3065 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			3065 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C
		
	
	
	
| /**************************************************************************
 | |
| Intel Pro 1000 for ppcboot/das-u-boot
 | |
| Drivers are port from Intel's Linux driver e1000-4.3.15
 | |
| and from Etherboot pro 1000 driver by mrakes at vivato dot net
 | |
| tested on both gig copper and gig fiber boards
 | |
| ***************************************************************************/
 | |
| /*******************************************************************************
 | |
| 
 | |
| 
 | |
|   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
 | |
| 
 | |
|   This program is free software; you can redistribute it and/or modify it
 | |
|   under the terms of the GNU General Public License as published by the Free
 | |
|   Software Foundation; either version 2 of the License, or (at your option)
 | |
|   any later version.
 | |
| 
 | |
|   This program is distributed in the hope that it will be useful, but WITHOUT
 | |
|   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|   more details.
 | |
| 
 | |
|   You should have received a copy of the GNU General Public License along with
 | |
|   this program; if not, write to the Free Software Foundation, Inc., 59
 | |
|   Temple Place - Suite 330, Boston, MA	02111-1307, USA.
 | |
| 
 | |
|   The full GNU General Public License is included in this distribution in the
 | |
|   file called LICENSE.
 | |
| 
 | |
|   Contact Information:
 | |
|   Linux NICS <linux.nics@intel.com>
 | |
|   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 | |
| 
 | |
| *******************************************************************************/
 | |
| /*
 | |
|  *  Copyright (C) Archway Digital Solutions.
 | |
|  *
 | |
|  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
 | |
|  *  2/9/2002
 | |
|  *
 | |
|  *  Copyright (C) Linux Networx.
 | |
|  *  Massive upgrade to work with the new intel gigabit NICs.
 | |
|  *  <ebiederman at lnxi dot com>
 | |
|  */
 | |
| 
 | |
| #include "e1000.h"
 | |
| 
 | |
| #define TOUT_LOOP   100000
 | |
| 
 | |
| #undef	virt_to_bus
 | |
| #define	virt_to_bus(x)	((unsigned long)x)
 | |
| #define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a)
 | |
| #define mdelay(n)	udelay((n)*1000)
 | |
| 
 | |
| #define E1000_DEFAULT_PBA    0x00000030
 | |
| 
 | |
| /* NIC specific static variables go here */
 | |
| 
 | |
| static char tx_pool[128 + 16];
 | |
| static char rx_pool[128 + 16];
 | |
| static char packet[2096];
 | |
| 
 | |
| static struct e1000_tx_desc *tx_base;
 | |
| static struct e1000_rx_desc *rx_base;
 | |
| 
 | |
| static int tx_tail;
 | |
| static int rx_tail, rx_last;
 | |
| 
 | |
| static struct pci_device_id supported[] = {
 | |
| 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
 | |
| 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
 | |
| 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
 | |
| 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
 | |
| 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
 | |
| 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
 | |
| 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
 | |
| 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
 | |
| 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
 | |
| 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
 | |
| 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
 | |
| 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
 | |
| 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
 | |
| 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
 | |
| 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
 | |
| 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| /* Function forward declarations */
 | |
| static int e1000_setup_link(struct eth_device *nic);
 | |
| static int e1000_setup_fiber_link(struct eth_device *nic);
 | |
| static int e1000_setup_copper_link(struct eth_device *nic);
 | |
| static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
 | |
| static void e1000_config_collision_dist(struct e1000_hw *hw);
 | |
| static int e1000_config_mac_to_phy(struct e1000_hw *hw);
 | |
| static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
 | |
| static int e1000_check_for_link(struct eth_device *nic);
 | |
| static int e1000_wait_autoneg(struct e1000_hw *hw);
 | |
| static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
 | |
| 				       uint16_t * duplex);
 | |
| static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
 | |
| 			      uint16_t * phy_data);
 | |
| static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
 | |
| 			       uint16_t phy_data);
 | |
| static void e1000_phy_hw_reset(struct e1000_hw *hw);
 | |
| static int e1000_phy_reset(struct e1000_hw *hw);
 | |
| static int e1000_detect_gig_phy(struct e1000_hw *hw);
 | |
| 
 | |
| #define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg)))
 | |
| #define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg))
 | |
| #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\
 | |
| 			writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))))
 | |
| #define E1000_READ_REG_ARRAY(a, reg, offset) ( \
 | |
| 	readl((a)->hw_addr + E1000_##reg + ((offset) << 2)))
 | |
| #define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
 | |
| 
 | |
| #ifndef CONFIG_AP1000 /* remove for warnings */
 | |
| /******************************************************************************
 | |
|  * Raises the EEPROM's clock input.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  * eecd - EECD's current value
 | |
|  *****************************************************************************/
 | |
| static void
 | |
| e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
 | |
| {
 | |
| 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
 | |
| 	 * wait 50 microseconds.
 | |
| 	 */
 | |
| 	*eecd = *eecd | E1000_EECD_SK;
 | |
| 	E1000_WRITE_REG(hw, EECD, *eecd);
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| 	udelay(50);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Lowers the EEPROM's clock input.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  * eecd - EECD's current value
 | |
|  *****************************************************************************/
 | |
| static void
 | |
| e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
 | |
| {
 | |
| 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
 | |
| 	 * wait 50 microseconds.
 | |
| 	 */
 | |
| 	*eecd = *eecd & ~E1000_EECD_SK;
 | |
| 	E1000_WRITE_REG(hw, EECD, *eecd);
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| 	udelay(50);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Shift data bits out to the EEPROM.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  * data - data to send to the EEPROM
 | |
|  * count - number of bits to shift out
 | |
|  *****************************************************************************/
 | |
| static void
 | |
| e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
 | |
| {
 | |
| 	uint32_t eecd;
 | |
| 	uint32_t mask;
 | |
| 
 | |
| 	/* We need to shift "count" bits out to the EEPROM. So, value in the
 | |
| 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
 | |
| 	 * In order to do this, "data" must be broken down into bits.
