1671 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1671 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright (c) International Business Machines Corp., 2006
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
 | |
|  * the GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 | |
|  *
 | |
|  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * UBI wear-leveling unit.
 | |
|  *
 | |
|  * This unit is responsible for wear-leveling. It works in terms of physical
 | |
|  * eraseblocks and erase counters and knows nothing about logical eraseblocks,
 | |
|  * volumes, etc. From this unit's perspective all physical eraseblocks are of
 | |
|  * two types - used and free. Used physical eraseblocks are those that were
 | |
|  * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are
 | |
|  * those that were put by the 'ubi_wl_put_peb()' function.
 | |
|  *
 | |
|  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
 | |
|  * header. The rest of the physical eraseblock contains only 0xFF bytes.
 | |
|  *
 | |
|  * When physical eraseblocks are returned to the WL unit by means of the
 | |
|  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
 | |
|  * done asynchronously in context of the per-UBI device background thread,
 | |
|  * which is also managed by the WL unit.
 | |
|  *
 | |
|  * The wear-leveling is ensured by means of moving the contents of used
 | |
|  * physical eraseblocks with low erase counter to free physical eraseblocks
 | |
|  * with high erase counter.
 | |
|  *
 | |
|  * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
 | |
|  * an "optimal" physical eraseblock. For example, when it is known that the
 | |
|  * physical eraseblock will be "put" soon because it contains short-term data,
 | |
|  * the WL unit may pick a free physical eraseblock with low erase counter, and
 | |
|  * so forth.
 | |
|  *
 | |
|  * If the WL unit fails to erase a physical eraseblock, it marks it as bad.
 | |
|  *
 | |
|  * This unit is also responsible for scrubbing. If a bit-flip is detected in a
 | |
|  * physical eraseblock, it has to be moved. Technically this is the same as
 | |
|  * moving it for wear-leveling reasons.
 | |
|  *
 | |
|  * As it was said, for the UBI unit all physical eraseblocks are either "free"
 | |
|  * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used
 | |
|  * eraseblocks are kept in a set of different RB-trees: @wl->used,
 | |
|  * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
 | |
|  *
 | |
|  * Note, in this implementation, we keep a small in-RAM object for each physical
 | |
|  * eraseblock. This is surely not a scalable solution. But it appears to be good
 | |
|  * enough for moderately large flashes and it is simple. In future, one may
 | |
|  * re-work this unit and make it more scalable.
 | |
|  *
 | |
|  * At the moment this unit does not utilize the sequence number, which was
 | |
|  * introduced relatively recently. But it would be wise to do this because the
 | |
|  * sequence number of a logical eraseblock characterizes how old is it. For
 | |
|  * example, when we move a PEB with low erase counter, and we need to pick the
 | |
|  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
 | |
|  * pick target PEB with an average EC if our PEB is not very "old". This is a
 | |
|  * room for future re-works of the WL unit.
 | |
|  *
 | |
|  * FIXME: looks too complex, should be simplified (later).
 | |
|  */
 | |
| 
 | |
| #ifdef UBI_LINUX
 | |
| #include <linux/slab.h>
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/kthread.h>
 | |
| #endif
 | |
| 
 | |
| #include <ubi_uboot.h>
 | |
| #include "ubi.h"
 | |
| 
 | |
| /* Number of physical eraseblocks reserved for wear-leveling purposes */
 | |
| #define WL_RESERVED_PEBS 1
 | |
| 
 | |
| /*
 | |
|  * How many erase cycles are short term, unknown, and long term physical
 | |
|  * eraseblocks protected.
 | |
|  */
 | |
| #define ST_PROTECTION 16
 | |
| #define U_PROTECTION  10
 | |
| #define LT_PROTECTION 4
 | |
| 
 | |
| /*
 | |
|  * Maximum difference between two erase counters. If this threshold is
 | |
|  * exceeded, the WL unit starts moving data from used physical eraseblocks with
 | |
|  * low erase counter to free physical eraseblocks with high erase counter.
 | |
|  */
 | |
| #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
 | |
| 
 | |
| /*
 | |
|  * When a physical eraseblock is moved, the WL unit has to pick the target
 | |
|  * physical eraseblock to move to. The simplest way would be just to pick the
 | |
|  * one with the highest erase counter. But in certain workloads this could lead
 | |
|  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
 | |
|  * situation when the picked physical eraseblock is constantly erased after the
 | |
|  * data is written to it. So, we have a constant which limits the highest erase
 | |
|  * counter of the free physical eraseblock to pick. Namely, the WL unit does
 | |
|  * not pick eraseblocks with erase counter greater then the lowest erase
 | |
|  * counter plus %WL_FREE_MAX_DIFF.
 | |
|  */
 | |
| #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
 | |
| 
 | |
| /*
 | |
|  * Maximum number of consecutive background thread failures which is enough to
 | |
|  * switch to read-only mode.
 | |
|  */
 | |
| #define WL_MAX_FAILURES 32
 | |
| 
 | |
| /**
 | |
|  * struct ubi_wl_prot_entry - PEB protection entry.
 | |
|  * @rb_pnum: link in the @wl->prot.pnum RB-tree
 | |
|  * @rb_aec: link in the @wl->prot.aec RB-tree
 | |
|  * @abs_ec: the absolute erase counter value when the protection ends
 | |
|  * @e: the wear-leveling entry of the physical eraseblock under protection
 | |
|  *
 | |
|  * When the WL unit returns a physical eraseblock, the physical eraseblock is
 | |
|  * protected from being moved for some "time". For this reason, the physical
 | |
|  * eraseblock is not directly moved from the @wl->free tree to the @wl->used
 | |
|  * tree. There is one more tree in between where this physical eraseblock is
 | |
|  * temporarily stored (@wl->prot).
 | |
|  *
 | |
|  * All this protection stuff is needed because:
 | |
|  *  o we don't want to move physical eraseblocks just after we have given them
 | |
|  *    to the user; instead, we first want to let users fill them up with data;
 | |
|  *
 | |
|  *  o there is a chance that the user will put the physical eraseblock very
 | |
|  *    soon, so it makes sense not to move it for some time, but wait; this is
 | |
|  *    especially important in case of "short term" physical eraseblocks.
 | |
|  *
 | |
|  * Physical eraseblocks stay protected only for limited time. But the "time" is
 | |
|  * measured in erase cycles in this case. This is implemented with help of the
 | |
|  * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
 | |
|  * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
 | |
|  * the @wl->used tree.
 | |
|  *
 | |
|  * Protected physical eraseblocks are searched by physical eraseblock number
 | |
|  * (when they are put) and by the absolute erase counter (to check if it is
 | |
|  * time to move them to the @wl->used tree). So there are actually 2 RB-trees
 | |
|  * storing the protected physical eraseblocks: @wl->prot.pnum and
 | |
|  * @wl->prot.aec. They are referred to as the "protection" trees. The
 | |
|  * first one is indexed by the physical eraseblock number. The second one is
 | |
|  * indexed by the absolute erase counter. Both trees store
 | |
|  * &struct ubi_wl_prot_entry objects.
 | |
|  *
 | |
|  * Each physical eraseblock has 2 main states: free and used. The former state
 | |
|  * corresponds to the @wl->free tree. The latter state is split up on several
 | |
|  * sub-states:
 | |
|  * o the WL movement is allowed (@wl->used tree);
 | |
|  * o the WL movement is temporarily prohibited (@wl->prot.pnum and
 | |
|  * @wl->prot.aec trees);
 | |
|  * o scrubbing is needed (@wl->scrub tree).
 | |
|  *
 | |
|  * Depending on the sub-state, wear-leveling entries of the used physical
 | |
|  * eraseblocks may be kept in one of those trees.
