1611 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1611 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * (C) 2006 Denx
 | |
|  * Driver for NAND support, Rick Bronson
 | |
|  * borrowed heavily from:
 | |
|  * (c) 1999 Machine Vision Holdings, Inc.
 | |
|  * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
 | |
|  *
 | |
|  * Added 16-bit nand support
 | |
|  * (C) 2004 Texas Instruments
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <command.h>
 | |
| #include <malloc.h>
 | |
| #include <asm/io.h>
 | |
| #include <watchdog.h>
 | |
| #include <linux/mtd/nand_legacy.h>
 | |
| #include <linux/mtd/nand_ids.h>
 | |
| #include <jffs2/jffs2.h>
 | |
| 
 | |
| #error Legacy NAND is deprecated.  Please convert to the current NAND interface.
 | |
| #error This code will be removed outright in the next release.
 | |
| 
 | |
| #ifdef CONFIG_OMAP1510
 | |
| void archflashwp(void *archdata, int wp);
 | |
| #endif
 | |
| 
 | |
| #define ROUND_DOWN(value,boundary)      ((value) & (~((boundary)-1)))
 | |
| 
 | |
| #undef	PSYCHO_DEBUG
 | |
| #undef	NAND_DEBUG
 | |
| 
 | |
| /* ****************** WARNING *********************
 | |
|  * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will
 | |
|  * erase (or at least attempt to erase) blocks that are marked
 | |
|  * bad. This can be very handy if you are _sure_ that the block
 | |
|  * is OK, say because you marked a good block bad to test bad
 | |
|  * block handling and you are done testing, or if you have
 | |
|  * accidentally marked blocks bad.
 | |
|  *
 | |
|  * Erasing factory marked bad blocks is a _bad_ idea. If the
 | |
|  * erase succeeds there is no reliable way to find them again,
 | |
|  * and attempting to program or erase bad blocks can affect
 | |
|  * the data in _other_ (good) blocks.
 | |
|  */
 | |
| #define	 ALLOW_ERASE_BAD_DEBUG 0
 | |
| 
 | |
| #define CONFIG_MTD_NAND_ECC  /* enable ECC */
 | |
| #define CONFIG_MTD_NAND_ECC_JFFS2
 | |
| 
 | |
| /* bits for nand_legacy_rw() `cmd'; or together as needed */
 | |
| #define NANDRW_READ	0x01
 | |
| #define NANDRW_WRITE	0x00
 | |
| #define NANDRW_JFFS2	0x02
 | |
| #define NANDRW_JFFS2_SKIP	0x04
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Exported variables etc.
 | |
|  */
 | |
| 
 | |
| /* Definition of the out of band configuration structure */
 | |
| struct nand_oob_config {
 | |
| 	/* position of ECC bytes inside oob */
 | |
| 	int ecc_pos[6];
 | |
| 	/* position of  bad blk flag inside oob -1 = inactive */
 | |
| 	int badblock_pos;
 | |
| 	/* position of ECC valid flag inside oob -1 = inactive */
 | |
| 	int eccvalid_pos;
 | |
| } oob_config = { {0}, 0, 0};
 | |
| 
 | |
| struct nand_chip nand_dev_desc[CONFIG_SYS_MAX_NAND_DEVICE] = {{0}};
 | |
| 
 | |
| int curr_device = -1; /* Current NAND Device */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Exported functionss
 | |
|  */
 | |
| int nand_legacy_erase(struct nand_chip* nand, size_t ofs,
 | |
| 		     size_t len, int clean);
 | |
| int nand_legacy_rw(struct nand_chip* nand, int cmd,
 | |
| 		  size_t start, size_t len,
 | |
| 		  size_t * retlen, u_char * buf);
 | |
| void nand_print(struct nand_chip *nand);
 | |
| void nand_print_bad(struct nand_chip *nand);
 | |
| int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
 | |
| 		 size_t * retlen, u_char * buf);
 | |
| int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
 | |
| 		 size_t * retlen, const u_char * buf);
 | |
| 
 | |
| /*
 | |
|  * Internals
 | |
|  */
 | |
| static int NanD_WaitReady(struct nand_chip *nand, int ale_wait);
 | |
| static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
 | |
| 		 size_t * retlen, u_char *buf, u_char *ecc_code);
 | |
| static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
 | |
| 			   size_t * retlen, const u_char * buf,
 | |
| 			   u_char * ecc_code);
 | |
| #ifdef CONFIG_MTD_NAND_ECC
 | |
| static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc);
 | |
| static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code);
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  * Function definitions
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* returns 0 if block containing pos is OK:
 | |
|  *		valid erase block and
 | |
|  *		not marked bad, or no bad mark position is specified
 | |
|  * returns 1 if marked bad or otherwise invalid
 | |
|  */
 | |
| static int check_block (struct nand_chip *nand, unsigned long pos)
 | |
| {
 | |
| 	size_t retlen;
 | |
| 	uint8_t oob_data;
 | |
| 	uint16_t oob_data16[6];
 | |
| 	int page0 = pos & (-nand->erasesize);
 | |
| 	int page1 = page0 + nand->oobblock;
 | |
| 	int badpos = oob_config.badblock_pos;
 | |
| 
 | |
| 	if (pos >= nand->totlen)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (badpos < 0)
 | |
| 		return 0;	/* no way to check, assume OK */
 | |
| 
 | |
| 	if (nand->bus16) {
 | |
| 		if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16)
 | |
| 		    || (oob_data16[2] & 0xff00) != 0xff00)
 | |
| 			return 1;
 | |
| 		if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16)
 | |
| 		    || (oob_data16[2] & 0xff00) != 0xff00)
 | |
| 			return 1;
 | |
| 	} else {
 | |
| 		/* Note - bad block marker can be on first or second page */
 | |
| 		if (nand_read_oob(nand, page0 + badpos, 1, &retlen, (unsigned char *)&oob_data)
 | |
| 		    || oob_data != 0xff
 | |
| 		    || nand_read_oob (nand, page1 + badpos, 1, &retlen, (unsigned char *)&oob_data)
 | |
| 		    || oob_data != 0xff)
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* print bad blocks in NAND flash */
 | |
| void nand_print_bad(struct nand_chip* nand)
 | |
| {
 | |
| 	unsigned long pos;
 | |
| 
 | |
| 	for (pos = 0; pos < nand->totlen; pos += nand->erasesize) {
 | |
| 		if (check_block(nand, pos))
 | |
| 			printf(" 0x%8.8lx\n", pos);
 | |
| 	}
 | |
| 	puts("\n");
 | |
| }
 | |
| 
 | |
| /* cmd: 0: NANDRW_WRITE			write, fail on bad block
 | |
|  *	1: NANDRW_READ			read, fail on bad block
 | |
|  *	2: NANDRW_WRITE | NANDRW_JFFS2	write, skip bad blocks
 | |
|  *	3: NANDRW_READ | NANDRW_JFFS2	read, data all 0xff for bad blocks
 | |
|  *      7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks
 | |
|  */
 | |
| int nand_legacy_rw (struct nand_chip* nand, int cmd,
 | |
| 		   size_t start, size_t len,
 | |
| 		   size_t * retlen, u_char * buf)
 | |
| {
 | |
| 	int ret = 0, n, total = 0;
 | |
| 	char eccbuf[6];
 | |
| 	/* eblk (once set) is the start of the erase block containing the
 | |
| 	 * data being processed.
 | |
| 	 */
 | |
| 	unsigned long eblk = ~0;	/* force mismatch on first pass */
 | |
| 	unsigned long erasesize = nand->erasesize;
 | |
| 
 | |
| 	while (len) {
 | |
| 		if ((start & (-erasesize)) != eblk) {
 | |
| 			/* have crossed into new erase block, deal with
 | |
| 			 * it if it is sure marked bad.
