1213 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1213 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Freescale i.MX28 NAND flash driver
 | |
|  *
 | |
|  * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
 | |
|  * on behalf of DENX Software Engineering GmbH
 | |
|  *
 | |
|  * Based on code from LTIB:
 | |
|  * Freescale GPMI NFC NAND Flash Driver
 | |
|  *
 | |
|  * Copyright (C) 2010 Freescale Semiconductor, Inc.
 | |
|  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
 | |
|  *
 | |
|  * SPDX-License-Identifier:	GPL-2.0+
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/mtd/nand.h>
 | |
| #include <linux/types.h>
 | |
| #include <malloc.h>
 | |
| #include <asm/errno.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/arch/clock.h>
 | |
| #include <asm/arch/imx-regs.h>
 | |
| #include <asm/imx-common/regs-bch.h>
 | |
| #include <asm/imx-common/regs-gpmi.h>
 | |
| #include <asm/arch/sys_proto.h>
 | |
| #include <asm/imx-common/dma.h>
 | |
| 
 | |
| #define	MXS_NAND_DMA_DESCRIPTOR_COUNT		4
 | |
| 
 | |
| #define	MXS_NAND_CHUNK_DATA_CHUNK_SIZE		512
 | |
| #if (defined(CONFIG_MX6) || defined(CONFIG_MX7))
 | |
| #define	MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT	2
 | |
| #else
 | |
| #define	MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT	0
 | |
| #endif
 | |
| #define	MXS_NAND_METADATA_SIZE			10
 | |
| #define	MXS_NAND_BITS_PER_ECC_LEVEL		13
 | |
| #define	MXS_NAND_COMMAND_BUFFER_SIZE		32
 | |
| 
 | |
| #define	MXS_NAND_BCH_TIMEOUT			10000
 | |
| 
 | |
| struct mxs_nand_info {
 | |
| 	int		cur_chip;
 | |
| 
 | |
| 	uint32_t	cmd_queue_len;
 | |
| 	uint32_t	data_buf_size;
 | |
| 
 | |
| 	uint8_t		*cmd_buf;
 | |
| 	uint8_t		*data_buf;
 | |
| 	uint8_t		*oob_buf;
 | |
| 
 | |
| 	uint8_t		marking_block_bad;
 | |
| 	uint8_t		raw_oob_mode;
 | |
| 
 | |
| 	/* Functions with altered behaviour */
 | |
| 	int		(*hooked_read_oob)(struct mtd_info *mtd,
 | |
| 				loff_t from, struct mtd_oob_ops *ops);
 | |
| 	int		(*hooked_write_oob)(struct mtd_info *mtd,
 | |
| 				loff_t to, struct mtd_oob_ops *ops);
 | |
| 	int		(*hooked_block_markbad)(struct mtd_info *mtd,
 | |
| 				loff_t ofs);
 | |
| 
 | |
| 	/* DMA descriptors */
 | |
| 	struct mxs_dma_desc	**desc;
 | |
| 	uint32_t		desc_index;
 | |
| };
 | |
| 
 | |
| struct nand_ecclayout fake_ecc_layout;
 | |
| static int chunk_data_size = MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
 | |
| static int galois_field = 13;
 | |
| 
 | |
| /*
 | |
|  * Cache management functions
 | |
|  */
 | |
| #ifndef	CONFIG_SYS_DCACHE_OFF
 | |
| static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
 | |
| {
 | |
| 	uint32_t addr = (uint32_t)info->data_buf;
 | |
| 
 | |
| 	flush_dcache_range(addr, addr + info->data_buf_size);
 | |
| }
 | |
| 
 | |
| static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
 | |
| {
 | |
| 	uint32_t addr = (uint32_t)info->data_buf;
 | |
| 
 | |
| 	invalidate_dcache_range(addr, addr + info->data_buf_size);
 | |
| }
 | |
| 
 | |
| static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
 | |
| {
 | |
| 	uint32_t addr = (uint32_t)info->cmd_buf;
 | |
| 
 | |
| 	flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
 | |
| }
 | |
| #else
 | |
| static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
 | |
| static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
 | |
| static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
 | |
| #endif
 | |
| 
 | |
| static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
 | |
| {
 | |
| 	struct mxs_dma_desc *desc;
 | |
| 
 | |
| 	if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
 | |
| 		printf("MXS NAND: Too many DMA descriptors requested\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	desc = info->desc[info->desc_index];
 | |
| 	info->desc_index++;
 | |
| 
 | |
| 	return desc;
 | |
| }
 | |
| 
 | |
| static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
 | |
| {
 | |
| 	int i;
 | |
| 	struct mxs_dma_desc *desc;
 | |
| 
 | |
| 	for (i = 0; i < info->desc_index; i++) {
 | |
| 		desc = info->desc[i];
 | |
| 		memset(desc, 0, sizeof(struct mxs_dma_desc));
 | |
| 		desc->address = (dma_addr_t)desc;
 | |
| 	}
 | |
| 
 | |
| 	info->desc_index = 0;
 | |
| }
 | |
| 
 | |
| static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
 | |
| {
 | |
| 	return page_data_size / chunk_data_size;
 | |
| }
 | |
| 
 | |
| static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
 | |
| {
 | |
| 	return ecc_strength * galois_field;
 | |
| }
 | |
| 
 | |
| static uint32_t mxs_nand_aux_status_offset(void)
 | |
| {
 | |
| 	return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
 | |
| }
 | |
| 
 | |
| static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
 | |
| 						uint32_t page_oob_size)
 | |
| {
 | |
| 	int ecc_strength;
 | |
| 	int max_ecc_strength_supported;
 | |
| 
 | |
| 	/* Refer to Chapter 17 for i.MX6DQ, Chapter 18 for i.MX6SX */
 | |
| 	if (is_mx6sx() || is_mx7())
 | |
| 		max_ecc_strength_supported = 62;
 | |
| 	else
 | |