 | |
|  */
 | |
| struct ubi_wl_prot_entry {
 | |
| 	struct rb_node rb_pnum;
 | |
| 	struct rb_node rb_aec;
 | |
| 	unsigned long long abs_ec;
 | |
| 	struct ubi_wl_entry *e;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct ubi_work - UBI work description data structure.
 | |
|  * @list: a link in the list of pending works
 | |
|  * @func: worker function
 | |
|  * @priv: private data of the worker function
 | |
|  *
 | |
|  * @e: physical eraseblock to erase
 | |
|  * @torture: if the physical eraseblock has to be tortured
 | |
|  *
 | |
|  * The @func pointer points to the worker function. If the @cancel argument is
 | |
|  * not zero, the worker has to free the resources and exit immediately. The
 | |
|  * worker has to return zero in case of success and a negative error code in
 | |
|  * case of failure.
 | |
|  */
 | |
| struct ubi_work {
 | |
| 	struct list_head list;
 | |
| 	int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
 | |
| 	/* The below fields are only relevant to erasure works */
 | |
| 	struct ubi_wl_entry *e;
 | |
| 	int torture;
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
 | |
| static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
 | |
| static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
 | |
| 				     struct rb_root *root);
 | |
| #else
 | |
| #define paranoid_check_ec(ubi, pnum, ec) 0
 | |
| #define paranoid_check_in_wl_tree(e, root)
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
 | |
|  * @e: the wear-leveling entry to add
 | |
|  * @root: the root of the tree
 | |
|  *
 | |
|  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
 | |
|  * the @ubi->used and @ubi->free RB-trees.
 | |
|  */
 | |
| static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
 | |
| {
 | |
| 	struct rb_node **p, *parent = NULL;
 | |
| 
 | |
| 	p = &root->rb_node;
 | |
| 	while (*p) {
 | |
| 		struct ubi_wl_entry *e1;
 | |
| 
 | |
| 		parent = *p;
 | |
| 		e1 = rb_entry(parent, struct ubi_wl_entry, rb);
 | |
| 
 | |
| 		if (e->ec < e1->ec)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (e->ec > e1->ec)
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else {
 | |
| 			ubi_assert(e->pnum != e1->pnum);
 | |
| 			if (e->pnum < e1->pnum)
 | |
| 				p = &(*p)->rb_left;
 | |
| 			else
 | |
| 				p = &(*p)->rb_right;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(&e->rb, parent, p);
 | |
| 	rb_insert_color(&e->rb, root);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * do_work - do one pending work.
 | |
|  * @ubi: UBI device description object
 | |
|  *
 | |
|  * This function returns zero in case of success and a negative error code in
 | |
|  * case of failure.
 | |
|  */
 | |
| static int do_work(struct ubi_device *ubi)
 | |
| {
 | |
| 	int err;
 | |
| 	struct ubi_work *wrk;
 | |
| 
 | |
| 	cond_resched();
 | |
| 
 | |
| 	/*
 | |
| 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
 | |
| 	 * it in read mode, so many of them may be doing works at a time. But
 | |
| 	 * the queue flush code has to be sure the whole queue of works is
 | |
| 	 * done, and it takes the mutex in write mode.
 | |
| 	 */
 | |
| 	down_read(&ubi->work_sem);
 | |
| 	spin_lock(&ubi->wl_lock);
 | |
| 	if (list_empty(&ubi->works)) {
 | |
| 		spin_unlock(&ubi->wl_lock);
 | |
| 		up_read(&ubi->work_sem);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
 | |
| 	list_del(&wrk->list);
 | |
| 	ubi->works_count -= 1;
 | |
| 	ubi_assert(ubi->works_count >= 0);
 | |
| 	spin_unlock(&ubi->wl_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Call the worker function. Do not touch the work structure
 | |
| 	 * after this call as it will have been freed or reused by that
 | |
| 	 * time by the worker function.
 | |
| 	 */
 | |
| 	err = wrk->func(ubi, wrk, 0);
 | |
| 	if (err)
 | |
| 		ubi_err("work failed with error code %d", err);
 | |
| 	up_read(&ubi->work_sem);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * produce_free_peb - produce a free physical eraseblock.
 | |
|  * @ubi: UBI device description object
 | |
|  *
 | |
|  * This function tries to make a free PEB by means of synchronous execution of
 | |
|  * pending works. This may be needed if, for example the background thread is
 | |
|  * disabled. Returns zero in case of success and a negative error code in case
 | |
|  * of failure.
 | |
|  */
 | |
| static int produce_free_peb(struct ubi_device *ubi)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	spin_lock(&ubi->wl_lock);
 | |
| 	while (!ubi->free.rb_node) {
 | |
| 		spin_unlock(&ubi->wl_lock);
 | |
| 
 | |
| 		dbg_wl("do one work synchronously");
 | |
| 		err = do_work(ubi);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		spin_lock(&ubi->wl_lock);
 | |
| 	}
 | |
| 	spin_unlock(&ubi->wl_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
 | |
|  * @e: the wear-leveling entry to check
 | |
|  * @root: the root of the tree
 | |
|  *
 | |
|  * This function returns non-zero if @e is in the @root RB-tree and zero if it
 | |
|  * is not.
 | |
|  */
 | |
| static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
 | |
| {
 | |
| 	struct rb_node *p;
 | |
| 
 | |
| 	p = root->rb_node;
 | |
| 	while (p) {
 | |
| 		struct ubi_wl_entry *e1;
 | |
| 
 | |
| 		e1 = rb_entry(p, struct ubi_wl_entry, rb);
 | |
| 
 | |
| 		if (e->pnum == e1->pnum) {
 | |
| 			ubi_assert(e == e1);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		if (e->ec < e1->ec)
 | |
| 			p = p->rb_left;
 | |
| 		else if (e->ec > e1->ec)
 | |
| 			p = p->rb_right;
 | |
| 		else {
 | |
| 			ubi_assert(e->pnum != e1->pnum);
 | |
| 			if (e->pnum < e1->pnum)
 | |
| 				p = p->rb_left;
 | |
| 			else
 | |
| 				p = p->rb_right;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * prot_tree_add - add physical eraseblock to protection trees.
 | |
|  * @ubi: UBI device description object
 | |
|  * @e: the physical eraseblock to add
 | |
|  * @pe: protection entry object to use
 | |
|  * @abs_ec: absolute erase counter value when this physical eraseblock has
 | |
|  * to be removed from the protection trees.
 | |
|  *
 | |
|  * @wl->lock has to be locked.
 | |
|  */
 | |
| static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
 | |
| 			  struct ubi_wl_prot_entry *pe, int abs_ec)
 | |
| {
 | |
| 	struct rb_node **p, *parent = NULL;
 | |
| 	struct ubi_wl_prot_entry *pe1;
 | |
| 
 | |
| 	pe->e = e;
 | |
| 	pe->abs_ec = ubi->abs_ec + abs_ec;
 | |
| 
 | |
| 	p = &ubi->prot.pnum.rb_node;
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum);
 | |
| 
 | |
| 		if (e->pnum < pe1->e->pnum)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else
 | |
| 			p = &(*p)->rb_right;
 | |
| 	}
 | |
| 	rb_link_node(&pe->rb_pnum, parent, p);
 | |
| 	rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum);
 | |
| 
 | |
| 	p = &ubi->prot.aec.rb_node;
 | |
| 	parent = NULL;
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec);
 | |
| 
 | |
| 		if (pe->abs_ec < pe1->abs_ec)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else
 | |
| 			p = &(*p)->rb_right;
 | |
| 	}
 | |
| 	rb_link_node(&pe->rb_aec, parent, p);
 | |
| 	rb_insert_color(&pe->rb_aec, &ubi->prot.aec);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
 | |
|  * @root: the RB-tree where to look for
 | |
|  * @max: highest possible erase counter
 | |
|  *
 | |
|  * This function looks for a wear leveling entry with erase counter closest to
 | |
|  * @max and less then @max.