 | |
| 			 */
 | |
| 			eblk = start & (-erasesize); /* start of block */
 | |
| 			if (check_block(nand, eblk)) {
 | |
| 				if (cmd == (NANDRW_READ | NANDRW_JFFS2)) {
 | |
| 					while (len > 0 &&
 | |
| 					       start - eblk < erasesize) {
 | |
| 						*(buf++) = 0xff;
 | |
| 						++start;
 | |
| 						++total;
 | |
| 						--len;
 | |
| 					}
 | |
| 					continue;
 | |
| 				} else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) {
 | |
| 					start += erasesize;
 | |
| 					continue;
 | |
| 				} else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) {
 | |
| 					/* skip bad block */
 | |
| 					start += erasesize;
 | |
| 					continue;
 | |
| 				} else {
 | |
| 					ret = 1;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		/* The ECC will not be calculated correctly if
 | |
| 		   less than 512 is written or read */
 | |
| 		/* Is request at least 512 bytes AND it starts on a proper boundry */
 | |
| 		if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200))
 | |
| 			printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n");
 | |
| 
 | |
| 		if (cmd & NANDRW_READ) {
 | |
| 			ret = nand_read_ecc(nand, start,
 | |
| 					   min(len, eblk + erasesize - start),
 | |
| 					   (size_t *)&n, (u_char*)buf, (u_char *)eccbuf);
 | |
| 		} else {
 | |
| 			ret = nand_write_ecc(nand, start,
 | |
| 					    min(len, eblk + erasesize - start),
 | |
| 					    (size_t *)&n, (u_char*)buf, (u_char *)eccbuf);
 | |
| 		}
 | |
| 
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		start  += n;
 | |
| 		buf   += n;
 | |
| 		total += n;
 | |
| 		len   -= n;
 | |
| 	}
 | |
| 	if (retlen)
 | |
| 		*retlen = total;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void nand_print(struct nand_chip *nand)
 | |
| {
 | |
| 	if (nand->numchips > 1) {
 | |
| 		printf("%s at 0x%lx,\n"
 | |
| 		       "\t  %d chips %s, size %d MB, \n"
 | |
| 		       "\t  total size %ld MB, sector size %ld kB\n",
 | |
| 		       nand->name, nand->IO_ADDR, nand->numchips,
 | |
| 		       nand->chips_name, 1 << (nand->chipshift - 20),
 | |
| 		       nand->totlen >> 20, nand->erasesize >> 10);
 | |
| 	}
 | |
| 	else {
 | |
| 		printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR);
 | |
| 		print_size(nand->totlen, ", ");
 | |
| 		print_size(nand->erasesize, " sector)\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* ------------------------------------------------------------------------- */
 | |
| 
 | |
| static int NanD_WaitReady(struct nand_chip *nand, int ale_wait)
 | |
| {
 | |
| 	/* This is inline, to optimise the common case, where it's ready instantly */
 | |
| 	int ret = 0;
 | |
| 
 | |
| #ifdef NAND_NO_RB	/* in config file, shorter delays currently wrap accesses */
 | |
| 	if(ale_wait)
 | |
| 		NAND_WAIT_READY(nand);	/* do the worst case 25us wait */
 | |
| 	else
 | |
| 		udelay(10);
 | |
| #else	/* has functional r/b signal */
 | |
| 	NAND_WAIT_READY(nand);
 | |
| #endif
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* NanD_Command: Send a flash command to the flash chip */
 | |
| 
 | |
| static inline int NanD_Command(struct nand_chip *nand, unsigned char command)
 | |
| {
 | |
| 	unsigned long nandptr = nand->IO_ADDR;
 | |
| 
 | |
| 	/* Assert the CLE (Command Latch Enable) line to the flash chip */
 | |
| 	NAND_CTL_SETCLE(nandptr);
 | |
| 
 | |
| 	/* Send the command */
 | |
| 	WRITE_NAND_COMMAND(command, nandptr);
 | |
| 
 | |
| 	/* Lower the CLE line */
 | |
| 	NAND_CTL_CLRCLE(nandptr);
 | |
| 
 | |
| #ifdef NAND_NO_RB
 | |
| 	if(command == NAND_CMD_RESET){
 | |
| 		u_char ret_val;
 | |
| 		NanD_Command(nand, NAND_CMD_STATUS);
 | |
| 		do {
 | |
| 			ret_val = READ_NAND(nandptr);/* wait till ready */
 | |
| 		} while((ret_val & 0x40) != 0x40);
 | |
| 	}
 | |
| #endif
 | |
| 	return NanD_WaitReady(nand, 0);
 | |
| }
 | |
| 
 | |
| /* NanD_Address: Set the current address for the flash chip */
 | |
| 
 | |
| static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs)
 | |
| {
 | |
| 	unsigned long nandptr;
 | |
| 	int i;
 | |
| 
 | |
| 	nandptr = nand->IO_ADDR;
 | |
| 
 | |
| 	/* Assert the ALE (Address Latch Enable) line to the flash chip */
 | |
| 	NAND_CTL_SETALE(nandptr);
 | |
| 
 | |
| 	/* Send the address */
 | |
| 	/* Devices with 256-byte page are addressed as:
 | |
| 	 * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
 | |
| 	 * there is no device on the market with page256
 | |
| 	 * and more than 24 bits.
 | |
| 	 * Devices with 512-byte page are addressed as:
 | |
| 	 * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
 | |
| 	 * 25-31 is sent only if the chip support it.
 | |
| 	 * bit 8 changes the read command to be sent
 | |
| 	 * (NAND_CMD_READ0 or NAND_CMD_READ1).
 | |
| 	 */
 | |
| 
 | |
| 	if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE)
 | |
| 		WRITE_NAND_ADDRESS(ofs, nandptr);
 | |
| 
 | |
| 	ofs = ofs >> nand->page_shift;
 | |
| 
 | |
| 	if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
 | |
| 		for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) {
 | |
| 			WRITE_NAND_ADDRESS(ofs, nandptr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Lower the ALE line */
 | |
| 	NAND_CTL_CLRALE(nandptr);
 | |
| 
 | |
| 	/* Wait for the chip to respond */
 | |
| 	return NanD_WaitReady(nand, 1);
 | |
| }
 | |
| 
 | |
| /* NanD_SelectChip: Select a given flash chip within the current floor */
 | |
| 
 | |
| static inline int NanD_SelectChip(struct nand_chip *nand, int chip)
 | |
| {
 | |
| 	/* Wait for it to be ready */
 | |
| 	return NanD_WaitReady(nand, 0);
 | |
| }
 | |
| 
 | |
| /* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */
 | |
| 
 | |
| static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip)
 | |
| {
 | |
| 	int mfr, id, i;
 | |
| 
 | |
| 	NAND_ENABLE_CE(nand);  /* set pin low */
 | |
| 	/* Reset the chip */
 | |
| 	if (NanD_Command(nand, NAND_CMD_RESET)) {
 | |
| #ifdef NAND_DEBUG
 | |
| 		printf("NanD_Command (reset) for %d,%d returned true\n",
 | |
| 		       floor, chip);
 | |
| #endif
 | |
| 		NAND_DISABLE_CE(nand);  /* set pin high */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Read the NAND chip ID: 1. Send ReadID command */
 | |
| 	if (NanD_Command(nand, NAND_CMD_READID)) {
 | |
| #ifdef NAND_DEBUG
 | |
| 		printf("NanD_Command (ReadID) for %d,%d returned true\n",
 | |
| 		       floor, chip);
 | |
| #endif
 | |
| 		NAND_DISABLE_CE(nand);  /* set pin high */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Read the NAND chip ID: 2. Send address byte zero */
 | |
| 	NanD_Address(nand, ADDR_COLUMN, 0);
 | |
| 
 | |
| 	/* Read the manufacturer and device id codes from the device */
 | |
| 
 | |
| 	mfr = READ_NAND(nand->IO_ADDR);
 | |
| 
 | |
| 	id = READ_NAND(nand->IO_ADDR);
 | |
| 
 | |
| 	NAND_DISABLE_CE(nand);  /* set pin high */
 | |
| 
 | |
| #ifdef NAND_DEBUG
 | |
| 	printf("NanD_Command (ReadID) got %x %x\n", mfr, id);
 | |
| #endif
 | |
| 	if (mfr == 0xff || mfr == 0) {
 | |
| 		/* No response - return failure */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Check it's the same as the first chip we identified.