| 		max_ecc_strength_supported = 40;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine the ECC layout with the formula:
 | |
| 	 *	ECC bits per chunk = (total page spare data bits) /
 | |
| 	 *		(bits per ECC level) / (chunks per page)
 | |
| 	 * where:
 | |
| 	 *	total page spare data bits =
 | |
| 	 *		(page oob size - meta data size) * (bits per byte)
 | |
| 	 */
 | |
| 	ecc_strength = ((page_oob_size - MXS_NAND_METADATA_SIZE) * 8)
 | |
| 			/ (galois_field *
 | |
| 			   mxs_nand_ecc_chunk_cnt(page_data_size));
 | |
| 
 | |
| 	return min(round_down(ecc_strength, 2), max_ecc_strength_supported);
 | |
| }
 | |
| 
 | |
| static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
 | |
| 						uint32_t ecc_strength)
 | |
| {
 | |
| 	uint32_t chunk_data_size_in_bits;
 | |
| 	uint32_t chunk_ecc_size_in_bits;
 | |
| 	uint32_t chunk_total_size_in_bits;
 | |
| 	uint32_t block_mark_chunk_number;
 | |
| 	uint32_t block_mark_chunk_bit_offset;
 | |
| 	uint32_t block_mark_bit_offset;
 | |
| 
 | |
| 	chunk_data_size_in_bits = chunk_data_size * 8;
 | |
| 	chunk_ecc_size_in_bits  = mxs_nand_ecc_size_in_bits(ecc_strength);
 | |
| 
 | |
| 	chunk_total_size_in_bits =
 | |
| 			chunk_data_size_in_bits + chunk_ecc_size_in_bits;
 | |
| 
 | |
| 	/* Compute the bit offset of the block mark within the physical page. */
 | |
| 	block_mark_bit_offset = page_data_size * 8;
 | |
| 
 | |
| 	/* Subtract the metadata bits. */
 | |
| 	block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute the chunk number (starting at zero) in which the block mark
 | |
| 	 * appears.
 | |
| 	 */
 | |
| 	block_mark_chunk_number =
 | |
| 			block_mark_bit_offset / chunk_total_size_in_bits;
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute the bit offset of the block mark within its chunk, and
 | |
| 	 * validate it.
 | |
| 	 */
 | |
| 	block_mark_chunk_bit_offset = block_mark_bit_offset -
 | |
| 			(block_mark_chunk_number * chunk_total_size_in_bits);
 | |
| 
 | |
| 	if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that we know the chunk number in which the block mark appears,
 | |
| 	 * we can subtract all the ECC bits that appear before it.
 | |
| 	 */
 | |
| 	block_mark_bit_offset -=
 | |
| 		block_mark_chunk_number * chunk_ecc_size_in_bits;
 | |
| 
 | |
| 	return block_mark_bit_offset;
 | |
| }
 | |
| 
 | |
| static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
 | |
| {
 | |
| 	uint32_t ecc_strength;
 | |
| 	ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
 | |
| 	return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
 | |
| }
 | |
| 
 | |
| static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
 | |
| {
 | |
| 	uint32_t ecc_strength;
 | |
| 	ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
 | |
| 	return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wait for BCH complete IRQ and clear the IRQ
 | |
|  */
 | |
| static int mxs_nand_wait_for_bch_complete(void)
 | |
| {
 | |
| 	struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
 | |
| 	int timeout = MXS_NAND_BCH_TIMEOUT;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = mxs_wait_mask_set(&bch_regs->hw_bch_ctrl_reg,
 | |
| 		BCH_CTRL_COMPLETE_IRQ, timeout);
 | |
| 
 | |
| 	writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the function that we install in the cmd_ctrl function pointer of the
 | |
|  * owning struct nand_chip. The only functions in the reference implementation
 | |
|  * that use these functions pointers are cmdfunc and select_chip.
 | |
|  *
 | |
|  * In this driver, we implement our own select_chip, so this function will only
 | |
|  * be called by the reference implementation's cmdfunc. For this reason, we can
 | |
|  * ignore the chip enable bit and concentrate only on sending bytes to the NAND
 | |
|  * Flash.
 | |
|  */
 | |
| static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 	struct mxs_dma_desc *d;
 | |
| 	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this condition is true, something is _VERY_ wrong in MTD
 | |
| 	 * subsystem!
 | |
| 	 */
 | |
| 	if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
 | |
| 		printf("MXS NAND: Command queue too long\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Every operation begins with a command byte and a series of zero or
 | |
| 	 * more address bytes. These are distinguished by either the Address
 | |
| 	 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
 | |
| 	 * asserted. When MTD is ready to execute the command, it will
 | |
| 	 * deasert both latch enables.
 | |
| 	 *
 | |
| 	 * Rather than run a separate DMA operation for every single byte, we
 | |
| 	 * queue them up and run a single DMA operation for the entire series
 | |
| 	 * of command and data bytes.
 | |
| 	 */
 | |
| 	if (ctrl & (NAND_ALE | NAND_CLE)) {
 | |
| 		if (data != NAND_CMD_NONE)
 | |
| 			nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If control arrives here, MTD has deasserted both the ALE and CLE,
 | |
| 	 * which means it's ready to run an operation. Check if we have any
 | |
| 	 * bytes to send.