 | |
| 	 */
 | |
| 	mask = 0x01 << (count - 1);
 | |
| 	eecd = E1000_READ_REG(hw, EECD);
 | |
| 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
 | |
| 	do {
 | |
| 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
 | |
| 		 * and then raising and then lowering the clock (the SK bit controls
 | |
| 		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
 | |
| 		 * by setting "DI" to "0" and then raising and then lowering the clock.
 | |
| 		 */
 | |
| 		eecd &= ~E1000_EECD_DI;
 | |
| 
 | |
| 		if (data & mask)
 | |
| 			eecd |= E1000_EECD_DI;
 | |
| 
 | |
| 		E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 
 | |
| 		udelay(50);
 | |
| 
 | |
| 		e1000_raise_ee_clk(hw, &eecd);
 | |
| 		e1000_lower_ee_clk(hw, &eecd);
 | |
| 
 | |
| 		mask = mask >> 1;
 | |
| 
 | |
| 	} while (mask);
 | |
| 
 | |
| 	/* We leave the "DI" bit set to "0" when we leave this routine. */
 | |
| 	eecd &= ~E1000_EECD_DI;
 | |
| 	E1000_WRITE_REG(hw, EECD, eecd);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Shift data bits in from the EEPROM
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *****************************************************************************/
 | |
| static uint16_t
 | |
| e1000_shift_in_ee_bits(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t eecd;
 | |
| 	uint32_t i;
 | |
| 	uint16_t data;
 | |
| 
 | |
| 	/* In order to read a register from the EEPROM, we need to shift 16 bits
 | |
| 	 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
 | |
| 	 * the EEPROM (setting the SK bit), and then reading the value of the "DO"
 | |
| 	 * bit.  During this "shifting in" process the "DI" bit should always be
 | |
| 	 * clear..
 | |
| 	 */
 | |
| 
 | |
| 	eecd = E1000_READ_REG(hw, EECD);
 | |
| 
 | |
| 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
 | |
| 	data = 0;
 | |
| 
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		data = data << 1;
 | |
| 		e1000_raise_ee_clk(hw, &eecd);
 | |
| 
 | |
| 		eecd = E1000_READ_REG(hw, EECD);
 | |
| 
 | |
| 		eecd &= ~(E1000_EECD_DI);
 | |
| 		if (eecd & E1000_EECD_DO)
 | |
| 			data |= 1;
 | |
| 
 | |
| 		e1000_lower_ee_clk(hw, &eecd);
 | |
| 	}
 | |
| 
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Prepares EEPROM for access
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
 | |
|  * function should be called before issuing a command to the EEPROM.
 | |
|  *****************************************************************************/
 | |
| static void
 | |
| e1000_setup_eeprom(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t eecd;
 | |
| 
 | |
| 	eecd = E1000_READ_REG(hw, EECD);
 | |
| 
 | |
| 	/* Clear SK and DI */
 | |
| 	eecd &= ~(E1000_EECD_SK | E1000_EECD_DI);
 | |
| 	E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 
 | |
| 	/* Set CS */
 | |
| 	eecd |= E1000_EECD_CS;
 | |
| 	E1000_WRITE_REG(hw, EECD, eecd);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Returns EEPROM to a "standby" state
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *****************************************************************************/
 | |
| static void
 | |
| e1000_standby_eeprom(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t eecd;
 | |
| 
 | |
| 	eecd = E1000_READ_REG(hw, EECD);
 | |
| 
 | |
| 	/* Deselct EEPROM */
 | |
| 	eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
 | |
| 	E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| 	udelay(50);
 | |
| 
 | |
| 	/* Clock high */
 | |
| 	eecd |= E1000_EECD_SK;
 | |
| 	E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| 	udelay(50);
 | |
| 
 | |
| 	/* Select EEPROM */
 | |
| 	eecd |= E1000_EECD_CS;
 | |
| 	E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| 	udelay(50);
 | |
| 
 | |
| 	/* Clock low */
 | |
| 	eecd &= ~E1000_EECD_SK;
 | |
| 	E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| 	udelay(50);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Reads a 16 bit word from the EEPROM.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  * offset - offset of  word in the EEPROM to read
 | |
|  * data - word read from the EEPROM
 | |
|  *****************************************************************************/
 | |
| static int
 | |
| e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t * data)
 | |
| {
 | |
| 	uint32_t eecd;
 | |
| 	uint32_t i = 0;
 | |
| 	int large_eeprom = FALSE;
 | |
| 
 | |
| 	/* Request EEPROM Access */
 | |
| 	if (hw->mac_type > e1000_82544) {
 | |
| 		eecd = E1000_READ_REG(hw, EECD);
 | |
| 		if (eecd & E1000_EECD_SIZE)
 | |
| 			large_eeprom = TRUE;
 | |
| 		eecd |= E1000_EECD_REQ;
 | |
| 		E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 		eecd = E1000_READ_REG(hw, EECD);
 | |
| 		while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
 | |
| 			i++;
 | |
| 			udelay(10);
 | |
| 			eecd = E1000_READ_REG(hw, EECD);
 | |
| 		}
 | |
| 		if (!(eecd & E1000_EECD_GNT)) {
 | |
| 			eecd &= ~E1000_EECD_REQ;
 | |
| 			E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 			DEBUGOUT("Could not acquire EEPROM grant\n");
 | |
| 			return -E1000_ERR_EEPROM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*  Prepare the EEPROM for reading  */
 | |
| 	e1000_setup_eeprom(hw);
 | |
| 
 | |
| 	/*  Send the READ command (opcode + addr)  */
 | |
| 	e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3);
 | |
| 	e1000_shift_out_ee_bits(hw, offset, (large_eeprom) ? 8 : 6);
 | |
| 
 | |
| 	/* Read the data */
 | |
| 	*data = e1000_shift_in_ee_bits(hw);
 | |
| 
 | |
| 	/* End this read operation */
 | |
| 	e1000_standby_eeprom(hw);
 | |
| 
 | |
| 	/* Stop requesting EEPROM access */
 | |
| 	if (hw->mac_type > e1000_82544) {
 | |
| 		eecd = E1000_READ_REG(hw, EECD);
 | |
| 		eecd &= ~E1000_EECD_REQ;
 | |
| 		E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static void
 | |
| e1000_eeprom_cleanup(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t eecd;
 | |
| 
 | |
| 	eecd = E1000_READ_REG(hw, EECD);
 | |
| 	eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
 | |