 | |
| 	 * M-Systems say that any given nand_chip device should only
 | |
| 	 * contain _one_ type of flash part, although that's not a
 | |
| 	 * hardware restriction. */
 | |
| 	if (nand->mfr) {
 | |
| 		if (nand->mfr == mfr && nand->id == id) {
 | |
| 			return 1;	/* This is another the same the first */
 | |
| 		} else {
 | |
| 			printf("Flash chip at floor %d, chip %d is different:\n",
 | |
| 			       floor, chip);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Print and store the manufacturer and ID codes. */
 | |
| 	for (i = 0; nand_flash_ids[i].name != NULL; i++) {
 | |
| 		if (mfr == nand_flash_ids[i].manufacture_id &&
 | |
| 		    id == nand_flash_ids[i].model_id) {
 | |
| #ifdef NAND_DEBUG
 | |
| 			printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, "
 | |
| 			       "Chip ID: 0x%2.2X (%s)\n", mfr, id,
 | |
| 			       nand_flash_ids[i].name);
 | |
| #endif
 | |
| 			if (!nand->mfr) {
 | |
| 				nand->mfr = mfr;
 | |
| 				nand->id = id;
 | |
| 				nand->chipshift =
 | |
| 				    nand_flash_ids[i].chipshift;
 | |
| 				nand->page256 = nand_flash_ids[i].page256;
 | |
| 				nand->eccsize = 256;
 | |
| 				if (nand->page256) {
 | |
| 					nand->oobblock = 256;
 | |
| 					nand->oobsize = 8;
 | |
| 					nand->page_shift = 8;
 | |
| 				} else {
 | |
| 					nand->oobblock = 512;
 | |
| 					nand->oobsize = 16;
 | |
| 					nand->page_shift = 9;
 | |
| 				}
 | |
| 				nand->pageadrlen = nand_flash_ids[i].pageadrlen;
 | |
| 				nand->erasesize  = nand_flash_ids[i].erasesize;
 | |
| 				nand->chips_name = nand_flash_ids[i].name;
 | |
| 				nand->bus16	 = nand_flash_ids[i].bus16;
 | |
| 				return 1;
 | |
| 			}
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| #ifdef NAND_DEBUG
 | |
| 	/* We haven't fully identified the chip. Print as much as we know. */
 | |
| 	printf("Unknown flash chip found: %2.2X %2.2X\n",
 | |
| 	       id, mfr);
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */
 | |
| 
 | |
| static void NanD_ScanChips(struct nand_chip *nand)
 | |
| {
 | |
| 	int floor, chip;
 | |
| 	int numchips[NAND_MAX_FLOORS];
 | |
| 	int maxchips = CONFIG_SYS_NAND_MAX_CHIPS;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	nand->numchips = 0;
 | |
| 	nand->mfr = 0;
 | |
| 	nand->id = 0;
 | |
| 
 | |
| 
 | |
| 	/* For each floor, find the number of valid chips it contains */
 | |
| 	for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
 | |
| 		ret = 1;
 | |
| 		numchips[floor] = 0;
 | |
| 		for (chip = 0; chip < maxchips && ret != 0; chip++) {
 | |
| 
 | |
| 			ret = NanD_IdentChip(nand, floor, chip);
 | |
| 			if (ret) {
 | |
| 				numchips[floor]++;
 | |
| 				nand->numchips++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* If there are none at all that we recognise, bail */
 | |
| 	if (!nand->numchips) {
 | |
| #ifdef NAND_DEBUG
 | |
| 		puts ("No NAND flash chips recognised.\n");
 | |
| #endif
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate an array to hold the information for each chip */
 | |
| 	nand->chips = malloc(sizeof(struct Nand) * nand->numchips);
 | |
| 	if (!nand->chips) {
 | |
| 		puts ("No memory for allocating chip info structures\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| 
 | |
| 	/* Fill out the chip array with {floor, chipno} for each
 | |
| 	 * detected chip in the device. */
 | |
| 	for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
 | |
| 		for (chip = 0; chip < numchips[floor]; chip++) {
 | |
| 			nand->chips[ret].floor = floor;
 | |
| 			nand->chips[ret].chip = chip;
 | |
| 			nand->chips[ret].curadr = 0;
 | |
| 			nand->chips[ret].curmode = 0x50;
 | |
| 			ret++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate and print the total size of the device */
 | |
| 	nand->totlen = nand->numchips * (1 << nand->chipshift);
 | |
| 
 | |
| #ifdef NAND_DEBUG
 | |
| 	printf("%d flash chips found. Total nand_chip size: %ld MB\n",
 | |
| 	       nand->numchips, nand->totlen >> 20);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* we need to be fast here, 1 us per read translates to 1 second per meg */
 | |
| static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr)
 | |
| {
 | |
| 	unsigned long nandptr = nand->IO_ADDR;
 | |
| 
 | |
| 	NanD_Command (nand, NAND_CMD_READ0);
 | |
| 
 | |
| 	if (nand->bus16) {
 | |
| 		u16 val;
 | |
| 
 | |
| 		while (cntr >= 16) {
 | |
| 			val = READ_NAND (nandptr);
 | |
| 			*data_buf++ = val & 0xff;
 | |
| 			*data_buf++ = val >> 8;
 | |
| 			val = READ_NAND (nandptr);
 | |
| 			*data_buf++ = val & 0xff;
 | |
| 			*data_buf++ = val >> 8;
 | |
| 			val = READ_NAND (nandptr);
 | |
| 			*data_buf++ = val & 0xff;
 | |
| 			*data_buf++ = val >> 8;
 | |
| 			val = READ_NAND (nandptr);
 | |
| 			*data_buf++ = val & 0xff;
 | |
| 			*data_buf++ = val >> 8;
 | |
| 			val = READ_NAND (nandptr);
 | |
| 			*data_buf++ = val & 0xff;
 | |
| 			*data_buf++ = val >> 8;
 | |
| 			val = READ_NAND (nandptr);
 | |
| 			*data_buf++ = val & 0xff;
 | |
| 			*data_buf++ = val >> 8;
 | |
| 			val = READ_NAND (nandptr);
 | |
| 			*data_buf++ = val & 0xff;
 | |
| 			*data_buf++ = val >> 8;
 | |
| 			val = READ_NAND (nandptr);
 | |
| 			*data_buf++ = val & 0xff;
 | |
| 			*data_buf++ = val >> 8;
 | |
| 			cntr -= 16;
 | |
| 		}
 | |
| 
 | |
| 		while (cntr > 0) {
 | |
| 			val = READ_NAND (nandptr);
 | |
| 			*data_buf++ = val & 0xff;
 | |
| 			*data_buf++ = val >> 8;
 | |
| 			cntr -= 2;
 | |
| 		}
 | |
| 	} else {
 | |
| 		while (cntr >= 16) {
 | |
| 			*data_buf++ = READ_NAND (nandptr);
 | |
| 			*data_buf++ = READ_NAND (nandptr);
 | |
| 			*data_buf++ = READ_NAND (nandptr);
 | |
| 			*data_buf++ = READ_NAND (nandptr);
 | |
| 			*data_buf++ = READ_NAND (nandptr);
 | |
| 			*data_buf++ = READ_NAND (nandptr);
 | |
| 			*data_buf++ = READ_NAND (nandptr);
 | |
| 			*data_buf++ = READ_NAND (nandptr);
 | |
| 			*data_buf++ = READ_NAND (nandptr);
 | |
| 			*data_buf++ = READ_NAND (nandptr);
 | |
| 			*data_buf++ = READ_NAND (nandptr);