 | |
| 	 */
 | |
| 	if (nand_info->cmd_queue_len == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* Compile the DMA descriptor -- a descriptor that sends command. */
 | |
| 	d = mxs_nand_get_dma_desc(nand_info);
 | |
| 	d->cmd.data =
 | |
| 		MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
 | |
| 		MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
 | |
| 		MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
 | |
| 		(nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
 | |
| 
 | |
| 	d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
 | |
| 
 | |
| 	d->cmd.pio_words[0] =
 | |
| 		GPMI_CTRL0_COMMAND_MODE_WRITE |
 | |
| 		GPMI_CTRL0_WORD_LENGTH |
 | |
| 		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 | |
| 		GPMI_CTRL0_ADDRESS_NAND_CLE |
 | |
| 		GPMI_CTRL0_ADDRESS_INCREMENT |
 | |
| 		nand_info->cmd_queue_len;
 | |
| 
 | |
| 	mxs_dma_desc_append(channel, d);
 | |
| 
 | |
| 	/* Flush caches */
 | |
| 	mxs_nand_flush_cmd_buf(nand_info);
 | |
| 
 | |
| 	/* Execute the DMA chain. */
 | |
| 	ret = mxs_dma_go(channel);
 | |
| 	if (ret)
 | |
| 		printf("MXS NAND: Error sending command\n");
 | |
| 
 | |
| 	mxs_nand_return_dma_descs(nand_info);
 | |
| 
 | |
| 	/* Reset the command queue. */
 | |
| 	nand_info->cmd_queue_len = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test if the NAND flash is ready.
 | |
|  */
 | |
| static int mxs_nand_device_ready(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 | |
| 	struct mxs_gpmi_regs *gpmi_regs =
 | |
| 		(struct mxs_gpmi_regs *)MXS_GPMI_BASE;
 | |
| 	uint32_t tmp;
 | |
| 
 | |
| 	tmp = readl(&gpmi_regs->hw_gpmi_stat);
 | |
| 	tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
 | |
| 
 | |
| 	return tmp & 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Select the NAND chip.
 | |
|  */
 | |
| static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 
 | |
| 	nand_info->cur_chip = chip;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle block mark swapping.
 | |
|  *
 | |
|  * Note that, when this function is called, it doesn't know whether it's
 | |
|  * swapping the block mark, or swapping it *back* -- but it doesn't matter
 | |
|  * because the the operation is the same.
 | |
|  */
 | |
| static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
 | |
| 					uint8_t *data_buf, uint8_t *oob_buf)
 | |
| {
 | |
| 	uint32_t bit_offset;
 | |
| 	uint32_t buf_offset;
 | |
| 
 | |
| 	uint32_t src;
 | |
| 	uint32_t dst;
 | |
| 
 | |
| 	bit_offset = mxs_nand_mark_bit_offset(mtd);
 | |
| 	buf_offset = mxs_nand_mark_byte_offset(mtd);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the byte from the data area that overlays the block mark. Since
 | |
| 	 * the ECC engine applies its own view to the bits in the page, the
 | |
| 	 * physical block mark won't (in general) appear on a byte boundary in
 | |
| 	 * the data.
 | |
| 	 */
 | |
| 	src = data_buf[buf_offset] >> bit_offset;
 | |
| 	src |= data_buf[buf_offset + 1] << (8 - bit_offset);
 | |
| 
 | |
| 	dst = oob_buf[0];
 | |
| 
 | |
| 	oob_buf[0] = src;
 | |
| 
 | |
| 	data_buf[buf_offset] &= ~(0xff << bit_offset);
 | |
| 	data_buf[buf_offset + 1] &= 0xff << bit_offset;
 | |
| 
 | |
| 	data_buf[buf_offset] |= dst << bit_offset;
 | |
| 	data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read data from NAND.
 | |
|  */
 | |
| static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 	struct mxs_dma_desc *d;
 | |
| 	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (length > NAND_MAX_PAGESIZE) {
 | |
| 		printf("MXS NAND: DMA buffer too big\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!buf) {
 | |
| 		printf("MXS NAND: DMA buffer is NULL\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Compile the DMA descriptor - a descriptor that reads data. */
 | |
| 	d = mxs_nand_get_dma_desc(nand_info);
 | |
| 	d->cmd.data =
 | |
| 		MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
 | |
| 		MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
 | |
| 		(1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
 | |
| 		(length << MXS_DMA_DESC_BYTES_OFFSET);
 | |
| 
 | |
| 	d->cmd.address = (dma_addr_t)nand_info->data_buf;
 | |
| 
 | |
| 	d->cmd.pio_words[0] =
 | |
| 		GPMI_CTRL0_COMMAND_MODE_READ |
 | |
| 		GPMI_CTRL0_WORD_LENGTH |
 | |
| 		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 | |
| 		GPMI_CTRL0_ADDRESS_NAND_DATA |
 | |
| 		length;
 | |
| 
 | |
| 	mxs_dma_desc_append(channel, d);
 | |
| 
 | |
| 	/*
 | |
| 	 * A DMA descriptor that waits for the command to end and the chip to
 | |
| 	 * become ready.
 | |
| 	 *
 | |
| 	 * I think we actually should *not* be waiting for the chip to become
 | |
| 	 * ready because, after all, we don't care. I think the original code
 | |
| 	 * did that and no one has re-thought it yet.
