, or -1 if nothing is valid
 | |
|  *
 | |
|  */
 | |
| static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
 | |
| 				unsigned long rate, int *extra_div)
 | |
| {
 | |
| 	int shift;
 | |
| 	int best_divider = -1;
 | |
| 	int best_error = rate;
 | |
| 
 | |
| 	/* try dividers from 1 to 256 and find closest match */
 | |
| 	for (shift = 0; shift <= 8 && best_error > 0; shift++) {
 | |
| 		unsigned divided_parent = parent_rate >> shift;
 | |
| 		int divider = clk_get_divider(divider_bits, divided_parent,
 | |
| 						rate);
 | |
| 		unsigned effective_rate = get_rate_from_divider(divided_parent,
 | |
| 						divider);
 | |
| 		int error = rate - effective_rate;
 | |
| 
 | |
| 		/* Given a valid divider, look for the lowest error */
 | |
| 		if (divider != -1 && error < best_error) {
 | |
| 			best_error = error;
 | |
| 			*extra_div = 1 << shift;
 | |
| 			best_divider = divider;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* return what we found - *extra_div will already be set */
 | |
| 	return best_divider;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Adjust peripheral PLL to use the given divider and source.
 | |
|  *
 | |
|  * @param periph_id	peripheral to adjust
 | |
|  * @param source	Source number (0-3 or 0-7)
 | |
|  * @param mux_bits	Number of mux bits (2 or 4)
 | |
|  * @param divider	Required divider in 7.1 or 15.1 format
 | |
|  * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
 | |
|  *		for this peripheral)
 | |
|  */
 | |
| static int adjust_periph_pll(enum periph_id periph_id, int source,
 | |
| 				int mux_bits, unsigned divider)
 | |
| {
 | |
| 	u32 *reg = get_periph_source_reg(periph_id);
 | |
| 
 | |
| 	clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
 | |
| 			divider << OUT_CLK_DIVISOR_SHIFT);
 | |
| 	udelay(1);
 | |
| 
 | |
| 	/* work out the source clock and set it */
 | |
| 	if (source < 0)
 | |
| 		return -1;
 | |
| 
 | |
| 	clock_ll_set_source_bits(periph_id, mux_bits, source);
 | |
| 
 | |
| 	udelay(2);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| enum clock_id clock_get_periph_parent(enum periph_id periph_id)
 | |
| {
 | |
| 	int err, mux_bits, divider_bits, type;
 | |
| 	int source;
 | |
| 
 | |
| 	err = get_periph_clock_info(periph_id, &mux_bits, ÷r_bits, &type);
 | |
| 	if (err)
 | |
| 		return CLOCK_ID_NONE;
 | |
| 
 | |
| 	source = clock_ll_get_source_bits(periph_id, mux_bits);
 | |
| 
 | |
| 	return get_periph_clock_id(periph_id, source);
 | |
| }
 | |
| 
 | |
| unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
 | |
| 		enum clock_id parent, unsigned rate, int *extra_div)
 | |
| {
 | |
| 	unsigned effective_rate;
 | |
| 	int mux_bits, divider_bits, source;
 | |
| 	int divider;
 | |
| 	int xdiv = 0;
 | |
| 
 | |
| 	/* work out the source clock and set it */
 | |
| 	source = get_periph_clock_source(periph_id, parent, &mux_bits,
 | |
| 					 ÷r_bits);
 | |
| 
 | |
| 	divider = find_best_divider(divider_bits, pll_rate[parent],
 | |
| 				    rate, &xdiv);
 | |
| 	if (extra_div)
 | |
| 		*extra_div = xdiv;
 | |
| 
 | |
| 	assert(divider >= 0);
 | |
| 	if (adjust_periph_pll(periph_id, source, mux_bits, divider))
 | |
| 		return -1U;
 | |
| 	debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
 | |
| 		get_periph_source_reg(periph_id),
 | |
| 		readl(get_periph_source_reg(periph_id)));
 | |
| 
 | |
| 	/* Check what we ended up with. This shouldn't matter though */
 | |
| 	effective_rate = clock_get_periph_rate(periph_id, parent);
 | |
| 	if (extra_div)
 | |