| 	E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 	e1000_raise_ee_clk(hw, &eecd);
 | |
| 	e1000_lower_ee_clk(hw, &eecd);
 | |
| }
 | |
| 
 | |
| static uint16_t
 | |
| e1000_wait_eeprom_done(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t eecd;
 | |
| 	uint32_t i;
 | |
| 
 | |
| 	e1000_standby_eeprom(hw);
 | |
| 	for (i = 0; i < 200; i++) {
 | |
| 		eecd = E1000_READ_REG(hw, EECD);
 | |
| 		if (eecd & E1000_EECD_DO)
 | |
| 			return (TRUE);
 | |
| 		udelay(5);
 | |
| 	}
 | |
| 	return (FALSE);
 | |
| }
 | |
| 
 | |
| static int
 | |
| e1000_write_eeprom(struct e1000_hw *hw, uint16_t Reg, uint16_t Data)
 | |
| {
 | |
| 	uint32_t eecd;
 | |
| 	int large_eeprom = FALSE;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	/* Request EEPROM Access */
 | |
| 	if (hw->mac_type > e1000_82544) {
 | |
| 		eecd = E1000_READ_REG(hw, EECD);
 | |
| 		if (eecd & E1000_EECD_SIZE)
 | |
| 			large_eeprom = TRUE;
 | |
| 		eecd |= E1000_EECD_REQ;
 | |
| 		E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 		eecd = E1000_READ_REG(hw, EECD);
 | |
| 		while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
 | |
| 			i++;
 | |
| 			udelay(5);
 | |
| 			eecd = E1000_READ_REG(hw, EECD);
 | |
| 		}
 | |
| 		if (!(eecd & E1000_EECD_GNT)) {
 | |
| 			eecd &= ~E1000_EECD_REQ;
 | |
| 			E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 			DEBUGOUT("Could not acquire EEPROM grant\n");
 | |
| 			return FALSE;
 | |
| 		}
 | |
| 	}
 | |
| 	e1000_setup_eeprom(hw);
 | |
| 	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5);
 | |
| 	e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
 | |
| 	e1000_standby_eeprom(hw);
 | |
| 	e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3);
 | |
| 	e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 8 : 6);
 | |
| 	e1000_shift_out_ee_bits(hw, Data, 16);
 | |
| 	if (!e1000_wait_eeprom_done(hw)) {
 | |
| 		return FALSE;
 | |
| 	}
 | |
| 	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5);
 | |
| 	e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
 | |
| 	e1000_eeprom_cleanup(hw);
 | |
| 
 | |
| 	/* Stop requesting EEPROM access */
 | |
| 	if (hw->mac_type > e1000_82544) {
 | |
| 		eecd = E1000_READ_REG(hw, EECD);
 | |
| 		eecd &= ~E1000_EECD_REQ;
 | |
| 		E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 	}
 | |
| 	i = 0;
 | |
| 	eecd = E1000_READ_REG(hw, EECD);
 | |
| 	while (((eecd & E1000_EECD_GNT)) && (i < 500)) {
 | |
| 		i++;
 | |
| 		udelay(10);
 | |
| 		eecd = E1000_READ_REG(hw, EECD);
 | |
| 	}
 | |
| 	if ((eecd & E1000_EECD_GNT)) {
 | |
| 		DEBUGOUT("Could not release EEPROM grant\n");
 | |
| 	}
 | |
| 	return TRUE;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Verifies that the EEPROM has a valid checksum
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
 | |
|  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
 | |
|  * valid.
 | |
|  *****************************************************************************/
 | |
| static int
 | |
| e1000_validate_eeprom_checksum(struct eth_device *nic)
 | |
| {
 | |
| 	struct e1000_hw *hw = nic->priv;
 | |
| 	uint16_t checksum = 0;
 | |
| 	uint16_t i, eeprom_data;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
 | |
| 		if (e1000_read_eeprom(hw, i, &eeprom_data) < 0) {
 | |
| 			DEBUGOUT("EEPROM Read Error\n");
 | |
| 			return -E1000_ERR_EEPROM;
 | |
| 		}
 | |
| 		checksum += eeprom_data;
 | |
| 	}
 | |
| 
 | |
| 	if (checksum == (uint16_t) EEPROM_SUM) {
 | |
| 		return 0;
 | |
| 	} else {
 | |
| 		DEBUGOUT("EEPROM Checksum Invalid\n");
 | |
| 		return -E1000_ERR_EEPROM;
 | |
| 	}
 | |
| }
 | |
| #endif /* #ifndef CONFIG_AP1000 */
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
 | |
|  * second function of dual function devices
 | |
|  *
 | |
|  * nic - Struct containing variables accessed by shared code
 | |
|  *****************************************************************************/
 | |
| static int
 | |
| e1000_read_mac_addr(struct eth_device *nic)
 | |
| {
 | |
| #ifndef CONFIG_AP1000
 | |
| 	struct e1000_hw *hw = nic->priv;
 | |
| 	uint16_t offset;
 | |
| 	uint16_t eeprom_data;
 | |
| 	int i;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
 | |
| 		offset = i >> 1;
 | |
| 		if (e1000_read_eeprom(hw, offset, &eeprom_data) < 0) {
 | |
| 			DEBUGOUT("EEPROM Read Error\n");
 | |
| 			return -E1000_ERR_EEPROM;
 | |
| 		}
 | |
| 		nic->enetaddr[i] = eeprom_data & 0xff;
 | |
| 		nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
 | |
| 	}
 | |
| 	if ((hw->mac_type == e1000_82546) &&
 | |
| 	    (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
 | |
| 		/* Invert the last bit if this is the second device */
 | |
| 		nic->enetaddr[5] += 1;
 | |
| 	}
 | |
| #ifdef CONFIG_E1000_FALLBACK_MAC
 | |
| 	if ( *(u32*)(nic->enetaddr) == 0 || *(u32*)(nic->enetaddr) == ~0 ) {
 | |
| 		unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
 | |
| 
 | |
| 		memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
 | |
| 	}
 | |
| #endif
 | |
| #else
 | |
| 	/*
 | |
| 	 * The AP1000's e1000 has no eeprom; the MAC address is stored in the
 | |
| 	 * environment variables.  Currently this does not support the addition
 | |
| 	 * of a PMC e1000 card, which is certainly a possibility, so this should
 | |
| 	 * be updated to properly use the env variable only for the onboard e1000
 | |
| 	 */
 | |
| 
 | |
| 	int ii;
 | |
| 	char *s, *e;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	s = getenv ("ethaddr");
 | |
| 	if (s == NULL) {
 | |
| 		return -E1000_ERR_EEPROM;
 | |
| 	} else {
 | |
| 		for(ii = 0; ii < 6; ii++) {
 | |
| 			nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
 | |
| 			if (s){
 | |
| 				s = (*e) ? e + 1 : e;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Initializes receive address filters.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * Places the MAC address in receive address register 0 and clears the rest
 | |
|  * of the receive addresss registers. Clears the multicast table. Assumes
 | |
|  * the receiver is in reset when the routine is called.