 | |
| 			*data_buf++ = READ_NAND (nandptr);
 | |
| 			*data_buf++ = READ_NAND (nandptr);
 | |
| 			*data_buf++ = READ_NAND (nandptr);
 | |
| 			*data_buf++ = READ_NAND (nandptr);
 | |
| 			*data_buf++ = READ_NAND (nandptr);
 | |
| 			cntr -= 16;
 | |
| 		}
 | |
| 
 | |
| 		while (cntr > 0) {
 | |
| 			*data_buf++ = READ_NAND (nandptr);
 | |
| 			cntr--;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * NAND read with ECC
 | |
|  */
 | |
| static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
 | |
| 		 size_t * retlen, u_char *buf, u_char *ecc_code)
 | |
| {
 | |
| 	int col, page;
 | |
| 	int ecc_status = 0;
 | |
| #ifdef CONFIG_MTD_NAND_ECC
 | |
| 	int j;
 | |
| 	int ecc_failed = 0;
 | |
| 	u_char *data_poi;
 | |
| 	u_char ecc_calc[6];
 | |
| #endif
 | |
| 
 | |
| 	/* Do not allow reads past end of device */
 | |
| 	if ((start + len) > nand->totlen) {
 | |
| 		printf ("%s: Attempt read beyond end of device %x %x %x\n",
 | |
| 			__FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen);
 | |
| 		*retlen = 0;
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* First we calculate the starting page */
 | |
| 	/*page = shr(start, nand->page_shift);*/
 | |
| 	page = start >> nand->page_shift;
 | |
| 
 | |
| 	/* Get raw starting column */
 | |
| 	col = start & (nand->oobblock - 1);
 | |
| 
 | |
| 	/* Initialize return value */
 | |
| 	*retlen = 0;
 | |
| 
 | |
| 	/* Select the NAND device */
 | |
| 	NAND_ENABLE_CE(nand);  /* set pin low */
 | |
| 
 | |
| 	/* Loop until all data read */
 | |
| 	while (*retlen < len) {
 | |
| 
 | |
| #ifdef CONFIG_MTD_NAND_ECC
 | |
| 		/* Do we have this page in cache ? */
 | |
| 		if (nand->cache_page == page)
 | |
| 			goto readdata;
 | |
| 		/* Send the read command */
 | |
| 		NanD_Command(nand, NAND_CMD_READ0);
 | |
| 		if (nand->bus16) {
 | |
| 			NanD_Address(nand, ADDR_COLUMN_PAGE,
 | |
| 				     (page << nand->page_shift) + (col >> 1));
 | |
| 		} else {
 | |
| 			NanD_Address(nand, ADDR_COLUMN_PAGE,
 | |
| 				     (page << nand->page_shift) + col);
 | |
| 		}
 | |
| 
 | |
| 		/* Read in a page + oob data */
 | |
| 		NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize);
 | |
| 
 | |
| 		/* copy data into cache, for read out of cache and if ecc fails */
 | |
| 		if (nand->data_cache) {
 | |
| 			memcpy (nand->data_cache, nand->data_buf,
 | |
| 				nand->oobblock + nand->oobsize);
 | |
| 		}
 | |
| 
 | |
| 		/* Pick the ECC bytes out of the oob data */
 | |
| 		for (j = 0; j < 6; j++) {
 | |
| 			ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])];
 | |
| 		}
 | |
| 
 | |
| 		/* Calculate the ECC and verify it */
 | |
| 		/* If block was not written with ECC, skip ECC */
 | |
| 		if (oob_config.eccvalid_pos != -1 &&
 | |
| 		    (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) {
 | |
| 
 | |
| 			nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]);
 | |
| 			switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) {
 | |
| 			case -1:
 | |
| 				printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
 | |
| 				ecc_failed++;
 | |
| 				break;
 | |
| 			case 1:
 | |
| 			case 2:	/* transfer ECC corrected data to cache */
 | |
| 				if (nand->data_cache)
 | |
| 					memcpy (nand->data_cache, nand->data_buf, 256);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (oob_config.eccvalid_pos != -1 &&
 | |
| 		    nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) {
 | |
| 
 | |
| 			nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]);
 | |
| 			switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) {
 | |
| 			case -1:
 | |
| 				printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
 | |
| 				ecc_failed++;
 | |
| 				break;
 | |
| 			case 1:
 | |
| 			case 2:	/* transfer ECC corrected data to cache */
 | |
| 				if (nand->data_cache)
 | |
| 					memcpy (&nand->data_cache[256], &nand->data_buf[256], 256);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| readdata:
 | |
| 		/* Read the data from ECC data buffer into return buffer */
 | |
| 		data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf;
 | |
| 		data_poi += col;
 | |
| 		if ((*retlen + (nand->oobblock - col)) >= len) {
 | |
| 			memcpy (buf + *retlen, data_poi, len - *retlen);
 | |
| 			*retlen = len;
 | |
| 		} else {
 | |
| 			memcpy (buf + *retlen, data_poi,  nand->oobblock - col);
 | |
| 			*retlen += nand->oobblock - col;
 | |
| 		}
 | |
| 		/* Set cache page address, invalidate, if ecc_failed */
 | |
| 		nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1;
 | |
| 
 | |
| 		ecc_status += ecc_failed;
 | |
| 		ecc_failed = 0;
 | |
| 
 | |
| #else
 | |
| 		/* Send the read command */
 | |
| 		NanD_Command(nand, NAND_CMD_READ0);
 | |
| 		if (nand->bus16) {
 | |
| 			NanD_Address(nand, ADDR_COLUMN_PAGE,
 | |
| 				     (page << nand->page_shift) + (col >> 1));
 | |
| 		} else {
 | |
| 			NanD_Address(nand, ADDR_COLUMN_PAGE,
 | |
| 				     (page << nand->page_shift) + col);
 | |
| 		}
 | |
| 
 | |
| 		/* Read the data directly into the return buffer */
 | |
| 		if ((*retlen + (nand->oobblock - col)) >= len) {
 | |
| 			NanD_ReadBuf(nand, buf + *retlen, len - *retlen);
 | |
| 			*retlen = len;
 | |
| 			/* We're done */
 | |
| 			continue;
 | |
| 		} else {
 | |
| 			NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col);
 | |
| 			*retlen += nand->oobblock - col;
 | |
| 			}
 | |
| #endif
 | |
| 		/* For subsequent reads align to page boundary. */
 | |
| 		col = 0;
 | |
| 		/* Increment page address */
 | |
| 		page++;
 | |
| 	}
 | |
| 
 | |
| 	/* De-select the NAND device */
 | |
| 	NAND_DISABLE_CE(nand);  /* set pin high */
 | |
| 
 | |
| 	/*
 | |
| 	 * Return success, if no ECC failures, else -EIO
 | |
| 	 * fs driver will take care of that, because
 | |
| 	 * retlen == desired len and result == -EIO
 | |
| 	 */
 | |
| 	return ecc_status ? -1 : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Nand_page_program function is used for write and writev !