 | |
| 	 */
 | |
| 	d = mxs_nand_get_dma_desc(nand_info);
 | |
| 	d->cmd.data =
 | |
| 		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
 | |
| 		MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
 | |
| 		MXS_DMA_DESC_WAIT4END | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 | |
| 
 | |
| 	d->cmd.address = 0;
 | |
| 
 | |
| 	d->cmd.pio_words[0] =
 | |
| 		GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
 | |
| 		GPMI_CTRL0_WORD_LENGTH |
 | |
| 		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 | |
| 		GPMI_CTRL0_ADDRESS_NAND_DATA;
 | |
| 
 | |
| 	mxs_dma_desc_append(channel, d);
 | |
| 
 | |
| 	/* Invalidate caches */
 | |
| 	mxs_nand_inval_data_buf(nand_info);
 | |
| 
 | |
| 	/* Execute the DMA chain. */
 | |
| 	ret = mxs_dma_go(channel);
 | |
| 	if (ret) {
 | |
| 		printf("MXS NAND: DMA read error\n");
 | |
| 		goto rtn;
 | |
| 	}
 | |
| 
 | |
| 	/* Invalidate caches */
 | |
| 	mxs_nand_inval_data_buf(nand_info);
 | |
| 
 | |
| 	memcpy(buf, nand_info->data_buf, length);
 | |
| 
 | |
| rtn:
 | |
| 	mxs_nand_return_dma_descs(nand_info);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write data to NAND.
 | |
|  */
 | |
| static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
 | |
| 				int length)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 	struct mxs_dma_desc *d;
 | |
| 	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (length > NAND_MAX_PAGESIZE) {
 | |
| 		printf("MXS NAND: DMA buffer too big\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!buf) {
 | |
| 		printf("MXS NAND: DMA buffer is NULL\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(nand_info->data_buf, buf, length);
 | |
| 
 | |
| 	/* Compile the DMA descriptor - a descriptor that writes data. */
 | |
| 	d = mxs_nand_get_dma_desc(nand_info);
 | |
| 	d->cmd.data =
 | |
| 		MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
 | |
| 		MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
 | |
| 		(1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
 | |
| 		(length << MXS_DMA_DESC_BYTES_OFFSET);
 | |
| 
 | |
| 	d->cmd.address = (dma_addr_t)nand_info->data_buf;
 | |
| 
 | |
| 	d->cmd.pio_words[0] =
 | |
| 		GPMI_CTRL0_COMMAND_MODE_WRITE |
 | |
| 		GPMI_CTRL0_WORD_LENGTH |
 | |
| 		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 | |
| 		GPMI_CTRL0_ADDRESS_NAND_DATA |
 | |
| 		length;
 | |
| 
 | |
| 	mxs_dma_desc_append(channel, d);
 | |
| 
 | |
| 	/* Flush caches */
 | |
| 	mxs_nand_flush_data_buf(nand_info);
 | |
| 
 | |
| 	/* Execute the DMA chain. */
 | |
| 	ret = mxs_dma_go(channel);
 | |
| 	if (ret)
 | |
| 		printf("MXS NAND: DMA write error\n");
 | |
| 
 | |
| 	mxs_nand_return_dma_descs(nand_info);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read a single byte from NAND.
 | |
|  */
 | |
| static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
 | |
| {
 | |
| 	uint8_t buf;
 | |
| 	mxs_nand_read_buf(mtd, &buf, 1);
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read a page from NAND.
 | |
|  */
 | |
| static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
 | |
| 					uint8_t *buf, int oob_required,
 | |
| 					int page)
 | |
| {
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 	struct mxs_dma_desc *d;
 | |
| 	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 | |
| 	uint32_t corrected = 0, failed = 0;
 | |
| 	uint8_t	*status;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	/* Compile the DMA descriptor - wait for ready. */
 | |
| 	d = mxs_nand_get_dma_desc(nand_info);
 | |
| 	d->cmd.data =
 | |
| 		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
 | |
| 		MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
 | |
| 		(1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 | |
| 
 | |
| 	d->cmd.address = 0;
 | |
| 
 | |
| 	d->cmd.pio_words[0] =
 | |
| 		GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
 | |
| 		GPMI_CTRL0_WORD_LENGTH |
 | |
| 		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 | |
| 		GPMI_CTRL0_ADDRESS_NAND_DATA;
 | |
| 
 | |
| 	mxs_dma_desc_append(channel, d);
 | |
| 
 | |
| 	/* Compile the DMA descriptor - enable the BCH block and read. */
 | |
| 	d = mxs_nand_get_dma_desc(nand_info);
 | |
| 	d->cmd.data =
 | |
| 		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
 | |
| 		MXS_DMA_DESC_WAIT4END |	(6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 | |
| 
 | |
| 	d->cmd.address = 0;
 | |
| 
 | |
| 	d->cmd.pio_words[0] =
 | |
| 		GPMI_CTRL0_COMMAND_MODE_READ |
 | |
| 		GPMI_CTRL0_WORD_LENGTH |
 | |
| 		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 | |
| 		GPMI_CTRL0_ADDRESS_NAND_DATA |
 | |
| 		(mtd->writesize + mtd->oobsize);
 | |
| 	d->cmd.pio_words[1] = 0;
 | |
| 	d->cmd.pio_words[2] =
 | |
| 		GPMI_ECCCTRL_ENABLE_ECC |
 | |
| 		GPMI_ECCCTRL_ECC_CMD_DECODE |
 | |
| 		GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
 | |
| 	d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
 | |
| 	d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
 | |
| 	d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
 | |
| 
 | |
| 	mxs_dma_desc_append(channel, d);
 | |
| 
 | |
| 	/* Compile the DMA descriptor - disable the BCH block. */
 | |