 | |
|  *****************************************************************************/
 | |
| static void
 | |
| e1000_init_rx_addrs(struct eth_device *nic)
 | |
| {
 | |
| 	struct e1000_hw *hw = nic->priv;
 | |
| 	uint32_t i;
 | |
| 	uint32_t addr_low;
 | |
| 	uint32_t addr_high;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* Setup the receive address. */
 | |
| 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
 | |
| 	addr_low = (nic->enetaddr[0] |
 | |
| 		    (nic->enetaddr[1] << 8) |
 | |
| 		    (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
 | |
| 
 | |
| 	addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
 | |
| 
 | |
| 	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
 | |
| 	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
 | |
| 
 | |
| 	/* Zero out the other 15 receive addresses. */
 | |
| 	DEBUGOUT("Clearing RAR[1-15]\n");
 | |
| 	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
 | |
| 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
 | |
| 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Clears the VLAN filer table
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *****************************************************************************/
 | |
| static void
 | |
| e1000_clear_vfta(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t offset;
 | |
| 
 | |
| 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
 | |
| 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Set the mac type member in the hw struct.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *****************************************************************************/
 | |
| static int
 | |
| e1000_set_mac_type(struct e1000_hw *hw)
 | |
| {
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	switch (hw->device_id) {
 | |
| 	case E1000_DEV_ID_82542:
 | |
| 		switch (hw->revision_id) {
 | |
| 		case E1000_82542_2_0_REV_ID:
 | |
| 			hw->mac_type = e1000_82542_rev2_0;
 | |
| 			break;
 | |
| 		case E1000_82542_2_1_REV_ID:
 | |
| 			hw->mac_type = e1000_82542_rev2_1;
 | |
| 			break;
 | |
| 		default:
 | |
| 			/* Invalid 82542 revision ID */
 | |
| 			return -E1000_ERR_MAC_TYPE;
 | |
| 		}
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82543GC_FIBER:
 | |
| 	case E1000_DEV_ID_82543GC_COPPER:
 | |
| 		hw->mac_type = e1000_82543;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82544EI_COPPER:
 | |
| 	case E1000_DEV_ID_82544EI_FIBER:
 | |
| 	case E1000_DEV_ID_82544GC_COPPER:
 | |
| 	case E1000_DEV_ID_82544GC_LOM:
 | |
| 		hw->mac_type = e1000_82544;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82540EM:
 | |
| 	case E1000_DEV_ID_82540EM_LOM:
 | |
| 		hw->mac_type = e1000_82540;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82545EM_COPPER:
 | |
| 	case E1000_DEV_ID_82545GM_COPPER:
 | |
| 	case E1000_DEV_ID_82545EM_FIBER:
 | |
| 		hw->mac_type = e1000_82545;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82546EB_COPPER:
 | |
| 	case E1000_DEV_ID_82546EB_FIBER:
 | |
| 		hw->mac_type = e1000_82546;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82541ER:
 | |
| 	case E1000_DEV_ID_82541GI_LF:
 | |
| 		hw->mac_type = e1000_82541_rev_2;
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* Should never have loaded on this device */
 | |
| 		return -E1000_ERR_MAC_TYPE;
 | |
| 	}
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Reset the transmit and receive units; mask and clear all interrupts.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *****************************************************************************/
 | |
| void
 | |
| e1000_reset_hw(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t ctrl;
 | |
| 	uint32_t ctrl_ext;
 | |
| 	uint32_t icr;
 | |
| 	uint32_t manc;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
 | |
| 	if (hw->mac_type == e1000_82542_rev2_0) {
 | |
| 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
 | |
| 		pci_write_config_word(hw->pdev, PCI_COMMAND,
 | |
| 				      hw->
 | |
| 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
 | |
| 	}
 | |
| 
 | |
| 	/* Clear interrupt mask to stop board from generating interrupts */
 | |
| 	DEBUGOUT("Masking off all interrupts\n");
 | |
| 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
 | |
| 
 | |
| 	/* Disable the Transmit and Receive units.  Then delay to allow
 | |
| 	 * any pending transactions to complete before we hit the MAC with
 | |
| 	 * the global reset.
 | |
| 	 */
 | |
| 	E1000_WRITE_REG(hw, RCTL, 0);
 | |
| 	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| 
 | |
| 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
 | |
| 	hw->tbi_compatibility_on = FALSE;
 | |
| 
 | |
| 	/* Delay to allow any outstanding PCI transactions to complete before
 | |
| 	 * resetting the device
 | |
| 	 */
 | |
| 	mdelay(10);
 | |
| 
 | |
| 	/* Issue a global reset to the MAC.  This will reset the chip's
 | |
| 	 * transmit, receive, DMA, and link units.  It will not effect
 | |
| 	 * the current PCI configuration.  The global reset bit is self-
 | |
| 	 * clearing, and should clear within a microsecond.