 | |
|  */
 | |
| static int nand_write_page (struct nand_chip *nand,
 | |
| 			    int page, int col, int last, u_char * ecc_code)
 | |
| {
 | |
| 
 | |
| 	int i;
 | |
| 	unsigned long nandptr = nand->IO_ADDR;
 | |
| 
 | |
| #ifdef CONFIG_MTD_NAND_ECC
 | |
| #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
 | |
| 	int ecc_bytes = (nand->oobblock == 512) ? 6 : 3;
 | |
| #endif
 | |
| #endif
 | |
| 	/* pad oob area */
 | |
| 	for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++)
 | |
| 		nand->data_buf[i] = 0xff;
 | |
| 
 | |
| #ifdef CONFIG_MTD_NAND_ECC
 | |
| 	/* Zero out the ECC array */
 | |
| 	for (i = 0; i < 6; i++)
 | |
| 		ecc_code[i] = 0x00;
 | |
| 
 | |
| 	/* Read back previous written data, if col > 0 */
 | |
| 	if (col) {
 | |
| 		NanD_Command (nand, NAND_CMD_READ0);
 | |
| 		if (nand->bus16) {
 | |
| 			NanD_Address (nand, ADDR_COLUMN_PAGE,
 | |
| 				      (page << nand->page_shift) + (col >> 1));
 | |
| 		} else {
 | |
| 			NanD_Address (nand, ADDR_COLUMN_PAGE,
 | |
| 				      (page << nand->page_shift) + col);
 | |
| 		}
 | |
| 
 | |
| 		if (nand->bus16) {
 | |
| 			u16 val;
 | |
| 
 | |
| 			for (i = 0; i < col; i += 2) {
 | |
| 				val = READ_NAND (nandptr);
 | |
| 				nand->data_buf[i] = val & 0xff;
 | |
| 				nand->data_buf[i + 1] = val >> 8;
 | |
| 			}
 | |
| 		} else {
 | |
| 			for (i = 0; i < col; i++)
 | |
| 				nand->data_buf[i] = READ_NAND (nandptr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate and write the ECC if we have enough data */
 | |
| 	if ((col < nand->eccsize) && (last >= nand->eccsize)) {
 | |
| 		nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0]));
 | |
| 		for (i = 0; i < 3; i++) {
 | |
| 			nand->data_buf[(nand->oobblock +
 | |
| 					oob_config.ecc_pos[i])] = ecc_code[i];
 | |
| 		}
 | |
| 		if (oob_config.eccvalid_pos != -1) {
 | |
| 			nand->data_buf[nand->oobblock +
 | |
| 				       oob_config.eccvalid_pos] = 0xf0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate and write the second ECC if we have enough data */
 | |
| 	if ((nand->oobblock == 512) && (last == nand->oobblock)) {
 | |
| 		nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3]));
 | |
| 		for (i = 3; i < 6; i++) {
 | |
| 			nand->data_buf[(nand->oobblock +
 | |
| 					oob_config.ecc_pos[i])] = ecc_code[i];
 | |
| 		}
 | |
| 		if (oob_config.eccvalid_pos != -1) {
 | |
| 			nand->data_buf[nand->oobblock +
 | |
| 				       oob_config.eccvalid_pos] &= 0x0f;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	/* Prepad for partial page programming !!! */
 | |
| 	for (i = 0; i < col; i++)
 | |
| 		nand->data_buf[i] = 0xff;
 | |
| 
 | |
| 	/* Postpad for partial page programming !!! oob is already padded */
 | |
| 	for (i = last; i < nand->oobblock; i++)
 | |
| 		nand->data_buf[i] = 0xff;
 | |
| 
 | |
| 	/* Send command to begin auto page programming */
 | |
| 	NanD_Command (nand, NAND_CMD_READ0);
 | |
| 	NanD_Command (nand, NAND_CMD_SEQIN);
 | |
| 	if (nand->bus16) {
 | |
| 		NanD_Address (nand, ADDR_COLUMN_PAGE,
 | |
| 			      (page << nand->page_shift) + (col >> 1));
 | |
| 	} else {
 | |
| 		NanD_Address (nand, ADDR_COLUMN_PAGE,
 | |
| 			      (page << nand->page_shift) + col);
 | |
| 	}
 | |
| 
 | |
| 	/* Write out complete page of data */
 | |
| 	if (nand->bus16) {
 | |
| 		for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) {
 | |
| 			WRITE_NAND (nand->data_buf[i] +
 | |
| 				    (nand->data_buf[i + 1] << 8),
 | |
| 				    nand->IO_ADDR);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i = 0; i < (nand->oobblock + nand->oobsize); i++)
 | |
| 			WRITE_NAND (nand->data_buf[i], nand->IO_ADDR);
 | |
| 	}
 | |
| 
 | |
| 	/* Send command to actually program the data */
 | |
| 	NanD_Command (nand, NAND_CMD_PAGEPROG);
 | |
| 	NanD_Command (nand, NAND_CMD_STATUS);
 | |
| #ifdef NAND_NO_RB
 | |
| 	{
 | |
| 		u_char ret_val;
 | |
| 
 | |
| 		do {
 | |
| 			ret_val = READ_NAND (nandptr);	/* wait till ready */
 | |
| 		} while ((ret_val & 0x40) != 0x40);
 | |
| 	}
 | |
| #endif
 | |
| 	/* See if device thinks it succeeded */
 | |
| 	if (READ_NAND (nand->IO_ADDR) & 0x01) {
 | |
| 		printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__,
 | |
| 			page);
 | |
| 		return -1;
 | |
| 	}
 | |
| #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
 | |
| 	/*
 | |
| 	 * The NAND device assumes that it is always writing to
 | |
| 	 * a cleanly erased page. Hence, it performs its internal
 | |
| 	 * write verification only on bits that transitioned from
 | |
| 	 * 1 to 0. The device does NOT verify the whole page on a
 | |
| 	 * byte by byte basis. It is possible that the page was
 | |
| 	 * not completely erased or the page is becoming unusable
 | |
| 	 * due to wear. The read with ECC would catch the error
 | |
| 	 * later when the ECC page check fails, but we would rather
 | |
| 	 * catch it early in the page write stage. Better to write
 | |
| 	 * no data than invalid data.
 | |
| 	 */
 | |
| 
 | |
| 	/* Send command to read back the page */
 | |
| 	if (col < nand->eccsize)
 | |
| 		NanD_Command (nand, NAND_CMD_READ0);
 | |
| 	else
 | |
| 		NanD_Command (nand, NAND_CMD_READ1);
 | |
| 	if (nand->bus16) {
 | |
| 		NanD_Address (nand, ADDR_COLUMN_PAGE,
 | |
| 			      (page << nand->page_shift) + (col >> 1));
 | |
| 	} else {
 | |
| 		NanD_Address (nand, ADDR_COLUMN_PAGE,
 | |
| 			      (page << nand->page_shift) + col);
 | |
| 	}
 | |
| 
 | |
| 	/* Loop through and verify the data */
 | |
| 	if (nand->bus16) {
 | |
| 		for (i = col; i < last; i = +2) {
 | |
| 			if ((nand->data_buf[i] +
 | |
| 			     (nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) {
 | |
| 				printf ("%s: Failed write verify, page 0x%08x ",
 | |
| 					__FUNCTION__, page);
 | |
| 				return -1;
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i = col; i < last; i++) {
 | |
| 			if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) {
 | |
| 				printf ("%s: Failed write verify, page 0x%08x ",
 | |
| 					__FUNCTION__, page);
 | |
| 				return -1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_MTD_NAND_ECC
 | |
| 	/*
 | |
| 	 * We also want to check that the ECC bytes wrote
 | |
| 	 * correctly for the same reasons stated above.
