1934 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1934 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * drivers/mtd/nand/raw/pxa3xx_nand.c
 | |
|  *
 | |
|  * Copyright © 2005 Intel Corporation
 | |
|  * Copyright © 2006 Marvell International Ltd.
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <malloc.h>
 | |
| #include <fdtdec.h>
 | |
| #include <nand.h>
 | |
| #include <linux/errno.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/arch/cpu.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/mtd/rawnand.h>
 | |
| #include <linux/types.h>
 | |
| 
 | |
| #include "pxa3xx_nand.h"
 | |
| 
 | |
| DECLARE_GLOBAL_DATA_PTR;
 | |
| 
 | |
| #define TIMEOUT_DRAIN_FIFO	5	/* in ms */
 | |
| #define	CHIP_DELAY_TIMEOUT	200
 | |
| #define NAND_STOP_DELAY		40
 | |
| 
 | |
| /*
 | |
|  * Define a buffer size for the initial command that detects the flash device:
 | |
|  * STATUS, READID and PARAM.
 | |
|  * ONFI param page is 256 bytes, and there are three redundant copies
 | |
|  * to be read. JEDEC param page is 512 bytes, and there are also three
 | |
|  * redundant copies to be read.
 | |
|  * Hence this buffer should be at least 512 x 3. Let's pick 2048.
 | |
|  */
 | |
| #define INIT_BUFFER_SIZE	2048
 | |
| 
 | |
| /* registers and bit definitions */
 | |
| #define NDCR		(0x00) /* Control register */
 | |
| #define NDTR0CS0	(0x04) /* Timing Parameter 0 for CS0 */
 | |
| #define NDTR1CS0	(0x0C) /* Timing Parameter 1 for CS0 */
 | |
| #define NDSR		(0x14) /* Status Register */
 | |
| #define NDPCR		(0x18) /* Page Count Register */
 | |
| #define NDBDR0		(0x1C) /* Bad Block Register 0 */
 | |
| #define NDBDR1		(0x20) /* Bad Block Register 1 */
 | |
| #define NDECCCTRL	(0x28) /* ECC control */
 | |
| #define NDDB		(0x40) /* Data Buffer */
 | |
| #define NDCB0		(0x48) /* Command Buffer0 */
 | |
| #define NDCB1		(0x4C) /* Command Buffer1 */
 | |
| #define NDCB2		(0x50) /* Command Buffer2 */
 | |
| 
 | |
| #define NDCR_SPARE_EN		(0x1 << 31)
 | |
| #define NDCR_ECC_EN		(0x1 << 30)
 | |
| #define NDCR_DMA_EN		(0x1 << 29)
 | |
| #define NDCR_ND_RUN		(0x1 << 28)
 | |
| #define NDCR_DWIDTH_C		(0x1 << 27)
 | |
| #define NDCR_DWIDTH_M		(0x1 << 26)
 | |
| #define NDCR_PAGE_SZ		(0x1 << 24)
 | |
| #define NDCR_NCSX		(0x1 << 23)
 | |
| #define NDCR_ND_MODE		(0x3 << 21)
 | |
| #define NDCR_NAND_MODE		(0x0)
 | |
| #define NDCR_CLR_PG_CNT		(0x1 << 20)
 | |
| #define NFCV1_NDCR_ARB_CNTL	(0x1 << 19)
 | |
| #define NDCR_RD_ID_CNT_MASK	(0x7 << 16)
 | |
| #define NDCR_RD_ID_CNT(x)	(((x) << 16) & NDCR_RD_ID_CNT_MASK)
 | |
| 
 | |
| #define NDCR_RA_START		(0x1 << 15)
 | |
| #define NDCR_PG_PER_BLK		(0x1 << 14)
 | |
| #define NDCR_ND_ARB_EN		(0x1 << 12)
 | |
| #define NDCR_INT_MASK           (0xFFF)
 | |
| 
 | |
| #define NDSR_MASK		(0xfff)
 | |
| #define NDSR_ERR_CNT_OFF	(16)
 | |
| #define NDSR_ERR_CNT_MASK       (0x1f)
 | |
| #define NDSR_ERR_CNT(sr)	((sr >> NDSR_ERR_CNT_OFF) & NDSR_ERR_CNT_MASK)
 | |
| #define NDSR_RDY                (0x1 << 12)
 | |
| #define NDSR_FLASH_RDY          (0x1 << 11)
 | |
| #define NDSR_CS0_PAGED		(0x1 << 10)
 | |
| #define NDSR_CS1_PAGED		(0x1 << 9)
 | |
| #define NDSR_CS0_CMDD		(0x1 << 8)
 | |
| #define NDSR_CS1_CMDD		(0x1 << 7)
 | |
| #define NDSR_CS0_BBD		(0x1 << 6)
 | |
| #define NDSR_CS1_BBD		(0x1 << 5)
 | |
| #define NDSR_UNCORERR		(0x1 << 4)
 | |
| #define NDSR_CORERR		(0x1 << 3)
 | |
| #define NDSR_WRDREQ		(0x1 << 2)
 | |
| #define NDSR_RDDREQ		(0x1 << 1)
 | |
| #define NDSR_WRCMDREQ		(0x1)
 | |
| 
 | |
| #define NDCB0_LEN_OVRD		(0x1 << 28)
 | |
| #define NDCB0_ST_ROW_EN         (0x1 << 26)
 | |
| #define NDCB0_AUTO_RS		(0x1 << 25)
 | |
| #define NDCB0_CSEL		(0x1 << 24)
 | |
| #define NDCB0_EXT_CMD_TYPE_MASK	(0x7 << 29)
 | |
| #define NDCB0_EXT_CMD_TYPE(x)	(((x) << 29) & NDCB0_EXT_CMD_TYPE_MASK)
 | |
| #define NDCB0_CMD_TYPE_MASK	(0x7 << 21)
 | |
| #define NDCB0_CMD_TYPE(x)	(((x) << 21) & NDCB0_CMD_TYPE_MASK)
 | |
| #define NDCB0_NC		(0x1 << 20)
 | |
| #define NDCB0_DBC		(0x1 << 19)
 | |
| #define NDCB0_ADDR_CYC_MASK	(0x7 << 16)
 | |
| #define NDCB0_ADDR_CYC(x)	(((x) << 16) & NDCB0_ADDR_CYC_MASK)
 | |
| #define NDCB0_CMD2_MASK		(0xff << 8)
 | |
| #define NDCB0_CMD1_MASK		(0xff)
 | |
| #define NDCB0_ADDR_CYC_SHIFT	(16)
 | |
| 
 | |
| #define EXT_CMD_TYPE_DISPATCH	6 /* Command dispatch */
 | |
| #define EXT_CMD_TYPE_NAKED_RW	5 /* Naked read or Naked write */
 | |
| #define EXT_CMD_TYPE_READ	4 /* Read */
 | |
| #define EXT_CMD_TYPE_DISP_WR	4 /* Command dispatch with write */
 | |
| #define EXT_CMD_TYPE_FINAL	3 /* Final command */
 | |
| #define EXT_CMD_TYPE_LAST_RW	1 /* Last naked read/write */
 | |
| #define EXT_CMD_TYPE_MONO	0 /* Monolithic read/write */
 | |
| 
 | |
| /*
 | |
|  * This should be large enough to read 'ONFI' and 'JEDEC'.
 | |
|  * Let's use 7 bytes, which is the maximum ID count supported
 | |
|  * by the controller (see NDCR_RD_ID_CNT_MASK).
 | |
|  */
 | |
| #define READ_ID_BYTES		7
 | |
| 
 | |
| /* macros for registers read/write */
 | |
| #define nand_writel(info, off, val)	\
 | |
| 	writel((val), (info)->mmio_base + (off))
 | |
| 
 | |
| #define nand_readl(info, off)		\
 | |
| 	readl((info)->mmio_base + (off))
 | |
| 
 | |
| /* error code and state */
 | |
| enum {
 | |
| 	ERR_NONE	= 0,
 | |
| 	ERR_DMABUSERR	= -1,
 | |
| 	ERR_SENDCMD	= -2,
 | |
| 	ERR_UNCORERR	= -3,
 | |
| 	ERR_BBERR	= -4,
 | |
| 	ERR_CORERR	= -5,
 | |
| };
 | |
| 
 | |
| enum {
 | |
| 	STATE_IDLE = 0,
 | |
| 	STATE_PREPARED,
 | |
| 	STATE_CMD_HANDLE,
 | |
| 	STATE_DMA_READING,
 | |
| 	STATE_DMA_WRITING,
 | |
| 	STATE_DMA_DONE,
 | |
| 	STATE_PIO_READING,
 | |
| 	STATE_PIO_WRITING,
 | |
| 	STATE_CMD_DONE,
 | |
| 	STATE_READY,
 | |
| };
 | |
| 
 | |
| enum pxa3xx_nand_variant {
 | |
| 	PXA3XX_NAND_VARIANT_PXA,
 | |
| 	PXA3XX_NAND_VARIANT_ARMADA370,
 | |
| };
 | |
| 
 | |
| struct pxa3xx_nand_host {
 | |
| 	struct nand_chip	chip;
 | |
| 	void			*info_data;
 | |
| 
 | |
| 	/* page size of attached chip */
 | |
| 	int			use_ecc;
 | |
| 	int			cs;
 | |
| 
 | |
| 	/* calculated from pxa3xx_nand_flash data */
 | |
| 	unsigned int		col_addr_cycles;
 | |
| 	unsigned int		row_addr_cycles;
 | |
| };
 | |
| 
 | |
| struct pxa3xx_nand_info {
 | |
| 	struct nand_hw_control	controller;
 | |
| 	struct pxa3xx_nand_platform_data *pdata;
 | |
| 
 | |
| 	struct clk		*clk;
 | |
| 	void __iomem		*mmio_base;
 | |
| 	unsigned long		mmio_phys;
 | |
| 	int			cmd_complete, dev_ready;
 | |
| 
 | |
| 	unsigned int		buf_start;
 | |
| 	unsigned int		buf_count;
 | |
| 	unsigned int		buf_size;
 | |
| 	unsigned int		data_buff_pos;
 | |
| 	unsigned int		oob_buff_pos;
 | |
| 
 | |
| 	unsigned char		*data_buff;
 | |
| 	unsigned char		*oob_buff;
 | |
| 
 | |
| 	struct pxa3xx_nand_host *host[NUM_CHIP_SELECT];
 | |
| 	unsigned int		state;
 | |
| 
 | |
| 	/*
 | |
| 	 * This driver supports NFCv1 (as found in PXA SoC)
 | |
| 	 * and NFCv2 (as found in Armada 370/XP SoC).