 | |
| 	 */
 | |
| 	DEBUGOUT("Issuing a global reset to MAC\n");
 | |
| 	ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 
 | |
| #if 0
 | |
| 	if (hw->mac_type > e1000_82543)
 | |
| 		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
 | |
| 	else
 | |
| #endif
 | |
| 		E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
 | |
| 
 | |
| 	/* Force a reload from the EEPROM if necessary */
 | |
| 	if (hw->mac_type < e1000_82540) {
 | |
| 		/* Wait for reset to complete */
 | |
| 		udelay(10);
 | |
| 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
 | |
| 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
 | |
| 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 		/* Wait for EEPROM reload */
 | |
| 		mdelay(2);
 | |
| 	} else {
 | |
| 		/* Wait for EEPROM reload (it happens automatically) */
 | |
| 		mdelay(4);
 | |
| 		/* Dissable HW ARPs on ASF enabled adapters */
 | |
| 		manc = E1000_READ_REG(hw, MANC);
 | |
| 		manc &= ~(E1000_MANC_ARP_EN);
 | |
| 		E1000_WRITE_REG(hw, MANC, manc);
 | |
| 	}
 | |
| 
 | |
| 	/* Clear interrupt mask to stop board from generating interrupts */
 | |
| 	DEBUGOUT("Masking off all interrupts\n");
 | |
| 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
 | |
| 
 | |
| 	/* Clear any pending interrupt events. */
 | |
| 	icr = E1000_READ_REG(hw, ICR);
 | |
| 
 | |
| 	/* If MWI was previously enabled, reenable it. */
 | |
| 	if (hw->mac_type == e1000_82542_rev2_0) {
 | |
| 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Performs basic configuration of the adapter.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * Assumes that the controller has previously been reset and is in a
 | |
|  * post-reset uninitialized state. Initializes the receive address registers,
 | |
|  * multicast table, and VLAN filter table. Calls routines to setup link
 | |
|  * configuration and flow control settings. Clears all on-chip counters. Leaves
 | |
|  * the transmit and receive units disabled and uninitialized.
 | |
|  *****************************************************************************/
 | |
| static int
 | |
| e1000_init_hw(struct eth_device *nic)
 | |
| {
 | |
| 	struct e1000_hw *hw = nic->priv;
 | |
| 	uint32_t ctrl, status;
 | |
| 	uint32_t i;
 | |
| 	int32_t ret_val;
 | |
| 	uint16_t pcix_cmd_word;
 | |
| 	uint16_t pcix_stat_hi_word;
 | |
| 	uint16_t cmd_mmrbc;
 | |
| 	uint16_t stat_mmrbc;
 | |
| 	e1000_bus_type bus_type = e1000_bus_type_unknown;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| #if 0
 | |
| 	/* Initialize Identification LED */
 | |
| 	ret_val = e1000_id_led_init(hw);
 | |
| 	if (ret_val < 0) {
 | |
| 		DEBUGOUT("Error Initializing Identification LED\n");
 | |
| 		return ret_val;
 | |
| 	}
 | |
| #endif
 | |
| 	/* Set the Media Type and exit with error if it is not valid. */
 | |
| 	if (hw->mac_type != e1000_82543) {
 | |
| 		/* tbi_compatibility is only valid on 82543 */
 | |
| 		hw->tbi_compatibility_en = FALSE;
 | |
| 	}
 | |
| 
 | |
| 	if (hw->mac_type >= e1000_82543) {
 | |
| 		status = E1000_READ_REG(hw, STATUS);
 | |
| 		if (status & E1000_STATUS_TBIMODE) {
 | |
| 			hw->media_type = e1000_media_type_fiber;
 | |
| 			/* tbi_compatibility not valid on fiber */
 | |
| 			hw->tbi_compatibility_en = FALSE;
 | |
| 		} else {
 | |
| 			hw->media_type = e1000_media_type_copper;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* This is an 82542 (fiber only) */
 | |
| 		hw->media_type = e1000_media_type_fiber;
 | |
| 	}
 | |
| 
 | |
| 	/* Disabling VLAN filtering. */
 | |
| 	DEBUGOUT("Initializing the IEEE VLAN\n");
 | |
| 	E1000_WRITE_REG(hw, VET, 0);
 | |
| 
 | |
| 	e1000_clear_vfta(hw);
 | |
| 
 | |
| 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
 | |
| 	if (hw->mac_type == e1000_82542_rev2_0) {
 | |
| 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
 | |
| 		pci_write_config_word(hw->pdev, PCI_COMMAND,
 | |
| 				      hw->
 | |
| 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
 | |
| 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 		mdelay(5);
 | |
| 	}
 | |
| 
 | |
| 	/* Setup the receive address. This involves initializing all of the Receive
 | |
| 	 * Address Registers (RARs 0 - 15).
 | |
| 	 */
 | |
| 	e1000_init_rx_addrs(nic);
 | |
| 
 | |
| 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
 | |
| 	if (hw->mac_type == e1000_82542_rev2_0) {
 | |
| 		E1000_WRITE_REG(hw, RCTL, 0);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 		mdelay(1);
 | |
| 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
 | |
| 	}
 | |
| 
 | |
| 	/* Zero out the Multicast HASH table */
 | |
| 	DEBUGOUT("Zeroing the MTA\n");
 | |
| 	for (i = 0; i < E1000_MC_TBL_SIZE; i++)
 | |
| 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
 | |
| 
 | |
| #if 0
 | |
| 	/* Set the PCI priority bit correctly in the CTRL register.  This
 | |
| 	 * determines if the adapter gives priority to receives, or if it
 | |
| 	 * gives equal priority to transmits and receives.
 | |
| 	 */
 | |
| 	if (hw->dma_fairness) {
 | |
| 		ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
 | |
| 	}
 | |
| #endif
 | |
| 	if (hw->mac_type >= e1000_82543) {
 | |
| 		status = E1000_READ_REG(hw, STATUS);
 | |
| 		bus_type = (status & E1000_STATUS_PCIX_MODE) ?