 | |
| 	 */
 | |
| 	NanD_Command (nand, NAND_CMD_READOOB);
 | |
| 	if (nand->bus16) {
 | |
| 		NanD_Address (nand, ADDR_COLUMN_PAGE,
 | |
| 			      (page << nand->page_shift) + (col >> 1));
 | |
| 	} else {
 | |
| 		NanD_Address (nand, ADDR_COLUMN_PAGE,
 | |
| 			      (page << nand->page_shift) + col);
 | |
| 	}
 | |
| 	if (nand->bus16) {
 | |
| 		for (i = 0; i < nand->oobsize; i += 2) {
 | |
| 			u16 val;
 | |
| 
 | |
| 			val = READ_NAND (nand->IO_ADDR);
 | |
| 			nand->data_buf[i] = val & 0xff;
 | |
| 			nand->data_buf[i + 1] = val >> 8;
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i = 0; i < nand->oobsize; i++) {
 | |
| 			nand->data_buf[i] = READ_NAND (nand->IO_ADDR);
 | |
| 		}
 | |
| 	}
 | |
| 	for (i = 0; i < ecc_bytes; i++) {
 | |
| 		if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) {
 | |
| 			printf ("%s: Failed ECC write "
 | |
| 				"verify, page 0x%08x, "
 | |
| 				"%6i bytes were succesful\n",
 | |
| 				__FUNCTION__, page, i);
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| #endif	/* CONFIG_MTD_NAND_ECC */
 | |
| #endif	/* CONFIG_MTD_NAND_VERIFY_WRITE */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
 | |
| 			   size_t * retlen, const u_char * buf, u_char * ecc_code)
 | |
| {
 | |
| 	int i, page, col, cnt, ret = 0;
 | |
| 
 | |
| 	/* Do not allow write past end of device */
 | |
| 	if ((to + len) > nand->totlen) {
 | |
| 		printf ("%s: Attempt to write past end of page\n", __FUNCTION__);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* Shift to get page */
 | |
| 	page = ((int) to) >> nand->page_shift;
 | |
| 
 | |
| 	/* Get the starting column */
 | |
| 	col = to & (nand->oobblock - 1);
 | |
| 
 | |
| 	/* Initialize return length value */
 | |
| 	*retlen = 0;
 | |
| 
 | |
| 	/* Select the NAND device */
 | |
| #ifdef CONFIG_OMAP1510
 | |
| 	archflashwp(0,0);
 | |
| #endif
 | |
| #ifdef CONFIG_SYS_NAND_WP
 | |
| 	NAND_WP_OFF();
 | |
| #endif
 | |
| 
 | |
| 	NAND_ENABLE_CE(nand);  /* set pin low */
 | |
| 
 | |
| 	/* Check the WP bit */
 | |
| 	NanD_Command(nand, NAND_CMD_STATUS);
 | |
| 	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
 | |
| 		printf ("%s: Device is write protected!!!\n", __FUNCTION__);
 | |
| 		ret = -1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Loop until all data is written */
 | |
| 	while (*retlen < len) {
 | |
| 		/* Invalidate cache, if we write to this page */
 | |
| 		if (nand->cache_page == page)
 | |
| 			nand->cache_page = -1;
 | |
| 
 | |
| 		/* Write data into buffer */
 | |
| 		if ((col + len) >= nand->oobblock) {
 | |
| 			for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) {
 | |
| 				nand->data_buf[i] = buf[(*retlen + cnt)];
 | |
| 			}
 | |
| 		} else {
 | |
| 			for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) {
 | |
| 				nand->data_buf[i] = buf[(*retlen + cnt)];
 | |
| 			}
 | |
| 		}
 | |
| 		/* We use the same function for write and writev !) */
 | |
| 		ret = nand_write_page (nand, page, col, i, ecc_code);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		/* Next data start at page boundary */
 | |
| 		col = 0;
 | |
| 
 | |
| 		/* Update written bytes count */
 | |
| 		*retlen += cnt;
 | |
| 
 | |
| 		/* Increment page address */
 | |
| 		page++;
 | |
| 	}
 | |
| 
 | |
| 	/* Return happy */
 | |
| 	*retlen = len;
 | |
| 
 | |
| out:
 | |
| 	/* De-select the NAND device */
 | |
| 	NAND_DISABLE_CE(nand);  /* set pin high */
 | |
| #ifdef CONFIG_OMAP1510
 | |
| 	archflashwp(0,1);
 | |
| #endif
 | |
| #ifdef CONFIG_SYS_NAND_WP
 | |
| 	NAND_WP_ON();
 | |
| #endif
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* read from the 16 bytes of oob data that correspond to a 512 byte
 | |
|  * page or 2 256-byte pages.
 | |
|  */
 | |
| int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
 | |
| 			 size_t * retlen, u_char * buf)
 | |
| {
 | |
| 	int len256 = 0;
 | |
| 	struct Nand *mychip;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mychip = &nand->chips[ofs >> nand->chipshift];
 | |
| 
 | |
| 	/* update address for 2M x 8bit devices. OOB starts on the second */
 | |
| 	/* page to maintain compatibility with nand_read_ecc. */
 | |
| 	if (nand->page256) {
 | |
| 		if (!(ofs & 0x8))
 | |
| 			ofs += 0x100;
 | |
| 		else
 | |
| 			ofs -= 0x8;
 | |
| 	}
 | |
| 
 | |
| 	NAND_ENABLE_CE(nand);  /* set pin low */
 | |
| 	NanD_Command(nand, NAND_CMD_READOOB);
 | |
| 	if (nand->bus16) {
 | |
| 		NanD_Address(nand, ADDR_COLUMN_PAGE,
 | |
| 			     ((ofs >> nand->page_shift) << nand->page_shift) +
 | |
| 				((ofs & (nand->oobblock - 1)) >> 1));
 | |
| 	} else {
 | |
| 		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
 | |
| 	}
 | |
| 
 | |
| 	/* treat crossing 8-byte OOB data for 2M x 8bit devices */
 | |
| 	/* Note: datasheet says it should automaticaly wrap to the */
 | |
| 	/*       next OOB block, but it didn't work here. mf.      */
 | |
| 	if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
 | |
| 		len256 = (ofs | 0x7) + 1 - ofs;
 | |
| 		NanD_ReadBuf(nand, buf, len256);
 | |
| 
 | |
| 		NanD_Command(nand, NAND_CMD_READOOB);
 | |
| 		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
 | |
| 	}
 | |
| 
 | |
| 	NanD_ReadBuf(nand, &buf[len256], len - len256);
 | |
| 
 | |
| 	*retlen = len;
 | |
| 	/* Reading the full OOB data drops us off of the end of the page,
 | |
| 	 * causing the flash device to go into busy mode, so we need
 | |
| 	 * to wait until ready 11.4.1 and Toshiba TC58256FT nands */
 | |
| 
 | |
| 	ret = NanD_WaitReady(nand, 1);
 | |
| 	NAND_DISABLE_CE(nand);  /* set pin high */
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* write to the 16 bytes of oob data that correspond to a 512 byte
 | |
|  * page or 2 256-byte pages.
 | |
|  */
 | |
| int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
 | |
| 		  size_t * retlen, const u_char * buf)
 | |
| {
 | |
| 	int len256 = 0;
 | |
| 	int i;
 | |
| 	unsigned long nandptr = nand->IO_ADDR;
 | |
| 
 | |
| #ifdef PSYCHO_DEBUG
 | |
| 	printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",
 | |
| 	       (long)ofs, len, buf[0], buf[1], buf[2], buf[3],
 | |
| 	       buf[8], buf[9], buf[14],buf[15]);
 | |
| #endif
 | |
| 
 | |
| 	NAND_ENABLE_CE(nand);  /* set pin low to enable chip */
 | |
| 
 | |
| 	/* Reset the chip */
 | |
| 	NanD_Command(nand, NAND_CMD_RESET);
 | |
| 
 | |
| 	/* issue the Read2 command to set the pointer to the Spare Data Area. */
 | |
| 	NanD_Command(nand, NAND_CMD_READOOB);
 | |
| 	if (nand->bus16) {
 | |
| 		NanD_Address(nand, ADDR_COLUMN_PAGE,
 | |
| 			     ((ofs >> nand->page_shift) << nand->page_shift) +
 | |
| 				((ofs & (nand->oobblock - 1)) >> 1));
 | |
| 	} else {
 | |
| 		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
 | |
| 	}
 | |
| 
 | |
| 	/* update address for 2M x 8bit devices. OOB starts on the second */
 | |
| 	/* page to maintain compatibility with nand_read_ecc. */
 | |
| 	if (nand->page256) {
 | |
| 		if (!(ofs & 0x8))
 | |
| 			ofs += 0x100;
 | |
| 		else
 | |
| 			ofs -= 0x8;
 | |
| 	}
 | |
| 
 | |
| 	/* issue the Serial Data In command to initial the Page Program process */
 | |
| 	NanD_Command(nand, NAND_CMD_SEQIN);
 | |
| 	if (nand->bus16) {
 | |
| 		NanD_Address(nand, ADDR_COLUMN_PAGE,
 | |
| 			     ((ofs >> nand->page_shift) << nand->page_shift) +
 | |
| 				((ofs & (nand->oobblock - 1)) >> 1));
 | |
| 	} else {
 | |
| 		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
 | |
| 	}
 | |
| 
 | |
| 	/* treat crossing 8-byte OOB data for 2M x 8bit devices */
 | |
| 	/* Note: datasheet says it should automaticaly wrap to the */
 | |
| 	/*       next OOB block, but it didn't work here. mf.      */
 | |
| 	if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
 | |
| 		len256 = (ofs | 0x7) + 1 - ofs;
 | |
| 		for (i = 0; i < len256; i++)
 | |
| 			WRITE_NAND(buf[i], nandptr);
 | |
| 
 | |
| 		NanD_Command(nand, NAND_CMD_PAGEPROG);
 | |
| 		NanD_Command(nand, NAND_CMD_STATUS);
 | |
| #ifdef NAND_NO_RB
 | |
| 		{ u_char ret_val;
 | |
| 			do {
 | |
| 				ret_val = READ_NAND(nandptr); /* wait till ready */
 | |
| 			} while ((ret_val & 0x40) != 0x40);
 | |
| 		}
 | |
| #endif
 | |
| 		if (READ_NAND(nandptr) & 1) {
 | |
| 			puts ("Error programming oob data\n");
 | |
| 			/* There was an error */
 | |
| 			NAND_DISABLE_CE(nand);  /* set pin high */
 | |
| 			*retlen = 0;
 | |
| 			return -1;
 | |
| 		}
 | |
| 		NanD_Command(nand, NAND_CMD_SEQIN);
 | |
| 		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
 | |
| 	}
 | |
| 
 | |
| 	if (nand->bus16) {
 | |
| 		for (i = len256; i < len; i += 2) {
 | |
| 			WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i = len256; i < len; i++)
 | |
| 			WRITE_NAND(buf[i], nandptr);
 | |
| 	}
 | |
| 
 | |
| 	NanD_Command(nand, NAND_CMD_PAGEPROG);
 | |
| 	NanD_Command(nand, NAND_CMD_STATUS);
 | |
| #ifdef NAND_NO_RB
 | |
| 	{	u_char ret_val;
 | |
| 		do {
 | |
| 			ret_val = READ_NAND(nandptr); /* wait till ready */
 | |
| 		} while ((ret_val & 0x40) != 0x40);
 | |
| 	}
 | |
| #endif
 | |
| 	if (READ_NAND(nandptr) & 1) {
 | |
| 		puts ("Error programming oob data\n");
 | |
| 		/* There was an error */
 | |
| 		NAND_DISABLE_CE(nand);  /* set pin high */
 | |
| 		*retlen = 0;
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	NAND_DISABLE_CE(nand);  /* set pin high */
 | |
| 	*retlen = len;
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| int nand_legacy_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean)
 | |
| {
 | |
| 	/* This is defined as a structure so it will work on any system
 | |
| 	 * using native endian jffs2 (the default).