 | |
| 	 */
 | |
| 	enum pxa3xx_nand_variant variant;
 | |
| 
 | |
| 	int			cs;
 | |
| 	int			use_ecc;	/* use HW ECC ? */
 | |
| 	int			force_raw;	/* prevent use_ecc to be set */
 | |
| 	int			ecc_bch;	/* using BCH ECC? */
 | |
| 	int			use_spare;	/* use spare ? */
 | |
| 	int			need_wait;
 | |
| 
 | |
| 	/* Amount of real data per full chunk */
 | |
| 	unsigned int		chunk_size;
 | |
| 
 | |
| 	/* Amount of spare data per full chunk */
 | |
| 	unsigned int		spare_size;
 | |
| 
 | |
| 	/* Number of full chunks (i.e chunk_size + spare_size) */
 | |
| 	unsigned int            nfullchunks;
 | |
| 
 | |
| 	/*
 | |
| 	 * Total number of chunks. If equal to nfullchunks, then there
 | |
| 	 * are only full chunks. Otherwise, there is one last chunk of
 | |
| 	 * size (last_chunk_size + last_spare_size)
 | |
| 	 */
 | |
| 	unsigned int            ntotalchunks;
 | |
| 
 | |
| 	/* Amount of real data in the last chunk */
 | |
| 	unsigned int		last_chunk_size;
 | |
| 
 | |
| 	/* Amount of spare data in the last chunk */
 | |
| 	unsigned int		last_spare_size;
 | |
| 
 | |
| 	unsigned int		ecc_size;
 | |
| 	unsigned int		ecc_err_cnt;
 | |
| 	unsigned int		max_bitflips;
 | |
| 	int			retcode;
 | |
| 
 | |
| 	/*
 | |
| 	 * Variables only valid during command
 | |
| 	 * execution. step_chunk_size and step_spare_size is the
 | |
| 	 * amount of real data and spare data in the current
 | |
| 	 * chunk. cur_chunk is the current chunk being
 | |
| 	 * read/programmed.
 | |
| 	 */
 | |
| 	unsigned int		step_chunk_size;
 | |
| 	unsigned int		step_spare_size;
 | |
| 	unsigned int            cur_chunk;
 | |
| 
 | |
| 	/* cached register value */
 | |
| 	uint32_t		reg_ndcr;
 | |
| 	uint32_t		ndtr0cs0;
 | |
| 	uint32_t		ndtr1cs0;
 | |
| 
 | |
| 	/* generated NDCBx register values */
 | |
| 	uint32_t		ndcb0;
 | |
| 	uint32_t		ndcb1;
 | |
| 	uint32_t		ndcb2;
 | |
| 	uint32_t		ndcb3;
 | |
| };
 | |
| 
 | |
| static struct pxa3xx_nand_timing timing[] = {
 | |
| 	/*
 | |
| 	 * tCH	Enable signal hold time
 | |
| 	 * tCS	Enable signal setup time
 | |
| 	 * tWH	ND_nWE high duration
 | |
| 	 * tWP	ND_nWE pulse time
 | |
| 	 * tRH	ND_nRE high duration
 | |
| 	 * tRP	ND_nRE pulse width
 | |
| 	 * tR	ND_nWE high to ND_nRE low for read
 | |
| 	 * tWHR	ND_nWE high to ND_nRE low for status read
 | |
| 	 * tAR	ND_ALE low to ND_nRE low delay
 | |
| 	 */
 | |
| 	/*ch  cs  wh  wp   rh  rp   r      whr  ar */
 | |
| 	{ 40, 80, 60, 100, 80, 100, 90000, 400, 40, },
 | |
| 	{ 10,  0, 20,  40, 30,  40, 11123, 110, 10, },
 | |
| 	{ 10, 25, 15,  25, 15,  30, 25000,  60, 10, },
 | |
| 	{ 10, 35, 15,  25, 15,  25, 25000,  60, 10, },
 | |
| 	{  5, 20, 10,  12, 10,  12, 25000,  60, 10, },
 | |
| };
 | |
| 
 | |
| static struct pxa3xx_nand_flash builtin_flash_types[] = {
 | |
| 	/*
 | |
| 	 * chip_id
 | |
| 	 * flash_width	Width of Flash memory (DWIDTH_M)
 | |
| 	 * dfc_width	Width of flash controller(DWIDTH_C)
 | |
| 	 * *timing
 | |
| 	 * http://www.linux-mtd.infradead.org/nand-data/nanddata.html
 | |
| 	 */
 | |
| 	{ 0x46ec, 16, 16, &timing[1] },
 | |
| 	{ 0xdaec,  8,  8, &timing[1] },
 | |
| 	{ 0xd7ec,  8,  8, &timing[1] },
 | |
| 	{ 0xa12c,  8,  8, &timing[2] },
 | |
| 	{ 0xb12c, 16, 16, &timing[2] },
 | |
| 	{ 0xdc2c,  8,  8, &timing[2] },
 | |
| 	{ 0xcc2c, 16, 16, &timing[2] },
 | |
| 	{ 0xba20, 16, 16, &timing[3] },
 | |
| 	{ 0xda98,  8,  8, &timing[4] },
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
 | |
| static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
 | |
| static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
 | |
| 
 | |
| static struct nand_bbt_descr bbt_main_descr = {
 | |
| 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 | |
| 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
 | |
| 	.offs =	8,
 | |
| 	.len = 6,
 | |
| 	.veroffs = 14,
 | |
| 	.maxblocks = 8,		/* Last 8 blocks in each chip */
 | |
| 	.pattern = bbt_pattern
 | |
| };
 | |
| 
 | |
| static struct nand_bbt_descr bbt_mirror_descr = {
 | |
| 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 | |
| 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
 | |
| 	.offs =	8,
 | |
| 	.len = 6,
 | |
| 	.veroffs = 14,
 | |
| 	.maxblocks = 8,		/* Last 8 blocks in each chip */
 | |
| 	.pattern = bbt_mirror_pattern
 | |
| };
 | |
| #endif
 | |
| 
 | |
| static struct nand_ecclayout ecc_layout_2KB_bch4bit = {
 | |
| 	.eccbytes = 32,
 | |
| 	.eccpos = {
 | |
| 		32, 33, 34, 35, 36, 37, 38, 39,
 | |
| 		40, 41, 42, 43, 44, 45, 46, 47,
 | |
| 		48, 49, 50, 51, 52, 53, 54, 55,
 | |
| 		56, 57, 58, 59, 60, 61, 62, 63},
 | |
| 	.oobfree = { {2, 30} }
 | |
| };
 | |
| 
 | |
| static struct nand_ecclayout ecc_layout_2KB_bch8bit = {
 | |
| 	.eccbytes = 64,
 | |
| 	.eccpos = {
 | |
| 		32, 33, 34, 35, 36, 37, 38, 39,
 | |
| 		40, 41, 42, 43, 44, 45, 46, 47,
 | |
| 		48, 49, 50, 51, 52, 53, 54, 55,
 | |
| 		56, 57, 58, 59, 60, 61, 62, 63,
 | |
| 		64, 65, 66, 67, 68, 69, 70, 71,
 | |
| 		72, 73, 74, 75, 76, 77, 78, 79,
 | |
| 		80, 81, 82, 83, 84, 85, 86, 87,
 | |
| 		88, 89, 90, 91, 92, 93, 94, 95},
 | |
| 	.oobfree = { {1, 4}, {6, 26} }
 | |
| };
 | |
| 
 | |
| static struct nand_ecclayout ecc_layout_4KB_bch4bit = {
 | |
| 	.eccbytes = 64,
 | |
| 	.eccpos = {
 | |
| 		32,  33,  34,  35,  36,  37,  38,  39,
 | |
| 		40,  41,  42,  43,  44,  45,  46,  47,
 | |
| 		48,  49,  50,  51,  52,  53,  54,  55,
 | |
| 		56,  57,  58,  59,  60,  61,  62,  63,
 | |
| 		96,  97,  98,  99,  100, 101, 102, 103,
 | |
| 		104, 105, 106, 107, 108, 109, 110, 111,
 | |
| 		112, 113, 114, 115, 116, 117, 118, 119,
 | |
| 		120, 121, 122, 123, 124, 125, 126, 127},
 | |
| 	/* Bootrom looks in bytes 0 & 5 for bad blocks */
 | |
| 	.oobfree = { {6, 26}, { 64, 32} }
 | |
| };
 | |
| 
 | |
| static struct nand_ecclayout ecc_layout_8KB_bch4bit = {
 | |
| 	.eccbytes = 128,
 | |
| 	.eccpos = {
 | |
| 		32,  33,  34,  35,  36,  37,  38,  39,
 | |
| 		40,  41,  42,  43,  44,  45,  46,  47,
 | |
| 		48,  49,  50,  51,  52,  53,  54,  55,
 | |
| 		56,  57,  58,  59,  60,  61,  62,  63,
 | |
| 
 | |
| 		96,  97,  98,  99,  100, 101, 102, 103,
 | |
| 		104, 105, 106, 107, 108, 109, 110, 111,
 | |
| 		112, 113, 114, 115, 116, 117, 118, 119,
 | |
| 		120, 121, 122, 123, 124, 125, 126, 127,
 | |
| 
 | |
| 		160, 161, 162, 163, 164, 165, 166, 167,
 | |
| 		168, 169, 170, 171, 172, 173, 174, 175,
 | |
| 		176, 177, 178, 179, 180, 181, 182, 183,
 | |
| 		184, 185, 186, 187, 188, 189, 190, 191,
 | |
| 
 | |
| 		224, 225, 226, 227, 228, 229, 230, 231,
 | |
| 		232, 233, 234, 235, 236, 237, 238, 239,
 | |
| 		240, 241, 242, 243, 244, 245, 246, 247,
 | |
| 		248, 249, 250, 251, 252, 253, 254, 255},
 | |
| 
 | |
| 	/* Bootrom looks in bytes 0 & 5 for bad blocks */
 | |
| 	.oobfree = { {1, 4}, {6, 26}, { 64, 32}, {128, 32}, {192, 32} }
 | |
| };
 | |
| 
 | |
| static struct nand_ecclayout ecc_layout_4KB_bch8bit = {
 | |
| 	.eccbytes = 128,
 | |
| 	.eccpos = {
 | |
| 		32,  33,  34,  35,  36,  37,  38,  39,
 | |
| 		40,  41,  42,  43,  44,  45,  46,  47,
 | |
| 		48,  49,  50,  51,  52,  53,  54,  55,
 | |
| 		56,  57,  58,  59,  60,  61,  62,  63},
 | |
| 	.oobfree = { }
 | |
| };
 | |
| 
 | |
| static struct nand_ecclayout ecc_layout_8KB_bch8bit = {
 | |
| 	.eccbytes = 256,
 | |
| 	.eccpos = {},
 | |
| 	/* HW ECC handles all ECC data and all spare area is free for OOB */
 | |
| 	.oobfree = {{0, 160} }
 | |
| };
 | |
| 
 | |
| #define NDTR0_tCH(c)	(min((c), 7) << 19)
 | |
| #define NDTR0_tCS(c)	(min((c), 7) << 16)
 | |
| #define NDTR0_tWH(c)	(min((c), 7) << 11)
 | |