| 		effective_rate /= *extra_div;
 | |
| 	if (rate != effective_rate)
 | |
| 		debug("Requested clock rate %u not honored (got %u)\n",
 | |
| 			rate, effective_rate);
 | |
| 	return effective_rate;
 | |
| }
 | |
| 
 | |
| unsigned clock_start_periph_pll(enum periph_id periph_id,
 | |
| 		enum clock_id parent, unsigned rate)
 | |
| {
 | |
| 	unsigned effective_rate;
 | |
| 
 | |
| 	reset_set_enable(periph_id, 1);
 | |
| 	clock_enable(periph_id);
 | |
| 
 | |
| 	effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
 | |
| 						 NULL);
 | |
| 
 | |
| 	reset_set_enable(periph_id, 0);
 | |
| 	return effective_rate;
 | |
| }
 | |
| 
 | |
| void clock_enable(enum periph_id clkid)
 | |
| {
 | |
| 	clock_set_enable(clkid, 1);
 | |
| }
 | |
| 
 | |
| void clock_disable(enum periph_id clkid)
 | |
| {
 | |
| 	clock_set_enable(clkid, 0);
 | |
| }
 | |
| 
 | |
| void reset_periph(enum periph_id periph_id, int us_delay)
 | |
| {
 | |
| 	/* Put peripheral into reset */
 | |
| 	reset_set_enable(periph_id, 1);
 | |
| 	udelay(us_delay);
 | |
| 
 | |
| 	/* Remove reset */
 | |
| 	reset_set_enable(periph_id, 0);
 | |
| 
 | |
| 	udelay(us_delay);
 | |
| }
 | |
| 
 | |
| void reset_cmplx_set_enable(int cpu, int which, int reset)
 | |
| {
 | |
| 	struct clk_rst_ctlr *clkrst =
 | |
| 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 | |
| 	u32 mask;
 | |
| 
 | |
| 	/* Form the mask, which depends on the cpu chosen (2 or 4) */
 | |
| 	assert(cpu >= 0 && cpu < MAX_NUM_CPU);
 | |
| 	mask = which << cpu;
 | |
| 
 | |
| 	/* either enable or disable those reset for that CPU */
 | |
| 	if (reset)
 | |
| 		writel(mask, &clkrst->crc_cpu_cmplx_set);
 | |
| 	else
 | |
| 		writel(mask, &clkrst->crc_cpu_cmplx_clr);
 | |
| }
 | |
| 
 | |
| unsigned int __weak clk_m_get_rate(unsigned int parent_rate)
 | |
| {
 | |
| 	return parent_rate;
 | |
| }
 | |
| 
 | |
| unsigned clock_get_rate(enum clock_id clkid)
 | |
| {
 | |
| 	struct clk_pll *pll;
 | |
| 	u32 base, divm;
 | |
| 	u64 parent_rate, rate;
 | |
| 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
 | |
| 
 | |
| 	parent_rate = osc_freq[clock_get_osc_freq()];
 | |
| 	if (clkid == CLOCK_ID_OSC)
 | |
| 		return parent_rate;
 | |
| 
 | |
| 	if (clkid == CLOCK_ID_CLK_M)
 | |
| 		return clk_m_get_rate(parent_rate);
 | |
| 
 | |
| 	pll = get_pll(clkid);
 | |
| 	if (!pll)
 | |
| 		return 0;
 | |
| 	base = readl(&pll->pll_base);
 | |
| 
 | |
| 	rate = parent_rate * ((base >> pllinfo->n_shift) & pllinfo->n_mask);
 | |
| 	divm = (base >> pllinfo->m_shift) & pllinfo->m_mask;
 | |
| 	/*
 | |
| 	 * PLLU uses p_mask/p_shift for VCO on all but T210,
 | |
| 	 * T210 uses normal DIVP. Handled in pllinfo table.
 | |
| 	 */
 | |
| #ifdef CONFIG_TEGRA210
 | |
| 	/*
 | |
| 	 * PLLP's primary output (pllP_out0) on T210 is the VCO, and divp is
 | |
| 	 * not applied. pllP_out2 does have divp applied. All other pllP_outN
 | |
| 	 * are divided down from pllP_out0. We only support pllP_out0 in
 | |
| 	 * U-Boot at the time of writing this comment.
 | |
| 	 */
 | |
| 	if (clkid != CLOCK_ID_PERIPH)
 | |
| #endif
 | |
| 		divm <<= (base >> pllinfo->p_shift) & pllinfo->p_mask;
 | |
| 	do_div(rate, divm);
 | |
| 	return rate;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Set the output frequency you want for each PLL clock.
 | |
|  * PLL output frequencies are programmed by setting their N, M and P values.
 | |
|  * The governing equations are:
 | |
|  *     VCO = (Fi / m) * n, Fo = VCO / (2^p)
 | |
|  *     where Fo is the output frequency from the PLL.