 | |
| 	 */
 | |
| 	static struct jffs2_unknown_node clean_marker = {
 | |
| 		JFFS2_MAGIC_BITMASK,
 | |
| 		JFFS2_NODETYPE_CLEANMARKER,
 | |
| 		8		/* 8 bytes in this node */
 | |
| 	};
 | |
| 	unsigned long nandptr;
 | |
| 	struct Nand *mychip;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) {
 | |
| 		printf ("Offset and size must be sector aligned, erasesize = %d\n",
 | |
| 			(int) nand->erasesize);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	nandptr = nand->IO_ADDR;
 | |
| 
 | |
| 	/* Select the NAND device */
 | |
| #ifdef CONFIG_OMAP1510
 | |
| 	archflashwp(0,0);
 | |
| #endif
 | |
| #ifdef CONFIG_SYS_NAND_WP
 | |
| 	NAND_WP_OFF();
 | |
| #endif
 | |
|     NAND_ENABLE_CE(nand);  /* set pin low */
 | |
| 
 | |
| 	/* Check the WP bit */
 | |
| 	NanD_Command(nand, NAND_CMD_STATUS);
 | |
| 	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
 | |
| 		printf ("nand_write_ecc: Device is write protected!!!\n");
 | |
| 		ret = -1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Check the WP bit */
 | |
| 	NanD_Command(nand, NAND_CMD_STATUS);
 | |
| 	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
 | |
| 		printf ("%s: Device is write protected!!!\n", __FUNCTION__);
 | |
| 		ret = -1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* FIXME: Do nand in the background. Use timers or schedule_task() */
 | |
| 	while(len) {
 | |
| 		/*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/
 | |
| 		mychip = &nand->chips[ofs >> nand->chipshift];
 | |
| 
 | |
| 		/* always check for bad block first, genuine bad blocks
 | |
| 		 * should _never_  be erased.
 | |
| 		 */
 | |
| 		if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) {
 | |
| 			/* Select the NAND device */
 | |
| 			NAND_ENABLE_CE(nand);  /* set pin low */
 | |
| 
 | |
| 			NanD_Command(nand, NAND_CMD_ERASE1);
 | |
| 			NanD_Address(nand, ADDR_PAGE, ofs);
 | |
| 			NanD_Command(nand, NAND_CMD_ERASE2);
 | |
| 
 | |
| 			NanD_Command(nand, NAND_CMD_STATUS);
 | |
| 
 | |
| #ifdef NAND_NO_RB
 | |
| 			{	u_char ret_val;
 | |
| 				do {
 | |
| 					ret_val = READ_NAND(nandptr); /* wait till ready */
 | |
| 				} while ((ret_val & 0x40) != 0x40);
 | |
| 			}
 | |
| #endif
 | |
| 			if (READ_NAND(nandptr) & 1) {
 | |
| 				printf ("%s: Error erasing at 0x%lx\n",
 | |
| 					__FUNCTION__, (long)ofs);
 | |
| 				/* There was an error */
 | |
| 				ret = -1;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			if (clean) {
 | |
| 				int n;	/* return value not used */
 | |
| 				int p, l;
 | |
| 
 | |
| 				/* clean marker position and size depend
 | |
| 				 * on the page size, since 256 byte pages
 | |
| 				 * only have 8 bytes of oob data
 | |
| 				 */
 | |
| 				if (nand->page256) {
 | |
| 					p = NAND_JFFS2_OOB8_FSDAPOS;
 | |
| 					l = NAND_JFFS2_OOB8_FSDALEN;
 | |
| 				} else {
 | |
| 					p = NAND_JFFS2_OOB16_FSDAPOS;
 | |
| 					l = NAND_JFFS2_OOB16_FSDALEN;
 | |
| 				}
 | |
| 
 | |
| 				ret = nand_write_oob(nand, ofs + p, l, (size_t *)&n,
 | |
| 						     (u_char *)&clean_marker);
 | |
| 				/* quit here if write failed */
 | |
| 				if (ret)
 | |
| 					goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		ofs += nand->erasesize;
 | |
| 		len -= nand->erasesize;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	/* De-select the NAND device */
 | |
| 	NAND_DISABLE_CE(nand);  /* set pin high */
 | |
| #ifdef CONFIG_OMAP1510
 | |
| 	archflashwp(0,1);
 | |
| #endif
 | |
| #ifdef CONFIG_SYS_NAND_WP
 | |
| 	NAND_WP_ON();
 | |
| #endif
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline int nandcheck(unsigned long potential, unsigned long physadr)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| unsigned long nand_probe(unsigned long physadr)
 | |
| {
 | |
| 	struct nand_chip *nand = NULL;
 | |
| 	int i = 0, ChipID = 1;
 | |
| 
 | |
| #ifdef CONFIG_MTD_NAND_ECC_JFFS2
 | |
| 	oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0;
 | |
| 	oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1;
 | |
| 	oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2;
 | |
| 	oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3;
 | |
| 	oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4;
 | |
| 	oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5;
 | |
| 	oob_config.eccvalid_pos = 4;
 | |
| #else
 | |
| 	oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0;
 | |
| 	oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1;
 | |
| 	oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2;
 | |
| 	oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3;
 | |
| 	oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4;
 | |
| 	oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5;
 | |
| 	oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS;
 | |
| #endif
 | |
| 	oob_config.badblock_pos = 5;
 | |
| 
 | |
| 	for (i=0; i<CONFIG_SYS_MAX_NAND_DEVICE; i++) {
 | |
| 		if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) {
 | |
| 			nand = &nand_dev_desc[i];
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!nand)
 | |
| 		return (0);
 | |
| 
 | |
| 	memset((char *)nand, 0, sizeof(struct nand_chip));
 | |
| 
 | |
| 	nand->IO_ADDR = physadr;
 | |
| 	nand->cache_page = -1;  /* init the cache page */
 | |
| 	NanD_ScanChips(nand);
 | |
| 
 | |
| 	if (nand->totlen == 0) {
 | |
| 		/* no chips found, clean up and quit */
 | |
| 		memset((char *)nand, 0, sizeof(struct nand_chip));
 | |
| 		nand->ChipID = NAND_ChipID_UNKNOWN;
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	nand->ChipID = ChipID;
 | |
| 	if (curr_device == -1)
 | |
| 		curr_device = i;
 | |
| 
 | |
| 	nand->data_buf = malloc (nand->oobblock + nand->oobsize);
 | |
| 	if (!nand->data_buf) {
 | |
| 		puts ("Cannot allocate memory for data structures.\n");
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	return (nand->totlen);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MTD_NAND_ECC
 | |
| /*
 | |
|  * Pre-calculated 256-way 1 byte column parity
 | |
|  */
 | |
| static const u_char nand_ecc_precalc_table[] = {
 | |
| 	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
 | |
| 	0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
 | |
| 	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
 | |
| 	0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