| #define NDTR0_tWP(c)	(min((c), 7) << 8)
 | |
| #define NDTR0_tRH(c)	(min((c), 7) << 3)
 | |
| #define NDTR0_tRP(c)	(min((c), 7) << 0)
 | |
| 
 | |
| #define NDTR1_tR(c)	(min((c), 65535) << 16)
 | |
| #define NDTR1_tWHR(c)	(min((c), 15) << 4)
 | |
| #define NDTR1_tAR(c)	(min((c), 15) << 0)
 | |
| 
 | |
| /* convert nano-seconds to nand flash controller clock cycles */
 | |
| #define ns2cycle(ns, clk)	(int)((ns) * (clk / 1000000) / 1000)
 | |
| 
 | |
| static enum pxa3xx_nand_variant pxa3xx_nand_get_variant(void)
 | |
| {
 | |
| 	/* We only support the Armada 370/XP/38x for now */
 | |
| 	return PXA3XX_NAND_VARIANT_ARMADA370;
 | |
| }
 | |
| 
 | |
| static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host,
 | |
| 				   const struct pxa3xx_nand_timing *t)
 | |
| {
 | |
| 	struct pxa3xx_nand_info *info = host->info_data;
 | |
| 	unsigned long nand_clk = mvebu_get_nand_clock();
 | |
| 	uint32_t ndtr0, ndtr1;
 | |
| 
 | |
| 	ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) |
 | |
| 		NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) |
 | |
| 		NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) |
 | |
| 		NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) |
 | |
| 		NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) |
 | |
| 		NDTR0_tRP(ns2cycle(t->tRP, nand_clk));
 | |
| 
 | |
| 	ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) |
 | |
| 		NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) |
 | |
| 		NDTR1_tAR(ns2cycle(t->tAR, nand_clk));
 | |
| 
 | |
| 	info->ndtr0cs0 = ndtr0;
 | |
| 	info->ndtr1cs0 = ndtr1;
 | |
| 	nand_writel(info, NDTR0CS0, ndtr0);
 | |
| 	nand_writel(info, NDTR1CS0, ndtr1);
 | |
| }
 | |
| 
 | |
| static void pxa3xx_nand_set_sdr_timing(struct pxa3xx_nand_host *host,
 | |
| 				       const struct nand_sdr_timings *t)
 | |
| {
 | |
| 	struct pxa3xx_nand_info *info = host->info_data;
 | |
| 	struct nand_chip *chip = &host->chip;
 | |
| 	unsigned long nand_clk = mvebu_get_nand_clock();
 | |
| 	uint32_t ndtr0, ndtr1;
 | |
| 
 | |
| 	u32 tCH_min = DIV_ROUND_UP(t->tCH_min, 1000);
 | |
| 	u32 tCS_min = DIV_ROUND_UP(t->tCS_min, 1000);
 | |
| 	u32 tWH_min = DIV_ROUND_UP(t->tWH_min, 1000);
 | |
| 	u32 tWP_min = DIV_ROUND_UP(t->tWC_min - t->tWH_min, 1000);
 | |
| 	u32 tREH_min = DIV_ROUND_UP(t->tREH_min, 1000);
 | |
| 	u32 tRP_min = DIV_ROUND_UP(t->tRC_min - t->tREH_min, 1000);
 | |
| 	u32 tR = chip->chip_delay * 1000;
 | |
| 	u32 tWHR_min = DIV_ROUND_UP(t->tWHR_min, 1000);
 | |
| 	u32 tAR_min = DIV_ROUND_UP(t->tAR_min, 1000);
 | |
| 
 | |
| 	/* fallback to a default value if tR = 0 */
 | |
| 	if (!tR)
 | |
| 		tR = 20000;
 | |
| 
 | |
| 	ndtr0 = NDTR0_tCH(ns2cycle(tCH_min, nand_clk)) |
 | |
| 		NDTR0_tCS(ns2cycle(tCS_min, nand_clk)) |
 | |
| 		NDTR0_tWH(ns2cycle(tWH_min, nand_clk)) |
 | |
| 		NDTR0_tWP(ns2cycle(tWP_min, nand_clk)) |
 | |
| 		NDTR0_tRH(ns2cycle(tREH_min, nand_clk)) |
 | |
| 		NDTR0_tRP(ns2cycle(tRP_min, nand_clk));
 | |
| 
 | |
| 	ndtr1 = NDTR1_tR(ns2cycle(tR, nand_clk)) |
 | |
| 		NDTR1_tWHR(ns2cycle(tWHR_min, nand_clk)) |
 | |
| 		NDTR1_tAR(ns2cycle(tAR_min, nand_clk));
 | |
| 
 | |
| 	info->ndtr0cs0 = ndtr0;
 | |
| 	info->ndtr1cs0 = ndtr1;
 | |
| 	nand_writel(info, NDTR0CS0, ndtr0);
 | |
| 	nand_writel(info, NDTR1CS0, ndtr1);
 | |
| }
 | |
| 
 | |
| static int pxa3xx_nand_init_timings(struct pxa3xx_nand_host *host)
 | |
| {
 | |
| 	const struct nand_sdr_timings *timings;
 | |
| 	struct nand_chip *chip = &host->chip;
 | |
| 	struct pxa3xx_nand_info *info = host->info_data;
 | |
| 	const struct pxa3xx_nand_flash *f = NULL;
 | |
| 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
 | |
| 	int mode, id, ntypes, i;
 | |
| 
 | |
| 	mode = onfi_get_async_timing_mode(chip);
 | |
| 	if (mode == ONFI_TIMING_MODE_UNKNOWN) {
 | |
| 		ntypes = ARRAY_SIZE(builtin_flash_types);
 | |
| 
 | |
| 		chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
 | |
| 
 | |
| 		id = chip->read_byte(mtd);
 | |
| 		id |= chip->read_byte(mtd) << 0x8;
 | |
| 
 | |
| 		for (i = 0; i < ntypes; i++) {
 | |
| 			f = &builtin_flash_types[i];
 | |
| 
 | |
| 			if (f->chip_id == id)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (i == ntypes) {
 | |
| 			dev_err(&info->pdev->dev, "Error: timings not found\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		pxa3xx_nand_set_timing(host, f->timing);
 | |
| 
 | |
| 		if (f->flash_width == 16) {
 | |
| 			info->reg_ndcr |= NDCR_DWIDTH_M;
 | |
| 			chip->options |= NAND_BUSWIDTH_16;
 | |
| 		}
 | |
| 
 | |
| 		info->reg_ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0;
 | |
| 	} else {
 | |
| 		mode = fls(mode) - 1;
 | |
| 		if (mode < 0)
 | |
| 			mode = 0;
 | |
| 
 | |
| 		timings = onfi_async_timing_mode_to_sdr_timings(mode);
 | |
| 		if (IS_ERR(timings))
 | |
| 			return PTR_ERR(timings);
 | |
| 
 | |
| 		pxa3xx_nand_set_sdr_timing(host, timings);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * NOTE: it is a must to set ND_RUN first, then write
 | |
|  * command buffer, otherwise, it does not work.
 | |
|  * We enable all the interrupt at the same time, and
 | |
|  * let pxa3xx_nand_irq to handle all logic.
 | |
|  */
 | |
| static void pxa3xx_nand_start(struct pxa3xx_nand_info *info)
 | |
| {
 | |
| 	uint32_t ndcr;
 | |
| 
 | |
| 	ndcr = info->reg_ndcr;
 | |
| 
 | |
| 	if (info->use_ecc) {
 | |
| 		ndcr |= NDCR_ECC_EN;
 | |
| 		if (info->ecc_bch)
 | |
| 			nand_writel(info, NDECCCTRL, 0x1);
 | |
| 	} else {
 | |
| 		ndcr &= ~NDCR_ECC_EN;
 | |
| 		if (info->ecc_bch)
 | |
| 			nand_writel(info, NDECCCTRL, 0x0);
 | |
| 	}
 | |
| 
 | |
| 	ndcr &= ~NDCR_DMA_EN;
 | |
| 
 | |
| 	if (info->use_spare)
 | |
| 		ndcr |= NDCR_SPARE_EN;
 | |
| 	else
 | |
| 		ndcr &= ~NDCR_SPARE_EN;
 | |
| 
 | |
| 	ndcr |= NDCR_ND_RUN;
 | |
| 
 | |
| 	/* clear status bits and run */
 | |
| 	nand_writel(info, NDSR, NDSR_MASK);
 | |
| 	nand_writel(info, NDCR, 0);
 | |
| 	nand_writel(info, NDCR, ndcr);
 | |
| }
 | |
| 
 | |
| static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
 | |
| {
 | |
| 	uint32_t ndcr;
 | |
| 
 | |
| 	ndcr = nand_readl(info, NDCR);
 | |
| 	nand_writel(info, NDCR, ndcr | int_mask);
 | |
| }
 | |
| 
 | |
| static void drain_fifo(struct pxa3xx_nand_info *info, void *data, int len)
 | |
| {
 | |
| 	if (info->ecc_bch && !info->force_raw) {
 | |
| 		u32 ts;
 | |
| 
 | |
| 		/*
 | |
| 		 * According to the datasheet, when reading from NDDB
 | |
| 		 * with BCH enabled, after each 32 bytes reads, we
 | |
| 		 * have to make sure that the NDSR.RDDREQ bit is set.
 | |
| 		 *
 | |
| 		 * Drain the FIFO 8 32 bits reads at a time, and skip
 | |
| 		 * the polling on the last read.
 | |
| 		 */
 | |
| 		while (len > 8) {
 | |
| 			readsl(info->mmio_base + NDDB, data, 8);
 | |
| 
 | |
| 			ts = get_timer(0);
 | |
| 			while (!(nand_readl(info, NDSR) & NDSR_RDDREQ)) {
 | |
| 				if (get_timer(ts) > TIMEOUT_DRAIN_FIFO) {
 | |
| 					dev_err(&info->pdev->dev,
 | |
| 						"Timeout on RDDREQ while draining the FIFO\n");
 | |
| 					return;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			data += 32;
 | |
| 			len -= 8;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	readsl(info->mmio_base + NDDB, data, len);
 | |
| }
 | |
| 
 | |
| static void handle_data_pio(struct pxa3xx_nand_info *info)
 | |
| {
 | |
| 	int data_len = info->step_chunk_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * In raw mode, include the spare area and the ECC bytes that are not
 | |
| 	 * consumed by the controller in the data section. Do not reorganize
 | |
| 	 * here, do it in the ->read_page_raw() handler instead.