| 	d = mxs_nand_get_dma_desc(nand_info);
 | |
| 	d->cmd.data =
 | |
| 		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
 | |
| 		MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
 | |
| 		(3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 | |
| 
 | |
| 	d->cmd.address = 0;
 | |
| 
 | |
| 	d->cmd.pio_words[0] =
 | |
| 		GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
 | |
| 		GPMI_CTRL0_WORD_LENGTH |
 | |
| 		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 | |
| 		GPMI_CTRL0_ADDRESS_NAND_DATA |
 | |
| 		(mtd->writesize + mtd->oobsize);
 | |
| 	d->cmd.pio_words[1] = 0;
 | |
| 	d->cmd.pio_words[2] = 0;
 | |
| 
 | |
| 	mxs_dma_desc_append(channel, d);
 | |
| 
 | |
| 	/* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
 | |
| 	d = mxs_nand_get_dma_desc(nand_info);
 | |
| 	d->cmd.data =
 | |
| 		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
 | |
| 		MXS_DMA_DESC_DEC_SEM;
 | |
| 
 | |
| 	d->cmd.address = 0;
 | |
| 
 | |
| 	mxs_dma_desc_append(channel, d);
 | |
| 
 | |
| 	/* Invalidate caches */
 | |
| 	mxs_nand_inval_data_buf(nand_info);
 | |
| 
 | |
| 	/* Execute the DMA chain. */
 | |
| 	ret = mxs_dma_go(channel);
 | |
| 	if (ret) {
 | |
| 		printf("MXS NAND: DMA read error\n");
 | |
| 		goto rtn;
 | |
| 	}
 | |
| 
 | |
| 	ret = mxs_nand_wait_for_bch_complete();
 | |
| 	if (ret) {
 | |
| 		printf("MXS NAND: BCH read timeout\n");
 | |
| 		goto rtn;
 | |
| 	}
 | |
| 
 | |
| 	/* Invalidate caches */
 | |
| 	mxs_nand_inval_data_buf(nand_info);
 | |
| 
 | |
| 	/* Read DMA completed, now do the mark swapping. */
 | |
| 	mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
 | |
| 
 | |
| 	/* Loop over status bytes, accumulating ECC status. */
 | |
| 	status = nand_info->oob_buf + mxs_nand_aux_status_offset();
 | |
| 	for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
 | |
| 		if (status[i] == 0x00)
 | |
| 			continue;
 | |
| 
 | |
| 		if (status[i] == 0xff)
 | |
| 			continue;
 | |
| 
 | |
| 		if (status[i] == 0xfe) {
 | |
| 			failed++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		corrected += status[i];
 | |
| 	}
 | |
| 
 | |
| 	/* Propagate ECC status to the owning MTD. */
 | |
| 	mtd->ecc_stats.failed += failed;
 | |
| 	mtd->ecc_stats.corrected += corrected;
 | |
| 
 | |
| 	/*
 | |
| 	 * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
 | |
| 	 * details about our policy for delivering the OOB.
 | |
| 	 *
 | |
| 	 * We fill the caller's buffer with set bits, and then copy the block
 | |
| 	 * mark to the caller's buffer. Note that, if block mark swapping was
 | |
| 	 * necessary, it has already been done, so we can rely on the first
 | |
| 	 * byte of the auxiliary buffer to contain the block mark.
 | |
| 	 */
 | |
| 	memset(nand->oob_poi, 0xff, mtd->oobsize);
 | |
| 
 | |
| 	nand->oob_poi[0] = nand_info->oob_buf[0];
 | |
| 
 | |
| 	memcpy(buf, nand_info->data_buf, mtd->writesize);
 | |
| 
 | |
| rtn:
 | |
| 	mxs_nand_return_dma_descs(nand_info);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write a page to NAND.
 | |
|  */
 | |
| static int mxs_nand_ecc_write_page(struct mtd_info *mtd,
 | |
| 				struct nand_chip *nand, const uint8_t *buf,
 | |
| 				int oob_required, int page)
 | |
| {
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 	struct mxs_dma_desc *d;
 | |
| 	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 | |
| 	int ret;
 | |
| 
 | |
| 	memcpy(nand_info->data_buf, buf, mtd->writesize);
 | |
| 	memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
 | |
| 
 | |
| 	/* Handle block mark swapping. */
 | |
| 	mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
 | |
| 
 | |
| 	/* Compile the DMA descriptor - write data. */
 | |
| 	d = mxs_nand_get_dma_desc(nand_info);
 | |
| 	d->cmd.data =
 | |
| 		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
 | |
| 		MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
 | |
| 		(6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 | |
| 
 | |
| 	d->cmd.address = 0;
 | |
| 
 | |
| 	d->cmd.pio_words[0] =
 | |
| 		GPMI_CTRL0_COMMAND_MODE_WRITE |
 | |
| 		GPMI_CTRL0_WORD_LENGTH |
 | |
| 		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 | |
| 		GPMI_CTRL0_ADDRESS_NAND_DATA;
 | |
| 	d->cmd.pio_words[1] = 0;
 | |
| 	d->cmd.pio_words[2] =
 | |
| 		GPMI_ECCCTRL_ENABLE_ECC |
 | |
| 		GPMI_ECCCTRL_ECC_CMD_ENCODE |
 | |
| 		GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
 | |
| 	d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
 | |
| 	d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
 | |
| 	d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
 | |
| 
 | |
| 	mxs_dma_desc_append(channel, d);
 | |
| 
 | |
| 	/* Flush caches */
 | |
| 	mxs_nand_flush_data_buf(nand_info);
 | |
| 
 | |
| 	/* Execute the DMA chain. */
 | |
| 	ret = mxs_dma_go(channel);
 | |
| 	if (ret) {
 | |
| 		printf("MXS NAND: DMA write error\n");
 | |
| 		goto rtn;
 | |
| 	}
 | |
| 
 | |
| 	ret = mxs_nand_wait_for_bch_complete();
 | |
| 	if (ret) {
 | |
| 		printf("MXS NAND: BCH write timeout\n");
 | |
| 		goto rtn;
 | |
| 	}
 | |
| 
 | |
| rtn:
 | |
| 	mxs_nand_return_dma_descs(nand_info);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read OOB from NAND.