 | |
| 	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
 | |
| 	0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
 | |
| 	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
 | |
| 	0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
 | |
| 	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
 | |
| 	0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
 | |
| 	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
 | |
| 	0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
 | |
| 	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
 | |
| 	0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
 | |
| 	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
 | |
| 	0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
 | |
| 	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
 | |
| 	0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
 | |
| 	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
 | |
| 	0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
 | |
| 	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
 | |
| 	0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
 | |
| 	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
 | |
| 	0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
 | |
| 	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
 | |
| 	0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
 | |
| 	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
 | |
| 	0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
 | |
| 	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
 | |
| 	0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
 | |
| 	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
 | |
| 	0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Creates non-inverted ECC code from line parity
 | |
|  */
 | |
| static void nand_trans_result(u_char reg2, u_char reg3,
 | |
| 	u_char *ecc_code)
 | |
| {
 | |
| 	u_char a, b, i, tmp1, tmp2;
 | |
| 
 | |
| 	/* Initialize variables */
 | |
| 	a = b = 0x80;
 | |
| 	tmp1 = tmp2 = 0;
 | |
| 
 | |
| 	/* Calculate first ECC byte */
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		if (reg3 & a)		/* LP15,13,11,9 --> ecc_code[0] */
 | |
| 			tmp1 |= b;
 | |
| 		b >>= 1;
 | |
| 		if (reg2 & a)		/* LP14,12,10,8 --> ecc_code[0] */
 | |
| 			tmp1 |= b;
 | |
| 		b >>= 1;
 | |
| 		a >>= 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate second ECC byte */
 | |
| 	b = 0x80;
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		if (reg3 & a)		/* LP7,5,3,1 --> ecc_code[1] */
 | |
| 			tmp2 |= b;
 | |
| 		b >>= 1;
 | |
| 		if (reg2 & a)		/* LP6,4,2,0 --> ecc_code[1] */
 | |
| 			tmp2 |= b;
 | |
| 		b >>= 1;
 | |
| 		a >>= 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Store two of the ECC bytes */
 | |
| 	ecc_code[0] = tmp1;
 | |
| 	ecc_code[1] = tmp2;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate 3 byte ECC code for 256 byte block
 | |
|  */
 | |
| static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code)
 | |
| {
 | |
| 	u_char idx, reg1, reg3;
 | |
| 	int j;
 | |
| 
 | |
| 	/* Initialize variables */
 | |
| 	reg1 = reg3 = 0;
 | |
| 	ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
 | |
| 
 | |
| 	/* Build up column parity */
 | |
| 	for(j = 0; j < 256; j++) {
 | |
| 
 | |
| 		/* Get CP0 - CP5 from table */
 | |
| 		idx = nand_ecc_precalc_table[dat[j]];
 | |
| 		reg1 ^= idx;
 | |
| 
 | |
| 		/* All bit XOR = 1 ? */
 | |
| 		if (idx & 0x40) {
 | |
| 			reg3 ^= (u_char) j;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Create non-inverted ECC code from line parity */
 | |
| 	nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code);
 | |
| 
 | |
| 	/* Calculate final ECC code */
 | |
| 	ecc_code[0] = ~ecc_code[0];
 | |
| 	ecc_code[1] = ~ecc_code[1];
 | |
| 	ecc_code[2] = ((~reg1) << 2) | 0x03;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Detect and correct a 1 bit error for 256 byte block
 | |
|  */
 | |
| static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc)
 | |
| {
 | |
| 	u_char a, b, c, d1, d2, d3, add, bit, i;
 | |
| 
 | |
| 	/* Do error detection */
 | |
| 	d1 = calc_ecc[0] ^ read_ecc[0];
 | |
| 	d2 = calc_ecc[1] ^ read_ecc[1];
 | |
| 	d3 = calc_ecc[2] ^ read_ecc[2];
 | |
| 
 | |
| 	if ((d1 | d2 | d3) == 0) {
 | |
| 		/* No errors */
 | |
| 		return 0;
 | |
| 	} else {
 | |
| 		a = (d1 ^ (d1 >> 1)) & 0x55;
 | |
| 		b = (d2 ^ (d2 >> 1)) & 0x55;
 | |
| 		c = (d3 ^ (d3 >> 1)) & 0x54;
 | |
| 
 | |
| 		/* Found and will correct single bit error in the data */
 | |
| 		if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
 | |
| 			c = 0x80;
 | |
| 			add = 0;
 | |
| 			a = 0x80;
 | |
| 			for (i=0; i<4; i++) {
 | |
| 				if (d1 & c)
 | |
| 					add |= a;
 | |
| 				c >>= 2;
 | |
| 				a >>= 1;
 | |
| 			}
 | |
| 			c = 0x80;
 | |
| 			for (i=0; i<4; i++) {
 | |
| 				if (d2 & c)
 | |
| 					add |= a;
 | |
| 				c >>= 2;
 | |
| 				a >>= 1;
 | |
| 			}
 | |
| 			bit = 0;
 | |
| 			b = 0x04;
 | |
| 			c = 0x80;
 | |
| 			for (i=0; i<3; i++) {
 | |
| 				if (d3 & c)
 | |
| 					bit |= b;
 | |
| 				c >>= 2;
 | |
| 				b >>= 1;
 | |
| 			}
 | |
| 			b = 0x01;
 | |
| 			a = dat[add];
 | |
| 			a ^= (b << bit);
 | |
| 			dat[add] = a;
 | |
| 			return 1;
 | |
| 		}
 | |
| 		else {
 | |
| 			i = 0;
 | |
| 			while (d1) {
 | |
| 				if (d1 & 0x01)
 | |
| 					++i;
 | |
| 				d1 >>= 1;
 | |
| 			}
 | |
| 			while (d2) {
 | |
| 				if (d2 & 0x01)
 | |
| 					++i;
 | |
| 				d2 >>= 1;
 | |
| 			}
 | |
| 			while (d3) {
 | |
| 				if (d3 & 0x01)
 | |
| 					++i;
 | |
| 				d3 >>= 1;
 | |
| 			}
 | |
| 			if (i == 1) {
 | |
| 				/* ECC Code Error Correction */
 | |
| 				read_ecc[0] = calc_ecc[0];
 | |
| 				read_ecc[1] = calc_ecc[1];
 | |
| 				read_ecc[2] = calc_ecc[2];
 | |
| 				return 2;
 | |
| 			}
 | |
| 			else {
 | |
| 				/* Uncorrectable Error */
 | |
| 				return -1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Should never happen */
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_JFFS2_NAND
 | |
| int read_jffs2_nand(size_t start, size_t len,
 | |
| 		size_t * retlen, u_char * buf, int nanddev)
 | |
| {
 | |
| 	return nand_legacy_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2,
 | |
| 			start, len, retlen, buf);
 | |
| }
 | |
| #endif /* CONFIG_JFFS2_NAND */
 |