 | |
| 	 */
 | |
| 	if (info->force_raw)
 | |
| 		data_len += info->step_spare_size + info->ecc_size;
 | |
| 
 | |
| 	switch (info->state) {
 | |
| 	case STATE_PIO_WRITING:
 | |
| 		if (info->step_chunk_size)
 | |
| 			writesl(info->mmio_base + NDDB,
 | |
| 				info->data_buff + info->data_buff_pos,
 | |
| 				DIV_ROUND_UP(data_len, 4));
 | |
| 
 | |
| 		if (info->step_spare_size)
 | |
| 			writesl(info->mmio_base + NDDB,
 | |
| 				info->oob_buff + info->oob_buff_pos,
 | |
| 				DIV_ROUND_UP(info->step_spare_size, 4));
 | |
| 		break;
 | |
| 	case STATE_PIO_READING:
 | |
| 		if (info->step_chunk_size)
 | |
| 			drain_fifo(info,
 | |
| 				   info->data_buff + info->data_buff_pos,
 | |
| 				   DIV_ROUND_UP(data_len, 4));
 | |
| 
 | |
| 		if (info->force_raw)
 | |
| 			break;
 | |
| 
 | |
| 		if (info->step_spare_size)
 | |
| 			drain_fifo(info,
 | |
| 				   info->oob_buff + info->oob_buff_pos,
 | |
| 				   DIV_ROUND_UP(info->step_spare_size, 4));
 | |
| 		break;
 | |
| 	default:
 | |
| 		dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
 | |
| 				info->state);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	/* Update buffer pointers for multi-page read/write */
 | |
| 	info->data_buff_pos += data_len;
 | |
| 	info->oob_buff_pos += info->step_spare_size;
 | |
| }
 | |
| 
 | |
| static void pxa3xx_nand_irq_thread(struct pxa3xx_nand_info *info)
 | |
| {
 | |
| 	handle_data_pio(info);
 | |
| 
 | |
| 	info->state = STATE_CMD_DONE;
 | |
| 	nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
 | |
| }
 | |
| 
 | |
| static irqreturn_t pxa3xx_nand_irq(struct pxa3xx_nand_info *info)
 | |
| {
 | |
| 	unsigned int status, is_completed = 0, is_ready = 0;
 | |
| 	unsigned int ready, cmd_done;
 | |
| 	irqreturn_t ret = IRQ_HANDLED;
 | |
| 
 | |
| 	if (info->cs == 0) {
 | |
| 		ready           = NDSR_FLASH_RDY;
 | |
| 		cmd_done        = NDSR_CS0_CMDD;
 | |
| 	} else {
 | |
| 		ready           = NDSR_RDY;
 | |
| 		cmd_done        = NDSR_CS1_CMDD;
 | |
| 	}
 | |
| 
 | |
| 	/* TODO - find out why we need the delay during write operation. */
 | |
| 	ndelay(1);
 | |
| 
 | |
| 	status = nand_readl(info, NDSR);
 | |
| 
 | |
| 	if (status & NDSR_UNCORERR)
 | |
| 		info->retcode = ERR_UNCORERR;
 | |
| 	if (status & NDSR_CORERR) {
 | |
| 		info->retcode = ERR_CORERR;
 | |
| 		if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 &&
 | |
| 		    info->ecc_bch)
 | |
| 			info->ecc_err_cnt = NDSR_ERR_CNT(status);
 | |
| 		else
 | |
| 			info->ecc_err_cnt = 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * Each chunk composing a page is corrected independently,
 | |
| 		 * and we need to store maximum number of corrected bitflips
 | |
| 		 * to return it to the MTD layer in ecc.read_page().
 | |
| 		 */
 | |
| 		info->max_bitflips = max_t(unsigned int,
 | |
| 					   info->max_bitflips,
 | |
| 					   info->ecc_err_cnt);
 | |
| 	}
 | |
| 	if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) {
 | |
| 		info->state = (status & NDSR_RDDREQ) ?
 | |
| 			STATE_PIO_READING : STATE_PIO_WRITING;
 | |
| 		/* Call the IRQ thread in U-Boot directly */
 | |
| 		pxa3xx_nand_irq_thread(info);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (status & cmd_done) {
 | |
| 		info->state = STATE_CMD_DONE;
 | |
| 		is_completed = 1;
 | |
| 	}
 | |
| 	if (status & ready) {
 | |
| 		info->state = STATE_READY;
 | |
| 		is_ready = 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear all status bit before issuing the next command, which
 | |
| 	 * can and will alter the status bits and will deserve a new
 | |
| 	 * interrupt on its own. This lets the controller exit the IRQ
 | |
| 	 */
 | |
| 	nand_writel(info, NDSR, status);
 | |
| 
 | |
| 	if (status & NDSR_WRCMDREQ) {
 | |
| 		status &= ~NDSR_WRCMDREQ;
 | |
| 		info->state = STATE_CMD_HANDLE;
 | |
| 
 | |
| 		/*
 | |
| 		 * Command buffer registers NDCB{0-2} (and optionally NDCB3)
 | |
| 		 * must be loaded by writing directly either 12 or 16
 | |
| 		 * bytes directly to NDCB0, four bytes at a time.
 | |
| 		 *
 | |
| 		 * Direct write access to NDCB1, NDCB2 and NDCB3 is ignored
 | |
| 		 * but each NDCBx register can be read.
 | |
| 		 */
 | |
| 		nand_writel(info, NDCB0, info->ndcb0);
 | |
| 		nand_writel(info, NDCB0, info->ndcb1);
 | |
| 		nand_writel(info, NDCB0, info->ndcb2);
 | |
| 
 | |
| 		/* NDCB3 register is available in NFCv2 (Armada 370/XP SoC) */
 | |
| 		if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370)
 | |
| 			nand_writel(info, NDCB0, info->ndcb3);
 | |
| 	}
 | |
| 
 | |
| 	if (is_completed)
 | |
| 		info->cmd_complete = 1;
 | |
| 	if (is_ready)
 | |
| 		info->dev_ready = 1;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int is_buf_blank(uint8_t *buf, size_t len)
 | |
| {
 | |
| 	for (; len > 0; len--)
 | |
| 		if (*buf++ != 0xff)
 | |
| 			return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void set_command_address(struct pxa3xx_nand_info *info,
 | |
| 		unsigned int page_size, uint16_t column, int page_addr)
 | |
| {
 | |
| 	/* small page addr setting */
 | |
| 	if (page_size < info->chunk_size) {
 | |
| 		info->ndcb1 = ((page_addr & 0xFFFFFF) << 8)
 | |
| 				| (column & 0xFF);
 | |
| 
 | |
| 		info->ndcb2 = 0;
 | |
| 	} else {
 | |
| 		info->ndcb1 = ((page_addr & 0xFFFF) << 16)
 | |
| 				| (column & 0xFFFF);
 | |
| 
 | |
| 		if (page_addr & 0xFF0000)
 | |
| 			info->ndcb2 = (page_addr & 0xFF0000) >> 16;
 | |
| 		else
 | |
| 			info->ndcb2 = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void prepare_start_command(struct pxa3xx_nand_info *info, int command)
 | |
| {
 | |
| 	struct pxa3xx_nand_host *host = info->host[info->cs];
 | |
| 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
 | |
| 
 | |
| 	/* reset data and oob column point to handle data */
 | |
| 	info->buf_start		= 0;
 | |
| 	info->buf_count		= 0;
 | |
| 	info->data_buff_pos	= 0;
 | |
| 	info->oob_buff_pos	= 0;
 | |
| 	info->step_chunk_size   = 0;
 | |
| 	info->step_spare_size   = 0;
 | |
| 	info->cur_chunk         = 0;
 | |
| 	info->use_ecc		= 0;
 | |
| 	info->use_spare		= 1;
 | |
| 	info->retcode		= ERR_NONE;
 | |
| 	info->ecc_err_cnt	= 0;
 | |
| 	info->ndcb3		= 0;
 | |
| 	info->need_wait		= 0;
 | |
| 
 | |
| 	switch (command) {
 | |
| 	case NAND_CMD_READ0:
 | |
| 	case NAND_CMD_READOOB:
 | |
| 	case NAND_CMD_PAGEPROG:
 | |
| 		if (!info->force_raw)
 | |
| 			info->use_ecc = 1;
 | |
| 		break;
 | |
| 	case NAND_CMD_PARAM:
 | |
| 		info->use_spare = 0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		info->ndcb1 = 0;
 | |
| 		info->ndcb2 = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are about to issue a read command, or about to set
 | |
| 	 * the write address, then clean the data buffer.
 | |
| 	 */
 | |
| 	if (command == NAND_CMD_READ0 ||
 | |
| 	    command == NAND_CMD_READOOB ||
 | |
| 	    command == NAND_CMD_SEQIN) {
 | |
| 		info->buf_count = mtd->writesize + mtd->oobsize;
 | |
| 		memset(info->data_buff, 0xFF, info->buf_count);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int prepare_set_command(struct pxa3xx_nand_info *info, int command,
 | |
| 		int ext_cmd_type, uint16_t column, int page_addr)
 | |
| {
 | |
| 	int addr_cycle, exec_cmd;
 | |
| 	struct pxa3xx_nand_host *host;
 | |
| 	struct mtd_info *mtd;
 | |
| 
 | |
| 	host = info->host[info->cs];
 | |
| 	mtd = nand_to_mtd(&host->chip);
 | |
| 	addr_cycle = 0;
 | |
| 	exec_cmd = 1;
 | |
| 
 | |
| 	if (info->cs != 0)
 | |
| 		info->ndcb0 = NDCB0_CSEL;
 | |
| 	else
 | |
| 		info->ndcb0 = 0;
 | |
| 
 | |
| 	if (command == NAND_CMD_SEQIN)
 | |
| 		exec_cmd = 0;
 | |
| 
 | |
| 	addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles
 | |
| 				    + host->col_addr_cycles);
 | |
| 
 | |
| 	switch (command) {
 | |
| 	case NAND_CMD_READOOB:
 | |
| 	case NAND_CMD_READ0:
 | |
| 		info->buf_start = column;
 | |
| 		info->ndcb0 |= NDCB0_CMD_TYPE(0)
 | |
| 				| addr_cycle
 | |
| 				| NAND_CMD_READ0;
 | |
| 
 | |
| 		if (command == NAND_CMD_READOOB)
 | |
| 			info->buf_start += mtd->writesize;
 | |
| 
 | |
| 		if (info->cur_chunk < info->nfullchunks) {
 | |
| 			info->step_chunk_size = info->chunk_size;
 | |
| 			info->step_spare_size = info->spare_size;
 | |
| 		} else {
 | |
| 			info->step_chunk_size = info->last_chunk_size;
 | |
| 			info->step_spare_size = info->last_spare_size;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Multiple page read needs an 'extended command type' field,
 | |
| 		 * which is either naked-read or last-read according to the
 | |
| 		 * state.