 | |
| 		    e1000_bus_type_pcix : e1000_bus_type_pci;
 | |
| 	}
 | |
| 	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
 | |
| 	if (bus_type == e1000_bus_type_pcix) {
 | |
| 		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
 | |
| 				     &pcix_cmd_word);
 | |
| 		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
 | |
| 				     &pcix_stat_hi_word);
 | |
| 		cmd_mmrbc =
 | |
| 		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
 | |
| 		    PCIX_COMMAND_MMRBC_SHIFT;
 | |
| 		stat_mmrbc =
 | |
| 		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
 | |
| 		    PCIX_STATUS_HI_MMRBC_SHIFT;
 | |
| 		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
 | |
| 			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
 | |
| 		if (cmd_mmrbc > stat_mmrbc) {
 | |
| 			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
 | |
| 			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
 | |
| 			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
 | |
| 					      pcix_cmd_word);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Call a subroutine to configure the link and setup flow control. */
 | |
| 	ret_val = e1000_setup_link(nic);
 | |
| 
 | |
| 	/* Set the transmit descriptor write-back policy */
 | |
| 	if (hw->mac_type > e1000_82544) {
 | |
| 		ctrl = E1000_READ_REG(hw, TXDCTL);
 | |
| 		ctrl =
 | |
| 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
 | |
| 		    E1000_TXDCTL_FULL_TX_DESC_WB;
 | |
| 		E1000_WRITE_REG(hw, TXDCTL, ctrl);
 | |
| 	}
 | |
| #if 0
 | |
| 	/* Clear all of the statistics registers (clear on read).  It is
 | |
| 	 * important that we do this after we have tried to establish link
 | |
| 	 * because the symbol error count will increment wildly if there
 | |
| 	 * is no link.
 | |
| 	 */
 | |
| 	e1000_clear_hw_cntrs(hw);
 | |
| #endif
 | |
| 
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Configures flow control and link settings.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * Determines which flow control settings to use. Calls the apropriate media-
 | |
|  * specific link configuration function. Configures the flow control settings.
 | |
|  * Assuming the adapter has a valid link partner, a valid link should be
 | |
|  * established. Assumes the hardware has previously been reset and the
 | |
|  * transmitter and receiver are not enabled.
 | |
|  *****************************************************************************/
 | |
| static int
 | |
| e1000_setup_link(struct eth_device *nic)
 | |
| {
 | |
| 	struct e1000_hw *hw = nic->priv;
 | |
| 	uint32_t ctrl_ext;
 | |
| 	int32_t ret_val;
 | |
| 	uint16_t eeprom_data;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| #ifndef CONFIG_AP1000
 | |
| 	/* Read and store word 0x0F of the EEPROM. This word contains bits
 | |
| 	 * that determine the hardware's default PAUSE (flow control) mode,
 | |
| 	 * a bit that determines whether the HW defaults to enabling or
 | |
| 	 * disabling auto-negotiation, and the direction of the
 | |
| 	 * SW defined pins. If there is no SW over-ride of the flow
 | |
| 	 * control setting, then the variable hw->fc will
 | |
| 	 * be initialized based on a value in the EEPROM.
 | |
| 	 */
 | |
| 	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) {
 | |
| 		DEBUGOUT("EEPROM Read Error\n");
 | |
| 		return -E1000_ERR_EEPROM;
 | |
| 	}
 | |
| #else
 | |
| 	/* we have to hardcode the proper value for our hardware. */
 | |
| 	/* this value is for the 82540EM pci card used for prototyping, and it works. */
 | |
| 	eeprom_data = 0xb220;
 | |
| #endif
 | |
| 
 | |
| 	if (hw->fc == e1000_fc_default) {
 | |
| 		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
 | |
| 			hw->fc = e1000_fc_none;
 | |
| 		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
 | |
| 			 EEPROM_WORD0F_ASM_DIR)
 | |
| 			hw->fc = e1000_fc_tx_pause;
 | |
| 		else
 | |
| 			hw->fc = e1000_fc_full;
 | |
| 	}
 | |
| 
 | |
| 	/* We want to save off the original Flow Control configuration just
 | |
| 	 * in case we get disconnected and then reconnected into a different
 | |
| 	 * hub or switch with different Flow Control capabilities.
 | |
| 	 */
 | |
| 	if (hw->mac_type == e1000_82542_rev2_0)
 | |
| 		hw->fc &= (~e1000_fc_tx_pause);
 | |
| 
 | |
| 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
 | |
| 		hw->fc &= (~e1000_fc_rx_pause);
 | |
| 
 | |
| 	hw->original_fc = hw->fc;
 | |
| 
 | |
| 	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
 | |
| 
 | |
| 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
 | |
| 	 * polarity value for the SW controlled pins, and setup the
 | |
| 	 * Extended Device Control reg with that info.
 | |
| 	 * This is needed because one of the SW controlled pins is used for
 | |
| 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
 | |
| 	 * or e1000_phy_setup() is called.
 | |
| 	 */
 | |
| 	if (hw->mac_type == e1000_82543) {
 | |
| 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
 | |
| 			    SWDPIO__EXT_SHIFT);
 | |
| 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
 | |
| 	}
 | |
| 
 | |
| 	/* Call the necessary subroutine to configure the link. */
 | |
| 	ret_val = (hw->media_type == e1000_media_type_fiber) ?
 | |
| 	    e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
 | |
| 	if (ret_val < 0) {
 | |
| 		return ret_val;
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize the flow control address, type, and PAUSE timer
 | |
| 	 * registers to their default values.  This is done even if flow
 | |
| 	 * control is disabled, because it does not hurt anything to
 | |
| 	 * initialize these registers.
 | |
| 	 */
 | |
| 	DEBUGOUT
 | |
| 	    ("Initializing the Flow Control address, type and timer regs\n");
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
 | |
| 	E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 | |
| 	E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
 | |
| 	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
 | |
| 
 | |
| 	/* Set the flow control receive threshold registers.  Normally,
 | |
| 	 * these registers will be set to a default threshold that may be
 | |
| 	 * adjusted later by the driver's runtime code.  However, if the
 | |
| 	 * ability to transmit pause frames in not enabled, then these
 | |
| 	 * registers will be set to 0.
 | |
| 	 */
 | |
| 	if (!(hw->fc & e1000_fc_tx_pause)) {
 | |
| 		E1000_WRITE_REG(hw, FCRTL, 0);
 | |
| 		E1000_WRITE_REG(hw, FCRTH, 0);
 | |
| 	} else {
 | |
| 		/* We need to set up the Receive Threshold high and low water marks
 | |
| 		 * as well as (optionally) enabling the transmission of XON frames.