 | |
|  * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
 | |
|  *     216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
 | |
|  * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
 | |
|  *
 | |
|  * @param n PLL feedback divider(DIVN)
 | |
|  * @param m PLL input divider(DIVN)
 | |
|  * @param p post divider(DIVP)
 | |
|  * @param cpcon base PLL charge pump(CPCON)
 | |
|  * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
 | |
|  *		be overridden), 1 if PLL is already correct
 | |
|  */
 | |
| int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
 | |
| {
 | |
| 	u32 base_reg, misc_reg;
 | |
| 	struct clk_pll *pll;
 | |
| 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
 | |
| 
 | |
| 	pll = get_pll(clkid);
 | |
| 
 | |
| 	base_reg = readl(&pll->pll_base);
 | |
| 
 | |
| 	/* Set BYPASS, m, n and p to PLL_BASE */
 | |
| 	base_reg &= ~(pllinfo->m_mask << pllinfo->m_shift);
 | |
| 	base_reg |= m << pllinfo->m_shift;
 | |
| 
 | |
| 	base_reg &= ~(pllinfo->n_mask << pllinfo->n_shift);
 | |
| 	base_reg |= n << pllinfo->n_shift;
 | |
| 
 | |
| 	base_reg &= ~(pllinfo->p_mask << pllinfo->p_shift);
 | |
| 	base_reg |= p << pllinfo->p_shift;
 | |
| 
 | |
| 	if (clkid == CLOCK_ID_PERIPH) {
 | |
| 		/*
 | |
| 		 * If the PLL is already set up, check that it is correct
 | |
| 		 * and record this info for clock_verify() to check.
 | |
| 		 */
 | |
| 		if (base_reg & PLL_BASE_OVRRIDE_MASK) {
 | |
| 			base_reg |= PLL_ENABLE_MASK;
 | |
| 			if (base_reg != readl(&pll->pll_base))
 | |
| 				pllp_valid = 0;
 | |
| 			return pllp_valid ? 1 : -1;
 | |
| 		}
 | |
| 		base_reg |= PLL_BASE_OVRRIDE_MASK;
 | |
| 	}
 | |
| 
 | |
| 	base_reg |= PLL_BYPASS_MASK;
 | |
| 	writel(base_reg, &pll->pll_base);
 | |
| 
 | |
| 	/* Set cpcon (KCP) to PLL_MISC */
 | |
| 	misc_reg = readl(&pll->pll_misc);
 | |
| 	misc_reg &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
 | |
| 	misc_reg |= cpcon << pllinfo->kcp_shift;
 | |
| 	writel(misc_reg, &pll->pll_misc);
 | |
| 
 | |
| 	/* Enable PLL */
 | |
| 	base_reg |= PLL_ENABLE_MASK;
 | |
| 	writel(base_reg, &pll->pll_base);
 | |
| 
 | |
| 	/* Disable BYPASS */
 | |
| 	base_reg &= ~PLL_BYPASS_MASK;
 | |
| 	writel(base_reg, &pll->pll_base);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void clock_ll_start_uart(enum periph_id periph_id)
 | |
| {
 | |
| 	/* Assert UART reset and enable clock */
 | |
| 	reset_set_enable(periph_id, 1);
 | |
| 	clock_enable(periph_id);
 | |
| 	clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
 | |
| 
 | |
| 	/* wait for 2us */
 | |
| 	udelay(2);
 | |
| 
 | |
| 	/* De-assert reset to UART */
 | |
| 	reset_set_enable(periph_id, 0);
 | |
| }
 | |
| 
 | |
| #if CONFIG_IS_ENABLED(OF_CONTROL)
 | |
| int clock_decode_periph_id(struct udevice *dev)
 | |
| {
 | |
| 	enum periph_id id;
 | |
| 	u32 cell[2];
 | |
| 	int err;
 | |
| 
 | |
| 	err = dev_read_u32_array(dev, "clocks", cell, ARRAY_SIZE(cell));
 | |
| 	if (err)
 | |
| 		return -1;
 | |
| 	id = clk_id_to_periph_id(cell[1]);
 | |
| 	assert(clock_periph_id_isvalid(id));
 | |
| 	return id;
 | |
| }
 | |
| #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
 | |
| 
 | |
| int clock_verify(void)
 | |
| {
 | |
| 	struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
 | |
| 	u32 reg = readl(&pll->pll_base);
 | |
| 
 | |
| 	if (!pllp_valid) {
 | |
| 		printf("Warning: PLLP %x is not correct\n", reg);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	debug("PLLP %x is correct\n", reg);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void clock_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
 | |
| 	pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
 | |
| 	pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
 | |
| 	pll_rate[CLOCK_ID_USB] = clock_get_rate(CLOCK_ID_USB);
 | |
| 	pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY);
 | |
| 	pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
 | |
| 	pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
 | |
| 	pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
 | |
| 	pll_rate[CLOCK_ID_CLK_M] = clock_get_rate(CLOCK_ID_CLK_M);
 | |
| 
 | |
| 	debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
 | |
| 	debug("CLKM = %d\n", pll_rate[CLOCK_ID_CLK_M]);
 | |
| 	debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
 | |
| 	debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
 | |
| 	debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
 | |
| 	debug("PLLU = %d\n", pll_rate[CLOCK_ID_USB]);
 | |
| 	debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]);
 | |
| 	debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
 | |
| 
 | |
| 	for (i = 0; periph_clk_init_table[i].periph_id != -1; i++) {
 | |