 | |
| 		 */
 | |
| 		if (info->force_raw) {
 | |
| 			info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8) |
 | |
| 				       NDCB0_LEN_OVRD |
 | |
| 				       NDCB0_EXT_CMD_TYPE(ext_cmd_type);
 | |
| 			info->ndcb3 = info->step_chunk_size +
 | |
| 				      info->step_spare_size + info->ecc_size;
 | |
| 		} else if (mtd->writesize == info->chunk_size) {
 | |
| 			info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8);
 | |
| 		} else if (mtd->writesize > info->chunk_size) {
 | |
| 			info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8)
 | |
| 					| NDCB0_LEN_OVRD
 | |
| 					| NDCB0_EXT_CMD_TYPE(ext_cmd_type);
 | |
| 			info->ndcb3 = info->step_chunk_size +
 | |
| 				info->step_spare_size;
 | |
| 		}
 | |
| 
 | |
| 		set_command_address(info, mtd->writesize, column, page_addr);
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_SEQIN:
 | |
| 
 | |
| 		info->buf_start = column;
 | |
| 		set_command_address(info, mtd->writesize, 0, page_addr);
 | |
| 
 | |
| 		/*
 | |
| 		 * Multiple page programming needs to execute the initial
 | |
| 		 * SEQIN command that sets the page address.
 | |
| 		 */
 | |
| 		if (mtd->writesize > info->chunk_size) {
 | |
| 			info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
 | |
| 				| NDCB0_EXT_CMD_TYPE(ext_cmd_type)
 | |
| 				| addr_cycle
 | |
| 				| command;
 | |
| 			exec_cmd = 1;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_PAGEPROG:
 | |
| 		if (is_buf_blank(info->data_buff,
 | |
| 				 (mtd->writesize + mtd->oobsize))) {
 | |
| 			exec_cmd = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (info->cur_chunk < info->nfullchunks) {
 | |
| 			info->step_chunk_size = info->chunk_size;
 | |
| 			info->step_spare_size = info->spare_size;
 | |
| 		} else {
 | |
| 			info->step_chunk_size = info->last_chunk_size;
 | |
| 			info->step_spare_size = info->last_spare_size;
 | |
| 		}
 | |
| 
 | |
| 		/* Second command setting for large pages */
 | |
| 		if (mtd->writesize > info->chunk_size) {
 | |
| 			/*
 | |
| 			 * Multiple page write uses the 'extended command'
 | |
| 			 * field. This can be used to issue a command dispatch
 | |
| 			 * or a naked-write depending on the current stage.
 | |
| 			 */
 | |
| 			info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
 | |
| 					| NDCB0_LEN_OVRD
 | |
| 					| NDCB0_EXT_CMD_TYPE(ext_cmd_type);
 | |
| 			info->ndcb3 = info->step_chunk_size +
 | |
| 				      info->step_spare_size;
 | |
| 
 | |
| 			/*
 | |
| 			 * This is the command dispatch that completes a chunked
 | |
| 			 * page program operation.
 | |
| 			 */
 | |
| 			if (info->cur_chunk == info->ntotalchunks) {
 | |
| 				info->ndcb0 = NDCB0_CMD_TYPE(0x1)
 | |
| 					| NDCB0_EXT_CMD_TYPE(ext_cmd_type)
 | |
| 					| command;
 | |
| 				info->ndcb1 = 0;
 | |
| 				info->ndcb2 = 0;
 | |
| 				info->ndcb3 = 0;
 | |
| 			}
 | |
| 		} else {
 | |
| 			info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
 | |
| 					| NDCB0_AUTO_RS
 | |
| 					| NDCB0_ST_ROW_EN
 | |
| 					| NDCB0_DBC
 | |
| 					| (NAND_CMD_PAGEPROG << 8)
 | |
| 					| NAND_CMD_SEQIN
 | |
| 					| addr_cycle;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_PARAM:
 | |
| 		info->buf_count = INIT_BUFFER_SIZE;
 | |
| 		info->ndcb0 |= NDCB0_CMD_TYPE(0)
 | |
| 				| NDCB0_ADDR_CYC(1)
 | |
| 				| NDCB0_LEN_OVRD
 | |
| 				| command;
 | |
| 		info->ndcb1 = (column & 0xFF);
 | |
| 		info->ndcb3 = INIT_BUFFER_SIZE;
 | |
| 		info->step_chunk_size = INIT_BUFFER_SIZE;
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_READID:
 | |
| 		info->buf_count = READ_ID_BYTES;
 | |
| 		info->ndcb0 |= NDCB0_CMD_TYPE(3)
 | |
| 				| NDCB0_ADDR_CYC(1)
 | |
| 				| command;
 | |
| 		info->ndcb1 = (column & 0xFF);
 | |
| 
 | |
| 		info->step_chunk_size = 8;
 | |
| 		break;
 | |
| 	case NAND_CMD_STATUS:
 | |
| 		info->buf_count = 1;
 | |
| 		info->ndcb0 |= NDCB0_CMD_TYPE(4)
 | |
| 				| NDCB0_ADDR_CYC(1)
 | |
| 				| command;
 | |
| 
 | |
| 		info->step_chunk_size = 8;
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_ERASE1:
 | |
| 		info->ndcb0 |= NDCB0_CMD_TYPE(2)
 | |
| 				| NDCB0_AUTO_RS
 | |
| 				| NDCB0_ADDR_CYC(3)
 | |
| 				| NDCB0_DBC
 | |
| 				| (NAND_CMD_ERASE2 << 8)
 | |
| 				| NAND_CMD_ERASE1;
 | |
| 		info->ndcb1 = page_addr;
 | |
| 		info->ndcb2 = 0;
 | |
| 
 | |
| 		break;
 | |
| 	case NAND_CMD_RESET:
 | |
| 		info->ndcb0 |= NDCB0_CMD_TYPE(5)
 | |
| 				| command;
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CMD_ERASE2:
 | |
| 		exec_cmd = 0;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		exec_cmd = 0;
 | |
| 		dev_err(&info->pdev->dev, "non-supported command %x\n",
 | |
| 			command);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return exec_cmd;
 | |
| }
 | |
| 
 | |
| static void nand_cmdfunc(struct mtd_info *mtd, unsigned command,
 | |
| 			 int column, int page_addr)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
 | |
| 	struct pxa3xx_nand_info *info = host->info_data;
 | |
| 	int exec_cmd;
 | |
| 
 | |
| 	/*
 | |
| 	 * if this is a x16 device ,then convert the input
 | |
| 	 * "byte" address into a "word" address appropriate
 | |
| 	 * for indexing a word-oriented device
 | |
| 	 */
 | |
| 	if (info->reg_ndcr & NDCR_DWIDTH_M)
 | |
| 		column /= 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * There may be different NAND chip hooked to
 | |
| 	 * different chip select, so check whether
 | |
| 	 * chip select has been changed, if yes, reset the timing
 | |
| 	 */
 | |
| 	if (info->cs != host->cs) {
 | |
| 		info->cs = host->cs;
 | |
| 		nand_writel(info, NDTR0CS0, info->ndtr0cs0);
 | |
| 		nand_writel(info, NDTR1CS0, info->ndtr1cs0);
 | |
| 	}
 | |
| 
 | |
| 	prepare_start_command(info, command);
 | |
| 
 | |
| 	info->state = STATE_PREPARED;
 | |
| 	exec_cmd = prepare_set_command(info, command, 0, column, page_addr);
 | |
| 
 | |
| 	if (exec_cmd) {
 | |
| 		u32 ts;
 | |
| 
 | |
| 		info->cmd_complete = 0;
 | |
| 		info->dev_ready = 0;
 | |
| 		info->need_wait = 1;
 | |
| 		pxa3xx_nand_start(info);
 | |
| 
 | |
| 		ts = get_timer(0);
 | |
| 		while (1) {
 | |
| 			u32 status;
 | |
| 
 | |
| 			status = nand_readl(info, NDSR);
 | |
| 			if (status)
 | |
| 				pxa3xx_nand_irq(info);
 | |
| 
 | |
| 			if (info->cmd_complete)
 | |
| 				break;
 | |
| 
 | |
| 			if (get_timer(ts) > CHIP_DELAY_TIMEOUT) {
 | |
| 				dev_err(&info->pdev->dev, "Wait timeout!!!\n");
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	info->state = STATE_IDLE;
 | |
| }
 | |
| 
 | |
| static void nand_cmdfunc_extended(struct mtd_info *mtd,
 | |
| 				  const unsigned command,
 | |
| 				  int column, int page_addr)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
 | |
| 	struct pxa3xx_nand_info *info = host->info_data;
 | |
| 	int exec_cmd, ext_cmd_type;
 | |
| 
 | |
| 	/*
 | |
| 	 * if this is a x16 device then convert the input
 | |
| 	 * "byte" address into a "word" address appropriate
 | |
| 	 * for indexing a word-oriented device
 | |
| 	 */
 | |
| 	if (info->reg_ndcr & NDCR_DWIDTH_M)
 | |
| 		column /= 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * There may be different NAND chip hooked to
 | |
| 	 * different chip select, so check whether
 | |
| 	 * chip select has been changed, if yes, reset the timing
 | |
| 	 */
 | |
| 	if (info->cs != host->cs) {
 | |
| 		info->cs = host->cs;
 | |
| 		nand_writel(info, NDTR0CS0, info->ndtr0cs0);
 | |
| 		nand_writel(info, NDTR1CS0, info->ndtr1cs0);
 | |
| 	}
 | |
| 
 | |
| 	/* Select the extended command for the first command */
 | |
| 	switch (command) {
 | |
| 	case NAND_CMD_READ0:
 | |
| 	case NAND_CMD_READOOB:
 | |
| 		ext_cmd_type = EXT_CMD_TYPE_MONO;
 | |
| 		break;
 | |
| 	case NAND_CMD_SEQIN:
 | |
| 		ext_cmd_type = EXT_CMD_TYPE_DISPATCH;
 | |
| 		break;
 | |
| 	case NAND_CMD_PAGEPROG:
 | |
| 		ext_cmd_type = EXT_CMD_TYPE_NAKED_RW;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ext_cmd_type = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	prepare_start_command(info, command);
 | |
| 
 | |
| 	/*
 | |
| 	 * Prepare the "is ready" completion before starting a command
 | |
| 	 * transaction sequence. If the command is not executed the
 | |
| 	 * completion will be completed, see below.