 | |
|  *
 | |
|  * This function is a veneer that replaces the function originally installed by
 | |
|  * the NAND Flash MTD code.
 | |
|  */
 | |
| static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
 | |
| 					struct mtd_oob_ops *ops)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (ops->mode == MTD_OPS_RAW)
 | |
| 		nand_info->raw_oob_mode = 1;
 | |
| 	else
 | |
| 		nand_info->raw_oob_mode = 0;
 | |
| 
 | |
| 	ret = nand_info->hooked_read_oob(mtd, from, ops);
 | |
| 
 | |
| 	nand_info->raw_oob_mode = 0;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write OOB to NAND.
 | |
|  *
 | |
|  * This function is a veneer that replaces the function originally installed by
 | |
|  * the NAND Flash MTD code.
 | |
|  */
 | |
| static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
 | |
| 					struct mtd_oob_ops *ops)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (ops->mode == MTD_OPS_RAW)
 | |
| 		nand_info->raw_oob_mode = 1;
 | |
| 	else
 | |
| 		nand_info->raw_oob_mode = 0;
 | |
| 
 | |
| 	ret = nand_info->hooked_write_oob(mtd, to, ops);
 | |
| 
 | |
| 	nand_info->raw_oob_mode = 0;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark a block bad in NAND.
 | |
|  *
 | |
|  * This function is a veneer that replaces the function originally installed by
 | |
|  * the NAND Flash MTD code.
 | |
|  */
 | |
| static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 | |
| 	int ret;
 | |
| 
 | |
| 	nand_info->marking_block_bad = 1;
 | |
| 
 | |
| 	ret = nand_info->hooked_block_markbad(mtd, ofs);
 | |
| 
 | |
| 	nand_info->marking_block_bad = 0;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There are several places in this driver where we have to handle the OOB and
 | |
|  * block marks. This is the function where things are the most complicated, so
 | |
|  * this is where we try to explain it all. All the other places refer back to
 | |
|  * here.
 | |
|  *
 | |
|  * These are the rules, in order of decreasing importance:
 | |
|  *
 | |
|  * 1) Nothing the caller does can be allowed to imperil the block mark, so all
 | |
|  *    write operations take measures to protect it.
 | |
|  *
 | |
|  * 2) In read operations, the first byte of the OOB we return must reflect the
 | |
|  *    true state of the block mark, no matter where that block mark appears in
 | |
|  *    the physical page.
 | |
|  *
 | |
|  * 3) ECC-based read operations return an OOB full of set bits (since we never
 | |
|  *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
 | |
|  *    return).
 | |
|  *
 | |
|  * 4) "Raw" read operations return a direct view of the physical bytes in the
 | |
|  *    page, using the conventional definition of which bytes are data and which
 | |
|  *    are OOB. This gives the caller a way to see the actual, physical bytes
 | |
|  *    in the page, without the distortions applied by our ECC engine.
 | |
|  *
 | |
|  * What we do for this specific read operation depends on whether we're doing
 | |
|  * "raw" read, or an ECC-based read.
 | |
|  *
 | |
|  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
 | |
|  * easy. When reading a page, for example, the NAND Flash MTD code calls our
 | |
|  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
 | |
|  * ECC-based or raw view of the page is implicit in which function it calls
 | |
|  * (there is a similar pair of ECC-based/raw functions for writing).
 | |
|  *
 | |
|  * Since MTD assumes the OOB is not covered by ECC, there is no pair of
 | |
|  * ECC-based/raw functions for reading or or writing the OOB. The fact that the
 | |
|  * caller wants an ECC-based or raw view of the page is not propagated down to
 | |
|  * this driver.
 | |
|  *
 | |
|  * Since our OOB *is* covered by ECC, we need this information. So, we hook the
 | |
|  * ecc.read_oob and ecc.write_oob function pointers in the owning
 | |
|  * struct mtd_info with our own functions. These hook functions set the
 | |
|  * raw_oob_mode field so that, when control finally arrives here, we'll know
 | |
|  * what to do.
 | |
|  */
 | |
| static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
 | |
| 				int page)
 | |
| {
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 
 | |
| 	/*
 | |
| 	 * First, fill in the OOB buffer. If we're doing a raw read, we need to
 | |
| 	 * get the bytes from the physical page. If we're not doing a raw read,
 | |
| 	 * we need to fill the buffer with set bits.
 | |
| 	 */
 | |
| 	if (nand_info->raw_oob_mode) {
 | |
| 		/*
 | |
| 		 * If control arrives here, we're doing a "raw" read. Send the
 | |
| 		 * command to read the conventional OOB and read it.
 | |
| 		 */
 | |
| 		nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
 | |
| 		nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If control arrives here, we're not doing a "raw" read. Fill
 | |
| 		 * the OOB buffer with set bits and correct the block mark.
 | |
| 		 */
 | |
| 		memset(nand->oob_poi, 0xff, mtd->oobsize);
 | |
| 
 | |
| 		nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
 | |
| 		mxs_nand_read_buf(mtd, nand->oob_poi, 1);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write OOB data to NAND.