 | |
| 		 */
 | |
| 		if (hw->fc_send_xon) {
 | |
| 			E1000_WRITE_REG(hw, FCRTL,
 | |
| 					(hw->fc_low_water | E1000_FCRTL_XONE));
 | |
| 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
 | |
| 		} else {
 | |
| 			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
 | |
| 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
 | |
| 		}
 | |
| 	}
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Sets up link for a fiber based adapter
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * Manipulates Physical Coding Sublayer functions in order to configure
 | |
|  * link. Assumes the hardware has been previously reset and the transmitter
 | |
|  * and receiver are not enabled.
 | |
|  *****************************************************************************/
 | |
| static int
 | |
| e1000_setup_fiber_link(struct eth_device *nic)
 | |
| {
 | |
| 	struct e1000_hw *hw = nic->priv;
 | |
| 	uint32_t ctrl;
 | |
| 	uint32_t status;
 | |
| 	uint32_t txcw = 0;
 | |
| 	uint32_t i;
 | |
| 	uint32_t signal;
 | |
| 	int32_t ret_val;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
 | |
| 	 * set when the optics detect a signal. On older adapters, it will be
 | |
| 	 * cleared when there is a signal
 | |
| 	 */
 | |
| 	ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
 | |
| 		signal = E1000_CTRL_SWDPIN1;
 | |
| 	else
 | |
| 		signal = 0;
 | |
| 
 | |
| 	printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
 | |
| 	       ctrl);
 | |
| 	/* Take the link out of reset */
 | |
| 	ctrl &= ~(E1000_CTRL_LRST);
 | |
| 
 | |
| 	e1000_config_collision_dist(hw);
 | |
| 
 | |
| 	/* Check for a software override of the flow control settings, and setup
 | |
| 	 * the device accordingly.  If auto-negotiation is enabled, then software
 | |
| 	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
 | |
| 	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
 | |
| 	 * auto-negotiation is disabled, then software will have to manually
 | |
| 	 * configure the two flow control enable bits in the CTRL register.
 | |
| 	 *
 | |
| 	 * The possible values of the "fc" parameter are:
 | |
| 	 *	0:  Flow control is completely disabled
 | |
| 	 *	1:  Rx flow control is enabled (we can receive pause frames, but
 | |
| 	 *	    not send pause frames).
 | |
| 	 *	2:  Tx flow control is enabled (we can send pause frames but we do
 | |
| 	 *	    not support receiving pause frames).
 | |
| 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
 | |
| 	 */
 | |
| 	switch (hw->fc) {
 | |
| 	case e1000_fc_none:
 | |
| 		/* Flow control is completely disabled by a software over-ride. */
 | |
| 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
 | |
| 		break;
 | |
| 	case e1000_fc_rx_pause:
 | |
| 		/* RX Flow control is enabled and TX Flow control is disabled by a
 | |
| 		 * software over-ride. Since there really isn't a way to advertise
 | |
| 		 * that we are capable of RX Pause ONLY, we will advertise that we
 | |
| 		 * support both symmetric and asymmetric RX PAUSE. Later, we will
 | |
| 		 *  disable the adapter's ability to send PAUSE frames.
 | |
| 		 */
 | |
| 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 | |
| 		break;
 | |
| 	case e1000_fc_tx_pause:
 | |
| 		/* TX Flow control is enabled, and RX Flow control is disabled, by a
 | |
| 		 * software over-ride.
 | |
| 		 */
 | |
| 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
 | |
| 		break;
 | |
| 	case e1000_fc_full:
 | |
| 		/* Flow control (both RX and TX) is enabled by a software over-ride. */
 | |
| 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 | |
| 		break;
 | |
| 	default:
 | |
| 		DEBUGOUT("Flow control param set incorrectly\n");
 | |
| 		return -E1000_ERR_CONFIG;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Since auto-negotiation is enabled, take the link out of reset (the link
 | |
| 	 * will be in reset, because we previously reset the chip). This will
 | |
| 	 * restart auto-negotiation.  If auto-neogtiation is successful then the
 | |
| 	 * link-up status bit will be set and the flow control enable bits (RFCE
 | |
| 	 * and TFCE) will be set according to their negotiated value.
 | |
| 	 */
 | |
| 	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, TXCW, txcw);
 | |
| 	E1000_WRITE_REG(hw, CTRL, ctrl);
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| 
 | |
| 	hw->txcw = txcw;
 | |
| 	mdelay(1);
 | |
| 
 | |
| 	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
 | |
| 	 * indication in the Device Status Register.  Time-out if a link isn't
 | |
| 	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
 | |
| 	 * less than 500 milliseconds even if the other end is doing it in SW).
 | |
| 	 */
 | |
| 	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
 | |
| 		DEBUGOUT("Looking for Link\n");
 | |
| 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
 | |
| 			mdelay(10);
 | |
| 			status = E1000_READ_REG(hw, STATUS);
 | |
| 			if (status & E1000_STATUS_LU)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (i == (LINK_UP_TIMEOUT / 10)) {
 | |
| 			/* AutoNeg failed to achieve a link, so we'll call
 | |
| 			 * e1000_check_for_link. This routine will force the link up if we
 | |
| 			 * detect a signal. This will allow us to communicate with
 | |
| 			 * non-autonegotiating link partners.
 | |
| 			 */
 | |
| 			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
 | |
| 			hw->autoneg_failed = 1;
 | |
| 			ret_val = e1000_check_for_link(nic);
 | |
| 			if (ret_val < 0) {
 | |
| 				DEBUGOUT("Error while checking for link\n");
 | |
| 				return ret_val;
 | |
| 			}
 | |
| 			hw->autoneg_failed = 0;
 | |
| 		} else {
 | |
| 			hw->autoneg_failed = 0;
 | |
| 			DEBUGOUT("Valid Link Found\n");
 | |
| 		}
 | |
| 	} else {
 | |
| 		DEBUGOUT("No Signal Detected\n");
 | |
| 		return -E1000_ERR_NOLINK;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Detects which PHY is present and the speed and duplex
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| ******************************************************************************/
 | |
| static int
 | |
| e1000_setup_copper_link(struct eth_device *nic)
 | |
| {
 | |
| 	struct e1000_hw *hw = nic->priv;
 | |
| 	uint32_t ctrl;
 | |
| 	int32_t ret_val;
 | |
| 	uint16_t i;
 | |
| 	uint16_t phy_data;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 	/* With 82543, we need to force speed and duplex on the MAC equal to what
 | |
| 	 * the PHY speed and duplex configuration is. In addition, we need to
 | |
| 	 * perform a hardware reset on the PHY to take it out of reset.