 | |
| 	 *
 | |
| 	 * We can do that inside the loop because the command variable
 | |
| 	 * is invariant and thus so is the exec_cmd.
 | |
| 	 */
 | |
| 	info->need_wait = 1;
 | |
| 	info->dev_ready = 0;
 | |
| 
 | |
| 	do {
 | |
| 		u32 ts;
 | |
| 
 | |
| 		info->state = STATE_PREPARED;
 | |
| 		exec_cmd = prepare_set_command(info, command, ext_cmd_type,
 | |
| 					       column, page_addr);
 | |
| 		if (!exec_cmd) {
 | |
| 			info->need_wait = 0;
 | |
| 			info->dev_ready = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		info->cmd_complete = 0;
 | |
| 		pxa3xx_nand_start(info);
 | |
| 
 | |
| 		ts = get_timer(0);
 | |
| 		while (1) {
 | |
| 			u32 status;
 | |
| 
 | |
| 			status = nand_readl(info, NDSR);
 | |
| 			if (status)
 | |
| 				pxa3xx_nand_irq(info);
 | |
| 
 | |
| 			if (info->cmd_complete)
 | |
| 				break;
 | |
| 
 | |
| 			if (get_timer(ts) > CHIP_DELAY_TIMEOUT) {
 | |
| 				dev_err(&info->pdev->dev, "Wait timeout!!!\n");
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Only a few commands need several steps */
 | |
| 		if (command != NAND_CMD_PAGEPROG &&
 | |
| 		    command != NAND_CMD_READ0    &&
 | |
| 		    command != NAND_CMD_READOOB)
 | |
| 			break;
 | |
| 
 | |
| 		info->cur_chunk++;
 | |
| 
 | |
| 		/* Check if the sequence is complete */
 | |
| 		if (info->cur_chunk == info->ntotalchunks &&
 | |
| 		    command != NAND_CMD_PAGEPROG)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * After a splitted program command sequence has issued
 | |
| 		 * the command dispatch, the command sequence is complete.
 | |
| 		 */
 | |
| 		if (info->cur_chunk == (info->ntotalchunks + 1) &&
 | |
| 		    command == NAND_CMD_PAGEPROG &&
 | |
| 		    ext_cmd_type == EXT_CMD_TYPE_DISPATCH)
 | |
| 			break;
 | |
| 
 | |
| 		if (command == NAND_CMD_READ0 || command == NAND_CMD_READOOB) {
 | |
| 			/* Last read: issue a 'last naked read' */
 | |
| 			if (info->cur_chunk == info->ntotalchunks - 1)
 | |
| 				ext_cmd_type = EXT_CMD_TYPE_LAST_RW;
 | |
| 			else
 | |
| 				ext_cmd_type = EXT_CMD_TYPE_NAKED_RW;
 | |
| 
 | |
| 		/*
 | |
| 		 * If a splitted program command has no more data to transfer,
 | |
| 		 * the command dispatch must be issued to complete.
 | |
| 		 */
 | |
| 		} else if (command == NAND_CMD_PAGEPROG &&
 | |
| 			   info->cur_chunk == info->ntotalchunks) {
 | |
| 				ext_cmd_type = EXT_CMD_TYPE_DISPATCH;
 | |
| 		}
 | |
| 	} while (1);
 | |
| 
 | |
| 	info->state = STATE_IDLE;
 | |
| }
 | |
| 
 | |
| static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd,
 | |
| 		struct nand_chip *chip, const uint8_t *buf, int oob_required,
 | |
| 		int page)
 | |
| {
 | |
| 	chip->write_buf(mtd, buf, mtd->writesize);
 | |
| 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd,
 | |
| 		struct nand_chip *chip, uint8_t *buf, int oob_required,
 | |
| 		int page)
 | |
| {
 | |
| 	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
 | |
| 	struct pxa3xx_nand_info *info = host->info_data;
 | |
| 	int bf;
 | |
| 
 | |
| 	chip->read_buf(mtd, buf, mtd->writesize);
 | |
| 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 | |
| 
 | |
| 	if (info->retcode == ERR_CORERR && info->use_ecc) {
 | |
| 		mtd->ecc_stats.corrected += info->ecc_err_cnt;
 | |
| 
 | |
| 	} else if (info->retcode == ERR_UNCORERR && info->ecc_bch) {
 | |
| 		/*
 | |
| 		 * Empty pages will trigger uncorrectable errors. Re-read the
 | |
| 		 * entire page in raw mode and check for bits not being "1".
 | |
| 		 * If there are more than the supported strength, then it means
 | |
| 		 * this is an actual uncorrectable error.
 | |
| 		 */
 | |
| 		chip->ecc.read_page_raw(mtd, chip, buf, oob_required, page);
 | |
| 		bf = nand_check_erased_ecc_chunk(buf, mtd->writesize,
 | |
| 						 chip->oob_poi, mtd->oobsize,
 | |
| 						 NULL, 0, chip->ecc.strength);
 | |
| 		if (bf < 0) {
 | |
| 			mtd->ecc_stats.failed++;
 | |
| 		} else if (bf) {
 | |
| 			mtd->ecc_stats.corrected += bf;
 | |
| 			info->max_bitflips = max_t(unsigned int,
 | |
| 						   info->max_bitflips, bf);
 | |
| 			info->retcode = ERR_CORERR;
 | |
| 		} else {
 | |
| 			info->retcode = ERR_NONE;
 | |
| 		}
 | |
| 
 | |
| 	} else if (info->retcode == ERR_UNCORERR && !info->ecc_bch) {
 | |
| 		/* Raw read is not supported with Hamming ECC engine */
 | |
| 		if (is_buf_blank(buf, mtd->writesize))
 | |
| 			info->retcode = ERR_NONE;
 | |
| 		else
 | |
| 			mtd->ecc_stats.failed++;
 | |
| 	}
 | |
| 
 | |
| 	return info->max_bitflips;
 | |
| }
 | |
| 
 | |
| static int pxa3xx_nand_read_page_raw(struct mtd_info *mtd,
 | |
| 				     struct nand_chip *chip, uint8_t *buf,
 | |
| 				     int oob_required, int page)
 | |
| {
 | |
| 	struct pxa3xx_nand_host *host = chip->priv;
 | |
| 	struct pxa3xx_nand_info *info = host->info_data;
 | |
| 	int chunk, ecc_off_buf;
 | |
| 
 | |
| 	if (!info->ecc_bch)
 | |
| 		return -ENOTSUPP;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the force_raw boolean, then re-call ->cmdfunc() that will run
 | |
| 	 * pxa3xx_nand_start(), which will actually disable the ECC engine.
 | |
| 	 */
 | |
| 	info->force_raw = true;
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
 | |
| 
 | |
| 	ecc_off_buf = (info->nfullchunks * info->spare_size) +
 | |
| 		      info->last_spare_size;
 | |
| 	for (chunk = 0; chunk < info->nfullchunks; chunk++) {
 | |
| 		chip->read_buf(mtd,
 | |
| 			       buf + (chunk * info->chunk_size),
 | |
| 			       info->chunk_size);
 | |
| 		chip->read_buf(mtd,
 | |
| 			       chip->oob_poi +
 | |
| 			       (chunk * (info->spare_size)),
 | |
| 			       info->spare_size);
 | |
| 		chip->read_buf(mtd,
 | |
| 			       chip->oob_poi + ecc_off_buf +
 | |
| 			       (chunk * (info->ecc_size)),
 | |
| 			       info->ecc_size - 2);
 | |
| 	}
 | |
| 
 | |
| 	if (info->ntotalchunks > info->nfullchunks) {
 | |
| 		chip->read_buf(mtd,
 | |
| 			       buf + (info->nfullchunks * info->chunk_size),
 | |
| 			       info->last_chunk_size);
 | |
| 		chip->read_buf(mtd,
 | |
| 			       chip->oob_poi +
 | |
| 			       (info->nfullchunks * (info->spare_size)),
 | |
| 			       info->last_spare_size);
 | |
| 		chip->read_buf(mtd,
 | |
| 			       chip->oob_poi + ecc_off_buf +
 | |
| 			       (info->nfullchunks * (info->ecc_size)),
 | |
| 			       info->ecc_size - 2);
 | |
| 	}
 | |
| 
 | |
| 	info->force_raw = false;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pxa3xx_nand_read_oob_raw(struct mtd_info *mtd,
 | |
| 				    struct nand_chip *chip, int page)
 | |
| {
 | |
| 	/* Invalidate page cache */
 | |
| 	chip->pagebuf = -1;
 | |
| 
 | |
| 	return chip->ecc.read_page_raw(mtd, chip, chip->buffers->databuf, true,
 | |
| 				       page);
 | |
| }
 | |
| 
 | |
| static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
 | |
| 	struct pxa3xx_nand_info *info = host->info_data;
 | |
| 	char retval = 0xFF;
 | |
| 
 | |
| 	if (info->buf_start < info->buf_count)
 | |
| 		/* Has just send a new command? */
 | |
| 		retval = info->data_buff[info->buf_start++];
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static u16 pxa3xx_nand_read_word(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
 | |
| 	struct pxa3xx_nand_info *info = host->info_data;
 | |
| 	u16 retval = 0xFFFF;
 | |
| 
 | |
| 	if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) {
 | |
| 		retval = *((u16 *)(info->data_buff+info->buf_start));
 | |
| 		info->buf_start += 2;
 | |
| 	}
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
 | |
| 	struct pxa3xx_nand_info *info = host->info_data;
 | |
| 	int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
 | |
| 
 | |
| 	memcpy(buf, info->data_buff + info->buf_start, real_len);
 | |
| 	info->buf_start += real_len;
 | |
| }
 | |
| 
 | |
| static void pxa3xx_nand_write_buf(struct mtd_info *mtd,
 | |
| 		const uint8_t *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
 | |
| 	struct pxa3xx_nand_info *info = host->info_data;
 | |
| 	int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
 | |
| 
 | |
| 	memcpy(info->data_buff + info->buf_start, buf, real_len);
 | |
| 	info->buf_start += real_len;
 | |
| }
 | |
| 
 | |
| static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
 | |
| 	struct pxa3xx_nand_info *info = host->info_data;
 | |
| 
 | |
| 	if (info->need_wait) {
 | |
| 		u32 ts;
 | |
| 
 | |
| 		info->need_wait = 0;
 | |
| 
 | |
| 		ts = get_timer(0);
 | |
| 		while (1) {
 | |
| 			u32 status;
 | |
| 
 | |
| 			status = nand_readl(info, NDSR);
 | |
| 			if (status)
 | |
| 				pxa3xx_nand_irq(info);
 | |
| 
 | |
| 			if (info->dev_ready)
 | |
| 				break;
 | |
| 
 | |
| 			if (get_timer(ts) > CHIP_DELAY_TIMEOUT) {
 | |
| 				dev_err(&info->pdev->dev, "Ready timeout!!!\n");
 | |