 | |
|  */
 | |
| static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
 | |
| {
 | |
| 	struct rb_node *p;
 | |
| 	struct ubi_wl_entry *e;
 | |
| 
 | |
| 	e = rb_entry(rb_first(root), struct ubi_wl_entry, rb);
 | |
| 	max += e->ec;
 | |
| 
 | |
| 	p = root->rb_node;
 | |
| 	while (p) {
 | |
| 		struct ubi_wl_entry *e1;
 | |
| 
 | |
| 		e1 = rb_entry(p, struct ubi_wl_entry, rb);
 | |
| 		if (e1->ec >= max)
 | |
| 			p = p->rb_left;
 | |
| 		else {
 | |
| 			p = p->rb_right;
 | |
| 			e = e1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return e;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_wl_get_peb - get a physical eraseblock.
 | |
|  * @ubi: UBI device description object
 | |
|  * @dtype: type of data which will be stored in this physical eraseblock
 | |
|  *
 | |
|  * This function returns a physical eraseblock in case of success and a
 | |
|  * negative error code in case of failure. Might sleep.
 | |
|  */
 | |
| int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
 | |
| {
 | |
| 	int err, protect, medium_ec;
 | |
| 	struct ubi_wl_entry *e, *first, *last;
 | |
| 	struct ubi_wl_prot_entry *pe;
 | |
| 
 | |
| 	ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
 | |
| 		   dtype == UBI_UNKNOWN);
 | |
| 
 | |
| 	pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
 | |
| 	if (!pe)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| retry:
 | |
| 	spin_lock(&ubi->wl_lock);
 | |
| 	if (!ubi->free.rb_node) {
 | |
| 		if (ubi->works_count == 0) {
 | |
| 			ubi_assert(list_empty(&ubi->works));
 | |
| 			ubi_err("no free eraseblocks");
 | |
| 			spin_unlock(&ubi->wl_lock);
 | |
| 			kfree(pe);
 | |
| 			return -ENOSPC;
 | |
| 		}
 | |
| 		spin_unlock(&ubi->wl_lock);
 | |
| 
 | |
| 		err = produce_free_peb(ubi);
 | |
| 		if (err < 0) {
 | |
| 			kfree(pe);
 | |
| 			return err;
 | |
| 		}
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	switch (dtype) {
 | |
| 		case UBI_LONGTERM:
 | |
| 			/*
 | |
| 			 * For long term data we pick a physical eraseblock
 | |
| 			 * with high erase counter. But the highest erase
 | |
| 			 * counter we can pick is bounded by the the lowest
 | |
| 			 * erase counter plus %WL_FREE_MAX_DIFF.
 | |
| 			 */
 | |
| 			e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
 | |
| 			protect = LT_PROTECTION;
 | |
| 			break;
 | |
| 		case UBI_UNKNOWN:
 | |
| 			/*
 | |
| 			 * For unknown data we pick a physical eraseblock with
 | |
| 			 * medium erase counter. But we by no means can pick a
 | |
| 			 * physical eraseblock with erase counter greater or
 | |
| 			 * equivalent than the lowest erase counter plus
 | |
| 			 * %WL_FREE_MAX_DIFF.
 | |
| 			 */
 | |
| 			first = rb_entry(rb_first(&ubi->free),
 | |
| 					 struct ubi_wl_entry, rb);
 | |
| 			last = rb_entry(rb_last(&ubi->free),
 | |
| 					struct ubi_wl_entry, rb);
 | |
| 
 | |
| 			if (last->ec - first->ec < WL_FREE_MAX_DIFF)
 | |
| 				e = rb_entry(ubi->free.rb_node,
 | |
| 						struct ubi_wl_entry, rb);
 | |
| 			else {
 | |
| 				medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
 | |
| 				e = find_wl_entry(&ubi->free, medium_ec);
 | |
| 			}
 | |
| 			protect = U_PROTECTION;
 | |
| 			break;
 | |
| 		case UBI_SHORTTERM:
 | |
| 			/*
 | |
| 			 * For short term data we pick a physical eraseblock
 | |
| 			 * with the lowest erase counter as we expect it will
 | |
| 			 * be erased soon.
 | |
| 			 */
 | |
| 			e = rb_entry(rb_first(&ubi->free),
 | |
| 				     struct ubi_wl_entry, rb);
 | |
| 			protect = ST_PROTECTION;
 | |
| 			break;
 | |
| 		default:
 | |
| 			protect = 0;
 | |
| 			e = NULL;
 | |
| 			BUG();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Move the physical eraseblock to the protection trees where it will
 | |
| 	 * be protected from being moved for some time.
 | |
| 	 */
 | |
| 	paranoid_check_in_wl_tree(e, &ubi->free);
 | |
| 	rb_erase(&e->rb, &ubi->free);
 | |
| 	prot_tree_add(ubi, e, pe, protect);
 | |
| 
 | |
| 	dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect);
 | |
| 	spin_unlock(&ubi->wl_lock);
 | |
| 
 | |
| 	return e->pnum;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * prot_tree_del - remove a physical eraseblock from the protection trees
 | |
|  * @ubi: UBI device description object
 | |
|  * @pnum: the physical eraseblock to remove
 | |
|  *
 | |
|  * This function returns PEB @pnum from the protection trees and returns zero
 | |
|  * in case of success and %-ENODEV if the PEB was not found in the protection
 | |
|  * trees.
 | |
|  */
 | |
| static int prot_tree_del(struct ubi_device *ubi, int pnum)
 | |
| {
 | |
| 	struct rb_node *p;
 | |
| 	struct ubi_wl_prot_entry *pe = NULL;
 | |
| 
 | |
| 	p = ubi->prot.pnum.rb_node;
 | |
| 	while (p) {
 | |
| 
 | |
| 		pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum);
 | |
| 
 | |
| 		if (pnum == pe->e->pnum)
 | |
| 			goto found;
 | |
| 
 | |
| 		if (pnum < pe->e->pnum)
 | |
| 			p = p->rb_left;
 | |
| 		else
 | |
| 			p = p->rb_right;
 | |
| 	}
 | |
| 
 | |
| 	return -ENODEV;
 | |
| 
 | |
| found:
 | |
| 	ubi_assert(pe->e->pnum == pnum);
 | |
| 	rb_erase(&pe->rb_aec, &ubi->prot.aec);
 | |
| 	rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
 | |
| 	kfree(pe);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sync_erase - synchronously erase a physical eraseblock.
 | |
|  * @ubi: UBI device description object
 | |
|  * @e: the the physical eraseblock to erase
 | |
|  * @torture: if the physical eraseblock has to be tortured
 | |
|  *
 | |
|  * This function returns zero in case of success and a negative error code in
 | |
|  * case of failure.
 | |
|  */
 | |
| static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
 | |
| {
 | |
| 	int err;
 | |
| 	struct ubi_ec_hdr *ec_hdr;
 | |
| 	unsigned long long ec = e->ec;
 | |
| 
 | |
| 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
 | |
| 
 | |
| 	err = paranoid_check_ec(ubi, e->pnum, e->ec);
 | |
| 	if (err > 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
 | |
| 	if (!ec_hdr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
 | |
| 	if (err < 0)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	ec += err;
 | |
| 	if (ec > UBI_MAX_ERASECOUNTER) {
 | |
| 		/*
 | |
| 		 * Erase counter overflow. Upgrade UBI and use 64-bit
 | |
| 		 * erase counters internally.