 | |
|  */
 | |
| static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
 | |
| 					int page)
 | |
| {
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 	uint8_t block_mark = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * There are fundamental incompatibilities between the i.MX GPMI NFC and
 | |
| 	 * the NAND Flash MTD model that make it essentially impossible to write
 | |
| 	 * the out-of-band bytes.
 | |
| 	 *
 | |
| 	 * We permit *ONE* exception. If the *intent* of writing the OOB is to
 | |
| 	 * mark a block bad, we can do that.
 | |
| 	 */
 | |
| 
 | |
| 	if (!nand_info->marking_block_bad) {
 | |
| 		printf("NXS NAND: Writing OOB isn't supported\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* Write the block mark. */
 | |
| 	nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
 | |
| 	nand->write_buf(mtd, &block_mark, 1);
 | |
| 	nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 | |
| 
 | |
| 	/* Check if it worked. */
 | |
| 	if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Claims all blocks are good.
 | |
|  *
 | |
|  * In principle, this function is *only* called when the NAND Flash MTD system
 | |
|  * isn't allowed to keep an in-memory bad block table, so it is forced to ask
 | |
|  * the driver for bad block information.
 | |
|  *
 | |
|  * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
 | |
|  * this function is *only* called when we take it away.
 | |
|  *
 | |
|  * Thus, this function is only called when we want *all* blocks to look good,
 | |
|  * so it *always* return success.
 | |
|  */
 | |
| static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Nominally, the purpose of this function is to look for or create the bad
 | |
|  * block table. In fact, since the we call this function at the very end of
 | |
|  * the initialization process started by nand_scan(), and we doesn't have a
 | |
|  * more formal mechanism, we "hook" this function to continue init process.
 | |
|  *
 | |
|  * At this point, the physical NAND Flash chips have been identified and
 | |
|  * counted, so we know the physical geometry. This enables us to make some
 | |
|  * important configuration decisions.
 | |
|  *
 | |
|  * The return value of this function propagates directly back to this driver's
 | |
|  * call to nand_scan(). Anything other than zero will cause this driver to
 | |
|  * tear everything down and declare failure.
 | |
|  */
 | |
| static int mxs_nand_scan_bbt(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 	struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
 | |
| 	uint32_t tmp;
 | |
| 
 | |
| 	if (mtd->oobsize > MXS_NAND_CHUNK_DATA_CHUNK_SIZE) {
 | |
| 		galois_field = 14;
 | |
| 		chunk_data_size = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 2;
 | |
| 	}
 | |
| 
 | |
| 	if (mtd->oobsize > chunk_data_size) {
 | |
| 		printf("Not support the NAND chips whose oob size is larger then %d bytes!\n", chunk_data_size);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Configure BCH and set NFC geometry */
 | |
| 	mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
 | |
| 
 | |
| 	/* Configure layout 0 */
 | |
| 	tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
 | |
| 		<< BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
 | |
| 	tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
 | |
| 	tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
 | |
| 		<< BCH_FLASHLAYOUT0_ECC0_OFFSET;
 | |
| 	tmp |= chunk_data_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
 | |
| 	tmp |= (14 == galois_field ? 1 : 0) <<
 | |
| 		BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET;
 | |
| 	writel(tmp, &bch_regs->hw_bch_flash0layout0);
 | |
| 
 | |
| 	tmp = (mtd->writesize + mtd->oobsize)
 | |
| 		<< BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
 | |
| 	tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
 | |
| 		<< BCH_FLASHLAYOUT1_ECCN_OFFSET;
 | |
| 	tmp |= chunk_data_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
 | |
| 	tmp |= (14 == galois_field ? 1 : 0) <<
 | |
| 		BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET;
 | |
| 	writel(tmp, &bch_regs->hw_bch_flash0layout1);
 | |
| 
 | |
| 	/* Set *all* chip selects to use layout 0 */
 | |
| 	writel(0, &bch_regs->hw_bch_layoutselect);
 | |
| 
 | |
| 	/* Enable BCH complete interrupt */
 | |
| 	writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
 | |
| 
 | |
| 	/* Hook some operations at the MTD level. */
 | |
| 	if (mtd->_read_oob != mxs_nand_hook_read_oob) {
 | |
| 		nand_info->hooked_read_oob = mtd->_read_oob;
 | |
| 		mtd->_read_oob = mxs_nand_hook_read_oob;
 | |
| 	}
 | |
| 
 | |
| 	if (mtd->_write_oob != mxs_nand_hook_write_oob) {
 | |
| 		nand_info->hooked_write_oob = mtd->_write_oob;
 | |
| 		mtd->_write_oob = mxs_nand_hook_write_oob;
 | |
| 	}
 | |
| 
 | |
| 	if (mtd->_block_markbad != mxs_nand_hook_block_markbad) {
 | |
| 		nand_info->hooked_block_markbad = mtd->_block_markbad;
 | |
| 		mtd->_block_markbad = mxs_nand_hook_block_markbad;
 | |
| 	}
 | |
| 
 | |
| 	/* We use the reference implementation for bad block management. */
 | |
| 	return nand_default_bbt(mtd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate DMA buffers
 | |
|  */
 | |
| int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
 | |
| {
 | |
| 	uint8_t *buf;
 | |
| 	const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
 | |
| 
 | |
| 	nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
 | |
| 
 | |
| 	/* DMA buffers */
 | |
| 	buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
 | |
| 	if (!buf) {
 | |
| 		printf("MXS NAND: Error allocating DMA buffers\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	memset(buf, 0, nand_info->data_buf_size);
 | |
| 
 | |
| 	nand_info->data_buf = buf;
 | |
| 	nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
 | |
| 	/* Command buffers */
 | |
| 	nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
 | |
| 				MXS_NAND_COMMAND_BUFFER_SIZE);
 | |
| 	if (!nand_info->cmd_buf) {
 | |
| 		free(buf);
 | |
| 		printf("MXS NAND: Error allocating command buffers\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
 | |
| 	nand_info->cmd_queue_len = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initializes the NFC hardware.