| 				return NAND_STATUS_FAIL;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* pxa3xx_nand_send_command has waited for command complete */
 | |
| 	if (this->state == FL_WRITING || this->state == FL_ERASING) {
 | |
| 		if (info->retcode == ERR_NONE)
 | |
| 			return 0;
 | |
| 		else
 | |
| 			return NAND_STATUS_FAIL;
 | |
| 	}
 | |
| 
 | |
| 	return NAND_STATUS_READY;
 | |
| }
 | |
| 
 | |
| static int pxa3xx_nand_config_ident(struct pxa3xx_nand_info *info)
 | |
| {
 | |
| 	struct pxa3xx_nand_platform_data *pdata = info->pdata;
 | |
| 
 | |
| 	/* Configure default flash values */
 | |
| 	info->reg_ndcr = 0x0; /* enable all interrupts */
 | |
| 	info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
 | |
| 	info->reg_ndcr |= NDCR_RD_ID_CNT(READ_ID_BYTES);
 | |
| 	info->reg_ndcr |= NDCR_SPARE_EN;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void pxa3xx_nand_config_tail(struct pxa3xx_nand_info *info)
 | |
| {
 | |
| 	struct pxa3xx_nand_host *host = info->host[info->cs];
 | |
| 	struct mtd_info *mtd = nand_to_mtd(&info->host[info->cs]->chip);
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 
 | |
| 	info->reg_ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0;
 | |
| 	info->reg_ndcr |= (chip->page_shift == 6) ? NDCR_PG_PER_BLK : 0;
 | |
| 	info->reg_ndcr |= (mtd->writesize == 2048) ? NDCR_PAGE_SZ : 0;
 | |
| }
 | |
| 
 | |
| static void pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info)
 | |
| {
 | |
| 	struct pxa3xx_nand_platform_data *pdata = info->pdata;
 | |
| 	uint32_t ndcr = nand_readl(info, NDCR);
 | |
| 
 | |
| 	/* Set an initial chunk size */
 | |
| 	info->chunk_size = ndcr & NDCR_PAGE_SZ ? 2048 : 512;
 | |
| 	info->reg_ndcr = ndcr &
 | |
| 		~(NDCR_INT_MASK | NDCR_ND_ARB_EN | NFCV1_NDCR_ARB_CNTL);
 | |
| 	info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
 | |
| 	info->ndtr0cs0 = nand_readl(info, NDTR0CS0);
 | |
| 	info->ndtr1cs0 = nand_readl(info, NDTR1CS0);
 | |
| }
 | |
| 
 | |
| static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info)
 | |
| {
 | |
| 	info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
 | |
| 	if (info->data_buff == NULL)
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pxa3xx_nand_sensing(struct pxa3xx_nand_host *host)
 | |
| {
 | |
| 	struct pxa3xx_nand_info *info = host->info_data;
 | |
| 	struct pxa3xx_nand_platform_data *pdata = info->pdata;
 | |
| 	struct mtd_info *mtd;
 | |
| 	struct nand_chip *chip;
 | |
| 	const struct nand_sdr_timings *timings;
 | |
| 	int ret;
 | |
| 
 | |
| 	mtd = nand_to_mtd(&info->host[info->cs]->chip);
 | |
| 	chip = mtd_to_nand(mtd);
 | |
| 
 | |
| 	/* configure default flash values */
 | |
| 	info->reg_ndcr = 0x0; /* enable all interrupts */
 | |
| 	info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
 | |
| 	info->reg_ndcr |= NDCR_RD_ID_CNT(READ_ID_BYTES);
 | |
| 	info->reg_ndcr |= NDCR_SPARE_EN; /* enable spare by default */
 | |
| 
 | |
| 	/* use the common timing to make a try */
 | |
| 	timings = onfi_async_timing_mode_to_sdr_timings(0);
 | |
| 	if (IS_ERR(timings))
 | |
| 		return PTR_ERR(timings);
 | |
| 
 | |
| 	pxa3xx_nand_set_sdr_timing(host, timings);
 | |
| 
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_RESET, 0, 0);
 | |
| 	ret = chip->waitfunc(mtd, chip);
 | |
| 	if (ret & NAND_STATUS_FAIL)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pxa_ecc_init(struct pxa3xx_nand_info *info,
 | |
| 			struct nand_ecc_ctrl *ecc,
 | |
| 			int strength, int ecc_stepsize, int page_size)
 | |
| {
 | |
| 	if (strength == 1 && ecc_stepsize == 512 && page_size == 2048) {
 | |
| 		info->nfullchunks = 1;
 | |
| 		info->ntotalchunks = 1;
 | |
| 		info->chunk_size = 2048;
 | |
| 		info->spare_size = 40;
 | |
| 		info->ecc_size = 24;
 | |
| 		ecc->mode = NAND_ECC_HW;
 | |
| 		ecc->size = 512;
 | |
| 		ecc->strength = 1;
 | |
| 
 | |
| 	} else if (strength == 1 && ecc_stepsize == 512 && page_size == 512) {
 | |
| 		info->nfullchunks = 1;
 | |
| 		info->ntotalchunks = 1;
 | |
| 		info->chunk_size = 512;
 | |
| 		info->spare_size = 8;
 | |
| 		info->ecc_size = 8;
 | |
| 		ecc->mode = NAND_ECC_HW;
 | |
| 		ecc->size = 512;
 | |
| 		ecc->strength = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Required ECC: 4-bit correction per 512 bytes
 | |
| 	 * Select: 16-bit correction per 2048 bytes
 | |
| 	 */
 | |
| 	} else if (strength == 4 && ecc_stepsize == 512 && page_size == 2048) {
 | |
| 		info->ecc_bch = 1;
 | |
| 		info->nfullchunks = 1;
 | |
| 		info->ntotalchunks = 1;
 | |
| 		info->chunk_size = 2048;
 | |
| 		info->spare_size = 32;
 | |
| 		info->ecc_size = 32;
 | |
| 		ecc->mode = NAND_ECC_HW;
 | |
| 		ecc->size = info->chunk_size;
 | |
| 		ecc->layout = &ecc_layout_2KB_bch4bit;
 | |
| 		ecc->strength = 16;
 | |
| 
 | |
| 	} else if (strength == 4 && ecc_stepsize == 512 && page_size == 4096) {
 | |
| 		info->ecc_bch = 1;
 | |
| 		info->nfullchunks = 2;
 | |
| 		info->ntotalchunks = 2;
 | |
| 		info->chunk_size = 2048;
 | |
| 		info->spare_size = 32;
 | |
| 		info->ecc_size = 32;
 | |
| 		ecc->mode = NAND_ECC_HW;
 | |
| 		ecc->size = info->chunk_size;
 | |
| 		ecc->layout = &ecc_layout_4KB_bch4bit;
 | |
| 		ecc->strength = 16;
 | |
| 
 | |
| 	} else if (strength == 4 && ecc_stepsize == 512 && page_size == 8192) {
 | |
| 		info->ecc_bch = 1;
 | |
| 		info->nfullchunks = 4;
 | |
| 		info->ntotalchunks = 4;
 | |
| 		info->chunk_size = 2048;
 | |
| 		info->spare_size = 32;
 | |
| 		info->ecc_size = 32;
 | |
| 		ecc->mode = NAND_ECC_HW;
 | |
| 		ecc->size = info->chunk_size;
 | |
| 		ecc->layout = &ecc_layout_8KB_bch4bit;
 | |
| 		ecc->strength = 16;
 | |
| 
 | |
| 	/*
 | |
| 	 * Required ECC: 8-bit correction per 512 bytes
 | |
| 	 * Select: 16-bit correction per 1024 bytes
 | |
| 	 */
 | |
| 	} else if (strength == 8 && ecc_stepsize == 512 && page_size == 2048) {
 | |
| 		info->ecc_bch = 1;
 | |
| 		info->nfullchunks = 1;
 | |
| 		info->ntotalchunks = 2;
 | |
| 		info->chunk_size = 1024;
 | |
| 		info->spare_size = 0;
 | |
| 		info->last_chunk_size = 1024;
 | |
| 		info->last_spare_size = 32;
 | |
| 		info->ecc_size = 32;
 | |
| 		ecc->mode = NAND_ECC_HW;
 | |
| 		ecc->size = info->chunk_size;
 | |
| 		ecc->layout = &ecc_layout_2KB_bch8bit;
 | |
| 		ecc->strength = 16;
 | |
| 
 | |
| 	} else if (strength == 8 && ecc_stepsize == 512 && page_size == 4096) {
 | |
| 		info->ecc_bch = 1;
 | |
| 		info->nfullchunks = 4;
 | |
| 		info->ntotalchunks = 5;
 | |
| 		info->chunk_size = 1024;
 | |
| 		info->spare_size = 0;
 | |
| 		info->last_chunk_size = 0;
 | |
| 		info->last_spare_size = 64;
 | |
| 		info->ecc_size = 32;
 | |
| 		ecc->mode = NAND_ECC_HW;
 | |
| 		ecc->size = info->chunk_size;
 | |
| 		ecc->layout = &ecc_layout_4KB_bch8bit;
 | |
| 		ecc->strength = 16;
 | |
| 
 | |
| 	} else if (strength == 8 && ecc_stepsize == 512 && page_size == 8192) {
 | |
| 		info->ecc_bch = 1;
 | |
| 		info->nfullchunks = 8;
 | |
| 		info->ntotalchunks = 9;
 | |
| 		info->chunk_size = 1024;
 | |
| 		info->spare_size = 0;
 | |
| 		info->last_chunk_size = 0;
 | |
| 		info->last_spare_size = 160;
 | |
| 		info->ecc_size = 32;
 | |
| 		ecc->mode = NAND_ECC_HW;
 | |
| 		ecc->size = info->chunk_size;
 | |
| 		ecc->layout = &ecc_layout_8KB_bch8bit;
 | |
| 		ecc->strength = 16;
 | |
| 
 | |
| 	} else {
 | |
| 		dev_err(&info->pdev->dev,
 | |
| 			"ECC strength %d at page size %d is not supported\n",
 | |
| 			strength, page_size);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pxa3xx_nand_scan(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
 | |
| 	struct pxa3xx_nand_info *info = host->info_data;
 | |
| 	struct pxa3xx_nand_platform_data *pdata = info->pdata;
 | |
| 	int ret;
 | |
| 	uint16_t ecc_strength, ecc_step;
 | |
| 
 | |
| 	if (pdata->keep_config) {
 | |
| 		pxa3xx_nand_detect_config(info);
 | |
| 	} else {
 | |
| 		ret = pxa3xx_nand_config_ident(info);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		ret = pxa3xx_nand_sensing(host);
 | |
| 		if (ret) {
 | |
| 			dev_info(&info->pdev->dev,
 | |
| 				 "There is no chip on cs %d!\n",
 | |
| 				 info->cs);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Device detection must be done with ECC disabled */
 | |
| 	if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370)
 | |
| 		nand_writel(info, NDECCCTRL, 0x0);
 | |
| 
 | |
| 	if (nand_scan_ident(mtd, 1, NULL))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (!pdata->keep_config) {
 | |
| 		ret = pxa3xx_nand_init_timings(host);
 | |
| 		if (ret) {
 | |
| 			dev_err(&info->pdev->dev,
 | |
| 				"Failed to set timings: %d\n", ret);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
 | |
| 	/*
 | |
| 	 * We'll use a bad block table stored in-flash and don't
 | |
| 	 * allow writing the bad block marker to the flash.