 | |
| 		 */
 | |
| 		ubi_err("erase counter overflow at PEB %d, EC %llu",
 | |
| 			e->pnum, ec);
 | |
| 		err = -EINVAL;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
 | |
| 
 | |
| 	ec_hdr->ec = cpu_to_be64(ec);
 | |
| 
 | |
| 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
 | |
| 	if (err)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	e->ec = ec;
 | |
| 	spin_lock(&ubi->wl_lock);
 | |
| 	if (e->ec > ubi->max_ec)
 | |
| 		ubi->max_ec = e->ec;
 | |
| 	spin_unlock(&ubi->wl_lock);
 | |
| 
 | |
| out_free:
 | |
| 	kfree(ec_hdr);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * check_protection_over - check if it is time to stop protecting some
 | |
|  * physical eraseblocks.
 | |
|  * @ubi: UBI device description object
 | |
|  *
 | |
|  * This function is called after each erase operation, when the absolute erase
 | |
|  * counter is incremented, to check if some physical eraseblock  have not to be
 | |
|  * protected any longer. These physical eraseblocks are moved from the
 | |
|  * protection trees to the used tree.
 | |
|  */
 | |
| static void check_protection_over(struct ubi_device *ubi)
 | |
| {
 | |
| 	struct ubi_wl_prot_entry *pe;
 | |
| 
 | |
| 	/*
 | |
| 	 * There may be several protected physical eraseblock to remove,
 | |
| 	 * process them all.
 | |
| 	 */
 | |
| 	while (1) {
 | |
| 		spin_lock(&ubi->wl_lock);
 | |
| 		if (!ubi->prot.aec.rb_node) {
 | |
| 			spin_unlock(&ubi->wl_lock);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		pe = rb_entry(rb_first(&ubi->prot.aec),
 | |
| 			      struct ubi_wl_prot_entry, rb_aec);
 | |
| 
 | |
| 		if (pe->abs_ec > ubi->abs_ec) {
 | |
| 			spin_unlock(&ubi->wl_lock);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
 | |
| 		       pe->e->pnum, ubi->abs_ec, pe->abs_ec);
 | |
| 		rb_erase(&pe->rb_aec, &ubi->prot.aec);
 | |
| 		rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
 | |
| 		wl_tree_add(pe->e, &ubi->used);
 | |
| 		spin_unlock(&ubi->wl_lock);
 | |
| 
 | |
| 		kfree(pe);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * schedule_ubi_work - schedule a work.
 | |
|  * @ubi: UBI device description object
 | |
|  * @wrk: the work to schedule
 | |
|  *
 | |
|  * This function enqueues a work defined by @wrk to the tail of the pending
 | |
|  * works list.
 | |
|  */
 | |
| static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 | |
| {
 | |
| 	spin_lock(&ubi->wl_lock);
 | |
| 	list_add_tail(&wrk->list, &ubi->works);
 | |
| 	ubi_assert(ubi->works_count >= 0);
 | |
| 	ubi->works_count += 1;
 | |
| 	if (ubi->thread_enabled)
 | |
| 		wake_up_process(ubi->bgt_thread);
 | |
| 	spin_unlock(&ubi->wl_lock);
 | |
| }
 | |
| 
 | |
| static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
 | |
| 			int cancel);
 | |
| 
 | |
| /**
 | |
|  * schedule_erase - schedule an erase work.
 | |
|  * @ubi: UBI device description object
 | |
|  * @e: the WL entry of the physical eraseblock to erase
 | |
|  * @torture: if the physical eraseblock has to be tortured
 | |
|  *
 | |
|  * This function returns zero in case of success and a %-ENOMEM in case of
 | |
|  * failure.
 | |
|  */
 | |
| static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 | |
| 			  int torture)
 | |
| {
 | |
| 	struct ubi_work *wl_wrk;
 | |
| 
 | |
| 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
 | |
| 	       e->pnum, e->ec, torture);
 | |
| 
 | |
| 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
 | |
| 	if (!wl_wrk)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	wl_wrk->func = &erase_worker;
 | |
| 	wl_wrk->e = e;
 | |
| 	wl_wrk->torture = torture;
 | |
| 
 | |
| 	schedule_ubi_work(ubi, wl_wrk);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wear_leveling_worker - wear-leveling worker function.
 | |
|  * @ubi: UBI device description object
 | |
|  * @wrk: the work object
 | |
|  * @cancel: non-zero if the worker has to free memory and exit
 | |
|  *
 | |
|  * This function copies a more worn out physical eraseblock to a less worn out
 | |
|  * one. Returns zero in case of success and a negative error code in case of
 | |
|  * failure.
 | |
|  */
 | |
| static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
 | |
| 				int cancel)
 | |
| {
 | |
| 	int err, put = 0, scrubbing = 0, protect = 0;
 | |
| 	struct ubi_wl_prot_entry *uninitialized_var(pe);
 | |
| 	struct ubi_wl_entry *e1, *e2;
 | |
| 	struct ubi_vid_hdr *vid_hdr;
 | |
| 
 | |
| 	kfree(wrk);
 | |
| 
 | |
| 	if (cancel)
 | |
| 		return 0;
 | |
| 
 | |
| 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 | |
| 	if (!vid_hdr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mutex_lock(&ubi->move_mutex);
 | |
| 	spin_lock(&ubi->wl_lock);
 | |
| 	ubi_assert(!ubi->move_from && !ubi->move_to);
 | |
| 	ubi_assert(!ubi->move_to_put);
 | |
| 
 | |
| 	if (!ubi->free.rb_node ||
 | |
| 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
 | |
| 		/*
 | |
| 		 * No free physical eraseblocks? Well, they must be waiting in
 | |
| 		 * the queue to be erased. Cancel movement - it will be
 | |
| 		 * triggered again when a free physical eraseblock appears.
 | |
| 		 *
 | |
| 		 * No used physical eraseblocks? They must be temporarily
 | |
| 		 * protected from being moved. They will be moved to the
 | |
| 		 * @ubi->used tree later and the wear-leveling will be
 | |
| 		 * triggered again.
 | |
| 		 */
 | |
| 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
 | |
| 		       !ubi->free.rb_node, !ubi->used.rb_node);
 | |
| 		goto out_cancel;
 | |
| 	}
 | |
| 
 | |
| 	if (!ubi->scrub.rb_node) {
 | |
| 		/*
 | |
| 		 * Now pick the least worn-out used physical eraseblock and a
 | |
| 		 * highly worn-out free physical eraseblock. If the erase
 | |
| 		 * counters differ much enough, start wear-leveling.
 | |
| 		 */
 | |
| 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
 | |
| 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
 | |
| 
 | |
| 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
 | |
| 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
 | |
| 			       e1->ec, e2->ec);
 | |
| 			goto out_cancel;
 | |
| 		}
 | |
| 		paranoid_check_in_wl_tree(e1, &ubi->used);
 | |
| 		rb_erase(&e1->rb, &ubi->used);
 | |
| 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
 | |
| 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
 | |
| 	} else {
 | |
| 		/* Perform scrubbing */
 | |
| 		scrubbing = 1;
 | |
| 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb);
 | |
| 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
 | |
| 		paranoid_check_in_wl_tree(e1, &ubi->scrub);
 | |
| 		rb_erase(&e1->rb, &ubi->scrub);
 | |
| 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
 | |
| 	}
 | |
| 
 | |
| 	paranoid_check_in_wl_tree(e2, &ubi->free);
 | |
| 	rb_erase(&e2->rb, &ubi->free);
 | |
| 	ubi->move_from = e1;
 | |
| 	ubi->move_to = e2;
 | |
| 	spin_unlock(&ubi->wl_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
 | |
| 	 * We so far do not know which logical eraseblock our physical
 | |
| 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
 | |
| 	 * header first.
 | |
| 	 *
 | |
| 	 * Note, we are protected from this PEB being unmapped and erased. The
 | |
| 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
 | |
| 	 * which is being moved was unmapped.