| 		enum periph_id periph_id;
 | |
| 		enum clock_id parent;
 | |
| 		int source, mux_bits, divider_bits;
 | |
| 
 | |
| 		periph_id = periph_clk_init_table[i].periph_id;
 | |
| 		parent = periph_clk_init_table[i].parent_clock_id;
 | |
| 
 | |
| 		source = get_periph_clock_source(periph_id, parent, &mux_bits,
 | |
| 						 ÷r_bits);
 | |
| 		clock_ll_set_source_bits(periph_id, mux_bits, source);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_avp_clock_source(u32 src)
 | |
| {
 | |
| 	struct clk_rst_ctlr *clkrst =
 | |
| 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 | |
| 	u32 val;
 | |
| 
 | |
| 	val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
 | |
| 		(src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
 | |
| 		(src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
 | |
| 		(src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
 | |
| 		(SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
 | |
| 	writel(val, &clkrst->crc_sclk_brst_pol);
 | |
| 	udelay(3);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is useful on Tegra30, and any later SoCs that have compatible
 | |
|  * PLLP configuration registers.
 | |
|  * NOTE: Not used on Tegra210 - see tegra210_setup_pllp in T210 clock.c
 | |
|  */
 | |
| void tegra30_set_up_pllp(void)
 | |
| {
 | |
| 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Based on the Tegra TRM, the system clock (which is the AVP clock) can
 | |
| 	 * run up to 275MHz. On power on, the default sytem clock source is set
 | |
| 	 * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
 | |
| 	 * 408MHz which is beyond system clock's upper limit.
 | |
| 	 *
 | |
| 	 * The fix is to set the system clock to CLK_M before initializing PLLP,
 | |
| 	 * and then switch back to PLLP_OUT4, which has an appropriate divider
 | |
| 	 * configured, after PLLP has been configured
 | |
| 	 */
 | |
| 	set_avp_clock_source(SCLK_SOURCE_CLKM);
 | |
| 
 | |
| 	/*
 | |
| 	 * PLLP output frequency set to 408Mhz
 | |
| 	 * PLLC output frequency set to 228Mhz
 | |
| 	 */
 | |
| 	switch (clock_get_osc_freq()) {
 | |
| 	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
 | |
| 		clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
 | |
| 		clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
 | |
| 		break;
 | |
| 
 | |
| 	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
 | |
| 		clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
 | |
| 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
 | |
| 		break;
 | |
| 
 | |
| 	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
 | |
| 		clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
 | |
| 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
 | |
| 		break;
 | |
| 	case CLOCK_OSC_FREQ_19_2:
 | |
| 	default:
 | |
| 		/*
 | |
| 		 * These are not supported. It is too early to print a
 | |
| 		 * message and the UART likely won't work anyway due to the
 | |
| 		 * oscillator being wrong.
 | |
| 		 */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
 | |
| 
 | |
| 	/* OUT1, 2 */
 | |
| 	/* Assert RSTN before enable */
 | |
| 	reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
 | |
| 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
 | |
| 	/* Set divisor and reenable */
 | |
| 	reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
 | |
| 		| PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
 | |
| 		| (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
 | |
| 		| PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
 | |
| 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
 | |
| 
 | |
| 	/* OUT3, 4 */
 | |
| 	/* Assert RSTN before enable */
 | |
| 	reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
 | |
| 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
 | |
| 	/* Set divisor and reenable */
 | |
| 	reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
 | |
| 		| PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
 | |
| 		| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
 | |
| 		| PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
 | |
| 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
 | |
| 
 | |
| 	set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
 | |
| }
 | |
| 
 | |
| int clock_external_output(int clk_id)
 | |
| {
 | |
| 	struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
 | |
| 
 | |
| 	if (clk_id >= 1 && clk_id <= 3) {
 | |
| 		setbits_le32(&pmc->pmc_clk_out_cntrl,
 | |
| 			     1 << (2 + (clk_id - 1) * 8));
 | |
| 	} else {
 | |
| 		printf("%s: Unknown output clock id %d\n", __func__, clk_id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| __weak bool clock_early_init_done(void)
 | |
| {
 | |
| 	return true;
 | |
| }
 |