 | |
| 	 */
 | |
| 	chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB_BBM;
 | |
| 	chip->bbt_td = &bbt_main_descr;
 | |
| 	chip->bbt_md = &bbt_mirror_descr;
 | |
| #endif
 | |
| 
 | |
| 	if (pdata->ecc_strength && pdata->ecc_step_size) {
 | |
| 		ecc_strength = pdata->ecc_strength;
 | |
| 		ecc_step = pdata->ecc_step_size;
 | |
| 	} else {
 | |
| 		ecc_strength = chip->ecc_strength_ds;
 | |
| 		ecc_step = chip->ecc_step_ds;
 | |
| 	}
 | |
| 
 | |
| 	/* Set default ECC strength requirements on non-ONFI devices */
 | |
| 	if (ecc_strength < 1 && ecc_step < 1) {
 | |
| 		ecc_strength = 1;
 | |
| 		ecc_step = 512;
 | |
| 	}
 | |
| 
 | |
| 	ret = pxa_ecc_init(info, &chip->ecc, ecc_strength,
 | |
| 			   ecc_step, mtd->writesize);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the page size is bigger than the FIFO size, let's check
 | |
| 	 * we are given the right variant and then switch to the extended
 | |
| 	 * (aka split) command handling,
 | |
| 	 */
 | |
| 	if (mtd->writesize > info->chunk_size) {
 | |
| 		if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370) {
 | |
| 			chip->cmdfunc = nand_cmdfunc_extended;
 | |
| 		} else {
 | |
| 			dev_err(&info->pdev->dev,
 | |
| 				"unsupported page size on this variant\n");
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* calculate addressing information */
 | |
| 	if (mtd->writesize >= 2048)
 | |
| 		host->col_addr_cycles = 2;
 | |
| 	else
 | |
| 		host->col_addr_cycles = 1;
 | |
| 
 | |
| 	/* release the initial buffer */
 | |
| 	kfree(info->data_buff);
 | |
| 
 | |
| 	/* allocate the real data + oob buffer */
 | |
| 	info->buf_size = mtd->writesize + mtd->oobsize;
 | |
| 	ret = pxa3xx_nand_init_buff(info);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	info->oob_buff = info->data_buff + mtd->writesize;
 | |
| 
 | |
| 	if ((mtd->size >> chip->page_shift) > 65536)
 | |
| 		host->row_addr_cycles = 3;
 | |
| 	else
 | |
| 		host->row_addr_cycles = 2;
 | |
| 
 | |
| 	if (!pdata->keep_config)
 | |
| 		pxa3xx_nand_config_tail(info);
 | |
| 
 | |
| 	return nand_scan_tail(mtd);
 | |
| }
 | |
| 
 | |
| static int alloc_nand_resource(struct pxa3xx_nand_info *info)
 | |
| {
 | |
| 	struct pxa3xx_nand_platform_data *pdata;
 | |
| 	struct pxa3xx_nand_host *host;
 | |
| 	struct nand_chip *chip = NULL;
 | |
| 	struct mtd_info *mtd;
 | |
| 	int ret, cs;
 | |
| 
 | |
| 	pdata = info->pdata;
 | |
| 	if (pdata->num_cs <= 0)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	info->variant = pxa3xx_nand_get_variant();
 | |
| 	for (cs = 0; cs < pdata->num_cs; cs++) {
 | |
| 		chip = (struct nand_chip *)
 | |
| 			((u8 *)&info[1] + sizeof(*host) * cs);
 | |
| 		mtd = nand_to_mtd(chip);
 | |
| 		host = (struct pxa3xx_nand_host *)chip;
 | |
| 		info->host[cs] = host;
 | |
| 		host->cs = cs;
 | |
| 		host->info_data = info;
 | |
| 		mtd->owner = THIS_MODULE;
 | |
| 
 | |
| 		nand_set_controller_data(chip, host);
 | |
| 		chip->ecc.read_page	= pxa3xx_nand_read_page_hwecc;
 | |
| 		chip->ecc.read_page_raw	= pxa3xx_nand_read_page_raw;
 | |
| 		chip->ecc.read_oob_raw	= pxa3xx_nand_read_oob_raw;
 | |
| 		chip->ecc.write_page	= pxa3xx_nand_write_page_hwecc;
 | |
| 		chip->controller        = &info->controller;
 | |
| 		chip->waitfunc		= pxa3xx_nand_waitfunc;
 | |
| 		chip->select_chip	= pxa3xx_nand_select_chip;
 | |
| 		chip->read_word		= pxa3xx_nand_read_word;
 | |
| 		chip->read_byte		= pxa3xx_nand_read_byte;
 | |
| 		chip->read_buf		= pxa3xx_nand_read_buf;
 | |
| 		chip->write_buf		= pxa3xx_nand_write_buf;
 | |
| 		chip->options		|= NAND_NO_SUBPAGE_WRITE;
 | |
| 		chip->cmdfunc		= nand_cmdfunc;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate a buffer to allow flash detection */
 | |
| 	info->buf_size = INIT_BUFFER_SIZE;
 | |
| 	info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
 | |
| 	if (info->data_buff == NULL) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto fail_disable_clk;
 | |
| 	}
 | |
| 
 | |
| 	/* initialize all interrupts to be disabled */
 | |
| 	disable_int(info, NDSR_MASK);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| 	kfree(info->data_buff);
 | |
| fail_disable_clk:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int pxa3xx_nand_probe_dt(struct pxa3xx_nand_info *info)
 | |
| {
 | |
| 	struct pxa3xx_nand_platform_data *pdata;
 | |
| 	const void *blob = gd->fdt_blob;
 | |
| 	int node = -1;
 | |
| 
 | |
| 	pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
 | |
| 	if (!pdata)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Get address decoding nodes from the FDT blob */
 | |
| 	do {
 | |
| 		node = fdt_node_offset_by_compatible(blob, node,
 | |
| 						     "marvell,mvebu-pxa3xx-nand");
 | |
| 		if (node < 0)
 | |
| 			break;
 | |
| 
 | |
| 		/* Bypass disabeld nodes */
 | |
| 		if (!fdtdec_get_is_enabled(blob, node))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Get the first enabled NAND controler base address */
 | |
| 		info->mmio_base =
 | |
| 			(void __iomem *)fdtdec_get_addr_size_auto_noparent(
 | |
| 					blob, node, "reg", 0, NULL, true);
 | |
| 
 | |
| 		pdata->num_cs = fdtdec_get_int(blob, node, "num-cs", 1);
 | |
| 		if (pdata->num_cs != 1) {
 | |
| 			pr_err("pxa3xx driver supports single CS only\n");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (fdtdec_get_bool(blob, node, "nand-enable-arbiter"))
 | |
| 			pdata->enable_arbiter = 1;
 | |
| 
 | |
| 		if (fdtdec_get_bool(blob, node, "nand-keep-config"))
 | |
| 			pdata->keep_config = 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * ECC parameters.
 | |
| 		 * If these are not set, they will be selected according
 | |
| 		 * to the detected flash type.
 | |
| 		 */
 | |
| 		/* ECC strength */
 | |
| 		pdata->ecc_strength = fdtdec_get_int(blob, node,
 | |
| 						     "nand-ecc-strength", 0);
 | |
| 
 | |
| 		/* ECC step size */
 | |
| 		pdata->ecc_step_size = fdtdec_get_int(blob, node,
 | |
| 						      "nand-ecc-step-size", 0);
 | |
| 
 | |
| 		info->pdata = pdata;
 | |
| 
 | |
| 		/* Currently support only a single NAND controller */
 | |
| 		return 0;
 | |
| 
 | |
| 	} while (node >= 0);
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int pxa3xx_nand_probe(struct pxa3xx_nand_info *info)
 | |
| {
 | |
| 	struct pxa3xx_nand_platform_data *pdata;
 | |
| 	int ret, cs, probe_success;
 | |
| 
 | |
| 	ret = pxa3xx_nand_probe_dt(info);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	pdata = info->pdata;
 | |
| 
 | |
| 	ret = alloc_nand_resource(info);
 | |
| 	if (ret) {
 | |
| 		dev_err(&pdev->dev, "alloc nand resource failed\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	probe_success = 0;
 | |
| 	for (cs = 0; cs < pdata->num_cs; cs++) {
 | |
| 		struct mtd_info *mtd = nand_to_mtd(&info->host[cs]->chip);
 | |
| 
 | |
| 		/*
 | |
| 		 * The mtd name matches the one used in 'mtdparts' kernel
 | |
| 		 * parameter. This name cannot be changed or otherwise
 | |
| 		 * user's mtd partitions configuration would get broken.
 | |
| 		 */
 | |
| 		mtd->name = "pxa3xx_nand-0";
 | |
| 		info->cs = cs;
 | |
| 		ret = pxa3xx_nand_scan(mtd);
 | |
| 		if (ret) {
 | |
| 			dev_info(&pdev->dev, "failed to scan nand at cs %d\n",
 | |
| 				 cs);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (nand_register(cs, mtd))
 | |
| 			continue;
 | |
| 
 | |
| 		probe_success = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!probe_success)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Main initialization routine
 | |
|  */
 | |
| void board_nand_init(void)
 | |
| {
 | |
| 	struct pxa3xx_nand_info *info;
 | |
| 	struct pxa3xx_nand_host *host;
 | |
| 	int ret;
 | |
| 
 | |
| 	info = kzalloc(sizeof(*info) +
 | |
| 		       sizeof(*host) * CONFIG_SYS_MAX_NAND_DEVICE,
 | |
| 		       GFP_KERNEL);
 | |
| 	if (!info)
 | |
| 		return;
 | |
| 
 | |
| 	ret = pxa3xx_nand_probe(info);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| }
 |