 | |
| 	 */
 | |
| 
 | |
| 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
 | |
| 	if (err && err != UBI_IO_BITFLIPS) {
 | |
| 		if (err == UBI_IO_PEB_FREE) {
 | |
| 			/*
 | |
| 			 * We are trying to move PEB without a VID header. UBI
 | |
| 			 * always write VID headers shortly after the PEB was
 | |
| 			 * given, so we have a situation when it did not have
 | |
| 			 * chance to write it down because it was preempted.
 | |
| 			 * Just re-schedule the work, so that next time it will
 | |
| 			 * likely have the VID header in place.
 | |
| 			 */
 | |
| 			dbg_wl("PEB %d has no VID header", e1->pnum);
 | |
| 			goto out_not_moved;
 | |
| 		}
 | |
| 
 | |
| 		ubi_err("error %d while reading VID header from PEB %d",
 | |
| 			err, e1->pnum);
 | |
| 		if (err > 0)
 | |
| 			err = -EIO;
 | |
| 		goto out_error;
 | |
| 	}
 | |
| 
 | |
| 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
 | |
| 	if (err) {
 | |
| 
 | |
| 		if (err < 0)
 | |
| 			goto out_error;
 | |
| 		if (err == 1)
 | |
| 			goto out_not_moved;
 | |
| 
 | |
| 		/*
 | |
| 		 * For some reason the LEB was not moved - it might be because
 | |
| 		 * the volume is being deleted. We should prevent this PEB from
 | |
| 		 * being selected for wear-levelling movement for some "time",
 | |
| 		 * so put it to the protection tree.
 | |
| 		 */
 | |
| 
 | |
| 		dbg_wl("cancelled moving PEB %d", e1->pnum);
 | |
| 		pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
 | |
| 		if (!pe) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out_error;
 | |
| 		}
 | |
| 
 | |
| 		protect = 1;
 | |
| 	}
 | |
| 
 | |
| 	ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 	spin_lock(&ubi->wl_lock);
 | |
| 	if (protect)
 | |
| 		prot_tree_add(ubi, e1, pe, protect);
 | |
| 	if (!ubi->move_to_put)
 | |
| 		wl_tree_add(e2, &ubi->used);
 | |
| 	else
 | |
| 		put = 1;
 | |
| 	ubi->move_from = ubi->move_to = NULL;
 | |
| 	ubi->move_to_put = ubi->wl_scheduled = 0;
 | |
| 	spin_unlock(&ubi->wl_lock);
 | |
| 
 | |
| 	if (put) {
 | |
| 		/*
 | |
| 		 * Well, the target PEB was put meanwhile, schedule it for
 | |
| 		 * erasure.
 | |
| 		 */
 | |
| 		dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
 | |
| 		err = schedule_erase(ubi, e2, 0);
 | |
| 		if (err)
 | |
| 			goto out_error;
 | |
| 	}
 | |
| 
 | |
| 	if (!protect) {
 | |
| 		err = schedule_erase(ubi, e1, 0);
 | |
| 		if (err)
 | |
| 			goto out_error;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	dbg_wl("done");
 | |
| 	mutex_unlock(&ubi->move_mutex);
 | |
| 	return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * For some reasons the LEB was not moved, might be an error, might be
 | |
| 	 * something else. @e1 was not changed, so return it back. @e2 might
 | |
| 	 * be changed, schedule it for erasure.
 | |
| 	 */
 | |
| out_not_moved:
 | |
| 	ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 	spin_lock(&ubi->wl_lock);
 | |
| 	if (scrubbing)
 | |
| 		wl_tree_add(e1, &ubi->scrub);
 | |
| 	else
 | |
| 		wl_tree_add(e1, &ubi->used);
 | |
| 	ubi->move_from = ubi->move_to = NULL;
 | |
| 	ubi->move_to_put = ubi->wl_scheduled = 0;
 | |
| 	spin_unlock(&ubi->wl_lock);
 | |
| 
 | |
| 	err = schedule_erase(ubi, e2, 0);
 | |
| 	if (err)
 | |
| 		goto out_error;
 | |
| 
 | |
| 	mutex_unlock(&ubi->move_mutex);
 | |
| 	return 0;
 | |
| 
 | |
| out_error:
 | |
| 	ubi_err("error %d while moving PEB %d to PEB %d",
 | |
| 		err, e1->pnum, e2->pnum);
 | |
| 
 | |
| 	ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 	spin_lock(&ubi->wl_lock);
 | |
| 	ubi->move_from = ubi->move_to = NULL;
 | |
| 	ubi->move_to_put = ubi->wl_scheduled = 0;
 | |
| 	spin_unlock(&ubi->wl_lock);
 | |
| 
 | |
| 	kmem_cache_free(ubi_wl_entry_slab, e1);
 | |
| 	kmem_cache_free(ubi_wl_entry_slab, e2);
 | |
| 	ubi_ro_mode(ubi);
 | |
| 
 | |
| 	mutex_unlock(&ubi->move_mutex);
 | |
| 	return err;
 | |
| 
 | |
| out_cancel:
 | |
| 	ubi->wl_scheduled = 0;
 | |
| 	spin_unlock(&ubi->wl_lock);
 | |
| 	mutex_unlock(&ubi->move_mutex);
 | |
| 	ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ensure_wear_leveling - schedule wear-leveling if it is needed.
 | |
|  * @ubi: UBI device description object
 | |
|  *
 | |
|  * This function checks if it is time to start wear-leveling and schedules it
 | |
|  * if yes. This function returns zero in case of success and a negative error
 | |
|  * code in case of failure.
 | |
|  */
 | |
| static int ensure_wear_leveling(struct ubi_device *ubi)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	struct ubi_wl_entry *e1;
 | |
| 	struct ubi_wl_entry *e2;
 | |
| 	struct ubi_work *wrk;
 | |
| 
 | |
| 	spin_lock(&ubi->wl_lock);
 | |
| 	if (ubi->wl_scheduled)
 | |
| 		/* Wear-leveling is already in the work queue */
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
 | |
| 	 * the WL worker has to be scheduled anyway.
 | |
| 	 */
 | |
| 	if (!ubi->scrub.rb_node) {
 | |
| 		if (!ubi->used.rb_node || !ubi->free.rb_node)
 | |
| 			/* No physical eraseblocks - no deal */
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		/*
 | |
| 		 * We schedule wear-leveling only if the difference between the
 | |
| 		 * lowest erase counter of used physical eraseblocks and a high
 | |
| 		 * erase counter of free physical eraseblocks is greater then
 | |
| 		 * %UBI_WL_THRESHOLD.
 | |
| 		 */
 | |
| 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
 | |
| 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
 | |
| 
 | |
| 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
 | |
| 			goto out_unlock;
 | |
| 		dbg_wl("schedule wear-leveling");
 | |
| 	} else
 | |
| 		dbg_wl("schedule scrubbing");
 | |
| 
 | |
| 	ubi->wl_scheduled = 1;
 | |
| 	spin_unlock(&ubi->wl_lock);
 | |
| 
 | |
| 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
 | |
| 	if (!wrk) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out_cancel;
 | |
| 	}
 | |
| 
 | |
| 	wrk->func = &wear_leveling_worker;
 | |
| 	schedule_ubi_work(ubi, wrk);
 | |
| 	return err;
 | |
| 
 | |
| out_cancel:
 | |
| 	spin_lock(&ubi->wl_lock);
 | |
| 	ubi->wl_scheduled = 0;
 | |
| out_unlock:
 | |
| 	spin_unlock(&ubi->wl_lock);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * erase_worker - physical eraseblock erase worker function.