 | |
|  */
 | |
| int mxs_nand_init(struct mxs_nand_info *info)
 | |
| {
 | |
| 	struct mxs_gpmi_regs *gpmi_regs =
 | |
| 		(struct mxs_gpmi_regs *)MXS_GPMI_BASE;
 | |
| 	struct mxs_bch_regs *bch_regs =
 | |
| 		(struct mxs_bch_regs *)MXS_BCH_BASE;
 | |
| 	int i = 0, j, ret = 0;
 | |
| 
 | |
| 	info->desc = malloc(sizeof(struct mxs_dma_desc *) *
 | |
| 				MXS_NAND_DMA_DESCRIPTOR_COUNT);
 | |
| 	if (!info->desc) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err1;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate the DMA descriptors. */
 | |
| 	for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
 | |
| 		info->desc[i] = mxs_dma_desc_alloc();
 | |
| 		if (!info->desc[i]) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto err2;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Init the DMA controller. */
 | |
| 	for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
 | |
| 		j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
 | |
| 		ret = mxs_dma_init_channel(j);
 | |
| 		if (ret)
 | |
| 			goto err3;
 | |
| 	}
 | |
| 
 | |
| 	/* Reset the GPMI block. */
 | |
| 	mxs_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg);
 | |
| 	mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Choose NAND mode, set IRQ polarity, disable write protection and
 | |
| 	 * select BCH ECC.
 | |
| 	 */
 | |
| 	clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1,
 | |
| 			GPMI_CTRL1_GPMI_MODE,
 | |
| 			GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
 | |
| 			GPMI_CTRL1_BCH_MODE);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err3:
 | |
| 	for (--j; j >= MXS_DMA_CHANNEL_AHB_APBH_GPMI0; j--)
 | |
| 		mxs_dma_release(j);
 | |
| err2:
 | |
| 	for (--i; i >= 0; i--)
 | |
| 		mxs_dma_desc_free(info->desc[i]);
 | |
| 	free(info->desc);
 | |
| err1:
 | |
| 	if (ret == -ENOMEM)
 | |
| 		printf("MXS NAND: Unable to allocate DMA descriptors\n");
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * This function is called during the driver binding process.
 | |
|  *
 | |
|  * @param   pdev  the device structure used to store device specific
 | |
|  *                information that is used by the suspend, resume and
 | |
|  *                remove functions
 | |
|  *
 | |
|  * @return  The function always returns 0.
 | |
|  */
 | |
| int board_nand_init(struct nand_chip *nand)
 | |
| {
 | |
| 	struct mxs_nand_info *nand_info;
 | |
| 	int err;
 | |
| 
 | |
| 	nand_info = malloc(sizeof(struct mxs_nand_info));
 | |
| 	if (!nand_info) {
 | |
| 		printf("MXS NAND: Failed to allocate private data\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	memset(nand_info, 0, sizeof(struct mxs_nand_info));
 | |
| 
 | |
| 	err = mxs_nand_alloc_buffers(nand_info);
 | |
| 	if (err)
 | |
| 		goto err1;
 | |
| 
 | |
| 	err = mxs_nand_init(nand_info);
 | |
| 	if (err)
 | |
| 		goto err2;
 | |
| 
 | |
| 	memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
 | |
| 
 | |
| 	nand_set_controller_data(nand, nand_info);
 | |
| 	nand->options |= NAND_NO_SUBPAGE_WRITE;
 | |
| 
 | |
| 	nand->cmd_ctrl		= mxs_nand_cmd_ctrl;
 | |
| 
 | |
| 	nand->dev_ready		= mxs_nand_device_ready;
 | |
| 	nand->select_chip	= mxs_nand_select_chip;
 | |
| 	nand->block_bad		= mxs_nand_block_bad;
 | |
| 	nand->scan_bbt		= mxs_nand_scan_bbt;
 | |
| 
 | |
| 	nand->read_byte		= mxs_nand_read_byte;
 | |
| 
 | |
| 	nand->read_buf		= mxs_nand_read_buf;
 | |
| 	nand->write_buf		= mxs_nand_write_buf;
 | |
| 
 | |
| 	nand->ecc.read_page	= mxs_nand_ecc_read_page;
 | |
| 	nand->ecc.write_page	= mxs_nand_ecc_write_page;
 | |
| 	nand->ecc.read_oob	= mxs_nand_ecc_read_oob;
 | |
| 	nand->ecc.write_oob	= mxs_nand_ecc_write_oob;
 | |
| 
 | |
| 	nand->ecc.layout	= &fake_ecc_layout;
 | |
| 	nand->ecc.mode		= NAND_ECC_HW;
 | |
| 	nand->ecc.bytes		= 9;
 | |
| 	nand->ecc.size		= 512;
 | |
| 	nand->ecc.strength	= 8;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err2:
 | |
| 	free(nand_info->data_buf);
 | |
| 	free(nand_info->cmd_buf);
 | |
| err1:
 | |
| 	free(nand_info);
 | |
| 	return err;
 | |
| }
 |