 | |
|  * @ubi: UBI device description object
 | |
|  * @wl_wrk: the work object
 | |
|  * @cancel: non-zero if the worker has to free memory and exit
 | |
|  *
 | |
|  * This function erases a physical eraseblock and perform torture testing if
 | |
|  * needed. It also takes care about marking the physical eraseblock bad if
 | |
|  * needed. Returns zero in case of success and a negative error code in case of
 | |
|  * failure.
 | |
|  */
 | |
| static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
 | |
| 			int cancel)
 | |
| {
 | |
| 	struct ubi_wl_entry *e = wl_wrk->e;
 | |
| 	int pnum = e->pnum, err, need;
 | |
| 
 | |
| 	if (cancel) {
 | |
| 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
 | |
| 		kfree(wl_wrk);
 | |
| 		kmem_cache_free(ubi_wl_entry_slab, e);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	dbg_wl("erase PEB %d EC %d", pnum, e->ec);
 | |
| 
 | |
| 	err = sync_erase(ubi, e, wl_wrk->torture);
 | |
| 	if (!err) {
 | |
| 		/* Fine, we've erased it successfully */
 | |
| 		kfree(wl_wrk);
 | |
| 
 | |
| 		spin_lock(&ubi->wl_lock);
 | |
| 		ubi->abs_ec += 1;
 | |
| 		wl_tree_add(e, &ubi->free);
 | |
| 		spin_unlock(&ubi->wl_lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * One more erase operation has happened, take care about protected
 | |
| 		 * physical eraseblocks.
 | |
| 		 */
 | |
| 		check_protection_over(ubi);
 | |
| 
 | |
| 		/* And take care about wear-leveling */
 | |
| 		err = ensure_wear_leveling(ubi);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	ubi_err("failed to erase PEB %d, error %d", pnum, err);
 | |
| 	kfree(wl_wrk);
 | |
| 	kmem_cache_free(ubi_wl_entry_slab, e);
 | |
| 
 | |
| 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
 | |
| 	    err == -EBUSY) {
 | |
| 		int err1;
 | |
| 
 | |
| 		/* Re-schedule the LEB for erasure */
 | |
| 		err1 = schedule_erase(ubi, e, 0);
 | |
| 		if (err1) {
 | |
| 			err = err1;
 | |
| 			goto out_ro;
 | |
| 		}
 | |
| 		return err;
 | |
| 	} else if (err != -EIO) {
 | |
| 		/*
 | |
| 		 * If this is not %-EIO, we have no idea what to do. Scheduling
 | |
| 		 * this physical eraseblock for erasure again would cause
 | |
| 		 * errors again and again. Well, lets switch to RO mode.
 | |
| 		 */
 | |
| 		goto out_ro;
 | |
| 	}
 | |
| 
 | |
| 	/* It is %-EIO, the PEB went bad */
 | |
| 
 | |
| 	if (!ubi->bad_allowed) {
 | |
| 		ubi_err("bad physical eraseblock %d detected", pnum);
 | |
| 		goto out_ro;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&ubi->volumes_lock);
 | |
| 	need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
 | |
| 	if (need > 0) {
 | |
| 		need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
 | |
| 		ubi->avail_pebs -= need;
 | |
| 		ubi->rsvd_pebs += need;
 | |
| 		ubi->beb_rsvd_pebs += need;
 | |
| 		if (need > 0)
 | |
| 			ubi_msg("reserve more %d PEBs", need);
 | |
| 	}
 | |
| 
 | |
| 	if (ubi->beb_rsvd_pebs == 0) {
 | |
| 		spin_unlock(&ubi->volumes_lock);
 | |
| 		ubi_err("no reserved physical eraseblocks");
 | |
| 		goto out_ro;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&ubi->volumes_lock);
 | |
| 	ubi_msg("mark PEB %d as bad", pnum);
 | |
| 
 | |
| 	err = ubi_io_mark_bad(ubi, pnum);
 | |
| 	if (err)
 | |
| 		goto out_ro;
 | |
| 
 | |
| 	spin_lock(&ubi->volumes_lock);
 | |
| 	ubi->beb_rsvd_pebs -= 1;
 | |
| 	ubi->bad_peb_count += 1;
 | |
| 	ubi->good_peb_count -= 1;
 | |
| 	ubi_calculate_reserved(ubi);
 | |
| 	if (ubi->beb_rsvd_pebs == 0)
 | |
| 		ubi_warn("last PEB from the reserved pool was used");
 | |
| 	spin_unlock(&ubi->volumes_lock);
 | |
| 
 | |
| 	return err;
 | |
| 
 | |
| out_ro:
 | |
| 	ubi_ro_mode(ubi);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling unit.
 | |
|  * @ubi: UBI device description object
 | |
|  * @pnum: physical eraseblock to return
 | |
|  * @torture: if this physical eraseblock has to be tortured
 | |
|  *
 | |
|  * This function is called to return physical eraseblock @pnum to the pool of
 | |
|  * free physical eraseblocks. The @torture flag has to be set if an I/O error
 | |
|  * occurred to this @pnum and it has to be tested. This function returns zero
 | |
|  * in case of success, and a negative error code in case of failure.
 | |
|  */
 | |
| int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
 | |
| {
 | |
| 	int err;
 | |
| 	struct ubi_wl_entry *e;
 | |
| 
 | |
| 	dbg_wl("PEB %d", pnum);
 | |
| 	ubi_assert(pnum >= 0);
 | |
| 	ubi_assert(pnum < ubi->peb_count);
 | |
| 
 | |
| retry:
 | |
| 	spin_lock(&ubi->wl_lock);
 | |
| 	e = ubi->lookuptbl[pnum];
 | |
| 	if (e == ubi->move_from) {
 | |
| 		/*
 | |
| 		 * User is putting the physical eraseblock which was selected to
 | |
| 		 * be moved. It will be scheduled for erasure in the
 | |
| 		 * wear-leveling worker.
 | |
| 		 */
 | |
| 		dbg_wl("PEB %d is being moved, wait", pnum);
 | |
| 		spin_unlock(&ubi->wl_lock);
 | |
| 
 | |
| 		/* Wait for the WL worker by taking the @ubi->move_mutex */
 | |
| 		mutex_lock(&ubi->move_mutex);
 | |
| 		mutex_unlock(&ubi->move_mutex);
 | |
| 		goto retry;
 | |
| 	} else if (e == ubi->move_to) {
 | |
| 		/*
 | |
| 		 * User is putting the physical eraseblock which was selected
 | |
| 		 * as the target the data is moved to. It may happen if the EBA
 | |
| 		 * unit already re-mapped the LEB in 'ubi_eba_copy_leb()' but
 | |
| 		 * the WL unit has not put the PEB to the "used" tree yet, but
 | |
| 		 * it is about to do this. So we just set a flag which will
 | |
| 		 * tell the WL worker that the PEB is not needed anymore and
 | |
| 		 * should be scheduled for erasure.
 | |
| 		 */
 | |
| 		dbg_wl("PEB %d is the target of data moving", pnum);
 | |
| 		ubi_assert(!ubi->move_to_put);
 | |
| 		ubi->move_to_put = 1;
 | |
| 		spin_unlock(&ubi->wl_lock);
 | |
| 		return 0;
 | |
| 	} else {
 | |
| 		if (in_wl_tree(e, &ubi->used)) {
 | |
| 			paranoid_check_in_wl_tree(e, &ubi->used);
 | |
| 			rb_erase(&e->rb, &ubi->used);
 | |
| 		} else if (in_wl_tree(e, &ubi->scrub)) {
 | |
| 			paranoid_check_in_wl_tree(e, &ubi->scrub);
 | |
| 			rb_erase(&e->rb, &ubi->scrub);
 | |
| 		} else {
 | |
| 			err = prot_tree_del(ubi, e->pnum);
 | |
| 			if (err) {
 | |
| 				ubi_err("PEB %d not found", pnum);
 | |
| 				ubi_ro_mode(ubi);
 | |
| 				spin_unlock(&ubi->wl_lock);
 | |
| 				return err;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&ubi->wl_lock);
 | |
| 
 | |
| 	err = schedule_erase(ubi, e, torture);
 | |
| 	if (err) {
 | |
| 		spin_lock(&ubi->wl_lock);
 | |
| 		wl_tree_add(e, &ubi->used);
 | |
| 		spin_unlock(&ubi->wl_lock);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
 | |
|  * @ubi: UBI device description object
 | |
|  * @pnum: the physical eraseblock to schedule
 | |
|  *
 | |
|  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
 | |
|  * needs scrubbing. This function schedules a physical eraseblock for
 | |
|  * scrubbing which is done in background. This function returns zero in case of
 | |
|  * success and a negative error code in case of failure.
 | |
|  */
 | |
| int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
 | |
| {
 | |
| 	struct ubi_wl_entry *e;
 | |
| 
 | |
| 	ubi_msg("schedule PEB %d for scrubbing", pnum);
 | |
| 
 | |
| retry:
 | |
| 	spin_lock(&ubi->wl_lock);
 | |
| 	e = ubi->lookuptbl[pnum];
 | |
| 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
 | |
| 		spin_unlock(&ubi->wl_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (e == ubi->move_to) {
 | |
| 		/*
 | |
| 		 * This physical eraseblock was used to move data to. The data
 | |
| 		 * was moved but the PEB was not yet inserted to the proper
 | |
| 		 * tree. We should just wait a little and let the WL worker
 | |
| 		 * proceed.
 | |
| 		 */
 | |
| 		spin_unlock(&ubi->wl_lock);
 | |
| 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
 | |
| 		yield();
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	if (in_wl_tree(e, &ubi->used)) {
 | |
| 		paranoid_check_in_wl_tree(e, &ubi->used);
 | |
| 		rb_erase(&e->rb, &ubi->used);
 | |
| 	} else {
 | |
| 		int err;
 | |
| 
 | |
| 		err = prot_tree_del(ubi, e->pnum);
 | |
| 		if (err) {
 | |
| 			ubi_err("PEB %d not found", pnum);
 | |
| 			ubi_ro_mode(ubi);
 | |
| 			spin_unlock(&ubi->wl_lock);
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	wl_tree_add(e, &ubi->scrub);
 | |
| 	spin_unlock(&ubi->wl_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Technically scrubbing is the same as wear-leveling, so it is done
 | |
| 	 * by the WL worker.
 | |
| 	 */
 | |
| 	return ensure_wear_leveling(ubi);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_wl_flush - flush all pending works.
 | |
|  * @ubi: UBI device description object
 | |
|  *
 | |
|  * This function returns zero in case of success and a negative error code in
 | |
|  * case of failure.
 | |
|  */
 | |
| int ubi_wl_flush(struct ubi_device *ubi)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * Erase while the pending works queue is not empty, but not more then
 | |
| 	 * the number of currently pending works.
 | |
| 	 */
 | |
| 	dbg_wl("flush (%d pending works)", ubi->works_count);
 | |
| 	while (ubi->works_count) {
 | |
| 		err = do_work(ubi);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure all the works which have been done in parallel are
 | |
| 	 * finished.
 | |
| 	 */
 | |
| 	down_write(&ubi->work_sem);
 | |
| 	up_write(&ubi->work_sem);
 | |
| 
 | |
| 	/*
 | |
| 	 * And in case last was the WL worker and it cancelled the LEB
 | |
| 	 * movement, flush again.
 | |
| 	 */
 | |
| 	while (ubi->works_count) {
 | |
| 		dbg_wl("flush more (%d pending works)", ubi->works_count);
 | |
| 		err = do_work(ubi);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tree_destroy - destroy an RB-tree.
 | |
|  * @root: the root of the tree to destroy
 | |
|  */
 | |
| static void tree_destroy(struct rb_root *root)
 | |
| {
 | |
| 	struct rb_node *rb;
 | |
| 	struct ubi_wl_entry *e;
 | |
| 
 | |
| 	rb = root->rb_node;
 | |
| 	while (rb) {
 | |
| 		if (rb->rb_left)
 | |
| 			rb = rb->rb_left;
 | |
| 		else if (rb->rb_right)
 | |
| 			rb = rb->rb_right;
 | |
| 		else {
 | |
| 			e = rb_entry(rb, struct ubi_wl_entry, rb);
 | |
| 
 | |
| 			rb = rb_parent(rb);
 | |
| 			if (rb) {
 | |
| 				if (rb->rb_left == &e->rb)
 | |
| 					rb->rb_left = NULL;
 | |
| 				else
 | |
| 					rb->rb_right = NULL;
 | |
| 			}
 | |
| 
 | |
| 			kmem_cache_free(ubi_wl_entry_slab, e);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_thread - UBI background thread.
 | |
|  * @u: the UBI device description object pointer
 | |
|  */
 | |
| int ubi_thread(void *u)
 | |
| {
 | |
| 	int failures = 0;
 | |
| 	struct ubi_device *ubi = u;
 | |
| 
 | |
| 	ubi_msg("background thread \"%s\" started, PID %d",
 | |
| 		ubi->bgt_name, task_pid_nr(current));
 | |
| 
 | |
| 	set_freezable();
 | |
| 	for (;;) {
 | |
| 		int err;
 | |
| 
 | |
| 		if (kthread_should_stop())
 | |
| 			break;
 | |
| 
 | |
| 		if (try_to_freeze())
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock(&ubi->wl_lock);
 | |
| 		if (list_empty(&ubi->works) || ubi->ro_mode ||
 | |
| 			       !ubi->thread_enabled) {
 | |
| 			set_current_state(TASK_INTERRUPTIBLE);
 | |
| 			spin_unlock(&ubi->wl_lock);
 | |
| 			schedule();
 | |
| 			continue;
 | |
| 		}
 | |
| 		spin_unlock(&ubi->wl_lock);
 | |
| 
 | |
| 		err = do_work(ubi);
 | |
| 		if (err) {
 | |
| 			ubi_err("%s: work failed with error code %d",
 | |
| 				ubi->bgt_name, err);
 | |
| 			if (failures++ > WL_MAX_FAILURES) {
 | |
| 				/*
 | |
| 				 * Too many failures, disable the thread and
 | |
| 				 * switch to read-only mode.
 | |
| 				 */
 | |
| 				ubi_msg("%s: %d consecutive failures",
 | |
| 					ubi->bgt_name, WL_MAX_FAILURES);
 | |
| 				ubi_ro_mode(ubi);
 | |
| 				break;
 | |
| 			}
 | |
| 		} else
 | |
| 			failures = 0;
 | |
| 
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cancel_pending - cancel all pending works.
 | |
|  * @ubi: UBI device description object
 | |
|  */
 | |
| static void cancel_pending(struct ubi_device *ubi)
 | |
| {
 | |
| 	while (!list_empty(&ubi->works)) {
 | |
| 		struct ubi_work *wrk;
 | |
| 
 | |
| 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
 | |
| 		list_del(&wrk->list);
 | |
| 		wrk->func(ubi, wrk, 1);
 | |
| 		ubi->works_count -= 1;
 | |
| 		ubi_assert(ubi->works_count >= 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_wl_init_scan - initialize the wear-leveling unit using scanning
 | |
|  * information.
 | |
|  * @ubi: UBI device description object
 | |
|  * @si: scanning information
 | |
|  *
 | |
|  * This function returns zero in case of success, and a negative error code in
 | |
|  * case of failure.
 | |
|  */
 | |
| int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
 | |
| {
 | |
| 	int err;
 | |
| 	struct rb_node *rb1, *rb2;
 | |
| 	struct ubi_scan_volume *sv;
 | |
| 	struct ubi_scan_leb *seb, *tmp;
 | |
| 	struct ubi_wl_entry *e;
 | |
| 
 | |
| 
 | |
| 	ubi->used = ubi->free = ubi->scrub = RB_ROOT;
 | |
| 	ubi->prot.pnum = ubi->prot.aec = RB_ROOT;
 | |
| 	spin_lock_init(&ubi->wl_lock);
 | |
| 	mutex_init(&ubi->move_mutex);
 | |
| 	init_rwsem(&ubi->work_sem);
 | |
| 	ubi->max_ec = si->max_ec;
 | |
| 	INIT_LIST_HEAD(&ubi->works);
 | |
| 
 | |
| 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
 | |
| 	if (!ubi->lookuptbl)
 | |
| 		return err;
 | |
| 
 | |
| 	list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
 | |
| 		cond_resched();
 | |
| 
 | |
| 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
 | |
| 		if (!e)
 | |
| 			goto out_free;
 | |
| 
 | |
| 		e->pnum = seb->pnum;
 | |
| 		e->ec = seb->ec;
 | |
| 		ubi->lookuptbl[e->pnum] = e;
 | |
| 		if (schedule_erase(ubi, e, 0)) {
 | |
| 			kmem_cache_free(ubi_wl_entry_slab, e);
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(seb, &si->free, u.list) {
 | |
| 		cond_resched();
 | |
| 
 | |
| 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
 | |
| 		if (!e)
 | |
| 			goto out_free;
 | |
| 
 | |
| 		e->pnum = seb->pnum;
 | |
| 		e->ec = seb->ec;
 | |
| 		ubi_assert(e->ec >= 0);
 | |
| 		wl_tree_add(e, &ubi->free);
 | |
| 		ubi->lookuptbl[e->pnum] = e;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(seb, &si->corr, u.list) {
 | |
| 		cond_resched();
 | |
| 
 | |
| 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
 | |
| 		if (!e)
 | |
| 			goto out_free;
 | |
| 
 | |
| 		e->pnum = seb->pnum;
 | |
| 		e->ec = seb->ec;
 | |
| 		ubi->lookuptbl[e->pnum] = e;
 | |
| 		if (schedule_erase(ubi, e, 0)) {
 | |
| 			kmem_cache_free(ubi_wl_entry_slab, e);
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
 | |
| 		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
 | |
| 			cond_resched();
 | |
| 
 | |
| 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
 | |
| 			if (!e)
 | |
| 				goto out_free;
 | |
| 
 | |
| 			e->pnum = seb->pnum;
 | |
| 			e->ec = seb->ec;
 | |
| 			ubi->lookuptbl[e->pnum] = e;
 | |
| 			if (!seb->scrub) {
 | |
| 				dbg_wl("add PEB %d EC %d to the used tree",
 | |
| 				       e->pnum, e->ec);
 | |
| 				wl_tree_add(e, &ubi->used);
 | |
| 			} else {
 | |
| 				dbg_wl("add PEB %d EC %d to the scrub tree",
 | |
| 				       e->pnum, e->ec);
 | |
| 				wl_tree_add(e, &ubi->scrub);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ubi->avail_pebs < WL_RESERVED_PEBS) {
 | |
| 		ubi_err("no enough physical eraseblocks (%d, need %d)",
 | |
| 			ubi->avail_pebs, WL_RESERVED_PEBS);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 	ubi->avail_pebs -= WL_RESERVED_PEBS;
 | |
| 	ubi->rsvd_pebs += WL_RESERVED_PEBS;
 | |
| 
 | |
| 	/* Schedule wear-leveling if needed */
 | |
| 	err = ensure_wear_leveling(ubi);
 | |
| 	if (err)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free:
 | |
| 	cancel_pending(ubi);
 | |
| 	tree_destroy(&ubi->used);
 | |
| 	tree_destroy(&ubi->free);
 | |
| 	tree_destroy(&ubi->scrub);
 | |
| 	kfree(ubi->lookuptbl);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * protection_trees_destroy - destroy the protection RB-trees.
 | |
|  * @ubi: UBI device description object
 | |
|  */
 | |
| static void protection_trees_destroy(struct ubi_device *ubi)
 | |
| {
 | |
| 	struct rb_node *rb;
 | |
| 	struct ubi_wl_prot_entry *pe;
 | |
| 
 | |
| 	rb = ubi->prot.aec.rb_node;
 | |
| 	while (rb) {
 | |
| 		if (rb->rb_left)
 | |
| 			rb = rb->rb_left;
 | |
| 		else if (rb->rb_right)
 | |
| 			rb = rb->rb_right;
 | |
| 		else {
 | |
| 			pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec);
 | |
| 
 | |
| 			rb = rb_parent(rb);
 | |
| 			if (rb) {
 | |
| 				if (rb->rb_left == &pe->rb_aec)
 | |
| 					rb->rb_left = NULL;
 | |
| 				else
 | |
| 					rb->rb_right = NULL;
 | |
| 			}
 | |
| 
 | |
| 			kmem_cache_free(ubi_wl_entry_slab, pe->e);
 | |
| 			kfree(pe);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_wl_close - close the wear-leveling unit.
 | |
|  * @ubi: UBI device description object
 | |
|  */
 | |
| void ubi_wl_close(struct ubi_device *ubi)
 | |
| {
 | |
| 	dbg_wl("close the UBI wear-leveling unit");
 | |
| 
 | |
| 	cancel_pending(ubi);
 | |
| 	protection_trees_destroy(ubi);
 | |
| 	tree_destroy(&ubi->used);
 | |
| 	tree_destroy(&ubi->free);
 | |
| 	tree_destroy(&ubi->scrub);
 | |
| 	kfree(ubi->lookuptbl);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
 | |
| 
 | |
| /**
 | |
|  * paranoid_check_ec - make sure that the erase counter of a physical eraseblock
 | |
|  * is correct.
 | |
|  * @ubi: UBI device description object
 | |
|  * @pnum: the physical eraseblock number to check
 | |
|  * @ec: the erase counter to check
 | |
|  *
 | |
|  * This function returns zero if the erase counter of physical eraseblock @pnum
 | |
|  * is equivalent to @ec, %1 if not, and a negative error code if an error
 | |
|  * occurred.
 | |
|  */
 | |
| static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
 | |
| {
 | |
| 	int err;
 | |
| 	long long read_ec;
 | |
| 	struct ubi_ec_hdr *ec_hdr;
 | |
| 
 | |
| 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
 | |
| 	if (!ec_hdr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
 | |
| 	if (err && err != UBI_IO_BITFLIPS) {
 | |
| 		/* The header does not have to exist */
 | |
| 		err = 0;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	read_ec = be64_to_cpu(ec_hdr->ec);
 | |
| 	if (ec != read_ec) {
 | |
| 		ubi_err("paranoid check failed for PEB %d", pnum);
 | |
| 		ubi_err("read EC is %lld, should be %d", read_ec, ec);
 | |
| 		ubi_dbg_dump_stack();
 | |
| 		err = 1;
 | |
| 	} else
 | |
| 		err = 0;
 | |
| 
 | |
| out_free:
 | |
| 	kfree(ec_hdr);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present
 | |
|  * in a WL RB-tree.
 | |
|  * @e: the wear-leveling entry to check
 | |
|  * @root: the root of the tree
 | |
|  *
 | |
|  * This function returns zero if @e is in the @root RB-tree and %1 if it
 | |
|  * is not.
 | |
|  */
 | |
| static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
 | |
| 				     struct rb_root *root)
 | |
| {
 | |
| 	if (in_wl_tree(e, root))
 | |
| 		return 0;
 | |
| 
 | |
| 	ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
 | |
| 		e->pnum, e->ec, root);
 | |
| 	ubi_dbg_dump_stack();
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
 |