 | |
| 	 */
 | |
| 	if (hw->mac_type > e1000_82543) {
 | |
| 		ctrl |= E1000_CTRL_SLU;
 | |
| 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
 | |
| 		E1000_WRITE_REG(hw, CTRL, ctrl);
 | |
| 	} else {
 | |
| 		ctrl |=
 | |
| 		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
 | |
| 		E1000_WRITE_REG(hw, CTRL, ctrl);
 | |
| 		e1000_phy_hw_reset(hw);
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure we have a valid PHY */
 | |
| 	ret_val = e1000_detect_gig_phy(hw);
 | |
| 	if (ret_val < 0) {
 | |
| 		DEBUGOUT("Error, did not detect valid phy.\n");
 | |
| 		return ret_val;
 | |
| 	}
 | |
| 	DEBUGOUT("Phy ID = %x \n", hw->phy_id);
 | |
| 
 | |
| 	/* Enable CRS on TX. This must be set for half-duplex operation. */
 | |
| 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
 | |
| 		DEBUGOUT("PHY Read Error\n");
 | |
| 		return -E1000_ERR_PHY;
 | |
| 	}
 | |
| 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 | |
| 
 | |
| #if 0
 | |
| 	/* Options:
 | |
| 	 *   MDI/MDI-X = 0 (default)
 | |
| 	 *   0 - Auto for all speeds
 | |
| 	 *   1 - MDI mode
 | |
| 	 *   2 - MDI-X mode
 | |
| 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 | |
| 	 */
 | |
| 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 | |
| 	switch (hw->mdix) {
 | |
| 	case 1:
 | |
| 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 | |
| 		break;
 | |
| 	case 0:
 | |
| 	default:
 | |
| 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 | |
| 		break;
 | |
| 	}
 | |
| #else
 | |
| 	phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 | |
| #endif
 | |
| 
 | |
| #if 0
 | |
| 	/* Options:
 | |
| 	 *   disable_polarity_correction = 0 (default)
 | |
| 	 *	 Automatic Correction for Reversed Cable Polarity
 | |
| 	 *   0 - Disabled
 | |
| 	 *   1 - Enabled
 | |
| 	 */
 | |
| 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 | |
| 	if (hw->disable_polarity_correction == 1)
 | |
| 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 | |
| #else
 | |
| 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 | |
| #endif
 | |
| 	if (e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
 | |
| 		DEBUGOUT("PHY Write Error\n");
 | |
| 		return -E1000_ERR_PHY;
 | |
| 	}
 | |
| 
 | |
| 	/* Force TX_CLK in the Extended PHY Specific Control Register
 | |
| 	 * to 25MHz clock.
 | |
| 	 */
 | |
| 	if (e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) {
 | |
| 		DEBUGOUT("PHY Read Error\n");
 | |
| 		return -E1000_ERR_PHY;
 | |
| 	}
 | |
| 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
 | |
| 	/* Configure Master and Slave downshift values */
 | |
| 	phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 | |
| 		      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 | |
| 	phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 | |
| 		     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 | |
| 	if (e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) {
 | |
| 		DEBUGOUT("PHY Write Error\n");
 | |
| 		return -E1000_ERR_PHY;
 | |
| 	}
 | |
| 
 | |
| 	/* SW Reset the PHY so all changes take effect */
 | |
| 	ret_val = e1000_phy_reset(hw);
 | |
| 	if (ret_val < 0) {
 | |
| 		DEBUGOUT("Error Resetting the PHY\n");
 | |
| 		return ret_val;
 | |
| 	}
 | |
| 
 | |
| 	/* Options:
 | |
| 	 *   autoneg = 1 (default)
 | |
| 	 *	PHY will advertise value(s) parsed from
 | |
| 	 *	autoneg_advertised and fc
 | |
| 	 *   autoneg = 0
 | |
| 	 *	PHY will be set to 10H, 10F, 100H, or 100F
 | |
| 	 *	depending on value parsed from forced_speed_duplex.
 | |
| 	 */
 | |
| 
 | |
| 	/* Is autoneg enabled?	This is enabled by default or by software override.
 | |
| 	 * If so, call e1000_phy_setup_autoneg routine to parse the
 | |
| 	 * autoneg_advertised and fc options. If autoneg is NOT enabled, then the
 | |
| 	 * user should have provided a speed/duplex override.  If so, then call
 | |
| 	 * e1000_phy_force_speed_duplex to parse and set this up.
 | |
| 	 */
 | |
| 	/* Perform some bounds checking on the hw->autoneg_advertised
 | |
| 	 * parameter.  If this variable is zero, then set it to the default.
 | |
| 	 */
 | |
| 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
 | |
| 
 | |
| 	/* If autoneg_advertised is zero, we assume it was not defaulted
 | |
| 	 * by the calling code so we set to advertise full capability.
 | |
| 	 */
 | |
| 	if (hw->autoneg_advertised == 0)
 | |
| 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 | |
| 
 | |
| 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
 | |
| 	ret_val = e1000_phy_setup_autoneg(hw);
 | |
| 	if (ret_val < 0) {
 | |
| 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
 | |
| 		return ret_val;
 | |
| 	}
 | |
| 	DEBUGOUT("Restarting Auto-Neg\n");
 | |
| 
 | |
| 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
 | |
| 	 * the Auto Neg Restart bit in the PHY control register.
 | |
| 	 */
 | |
| 	if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
 | |
| 		DEBUGOUT("PHY Read Error\n");
 | |
| 		return -E1000_ERR_PHY;
 | |
| 	}
 | |
| 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
 | |
| 	if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
 | |
| 		DEBUGOUT("PHY Write Error\n");
 | |
| 		return -E1000_ERR_PHY;
 | |
| 	}
 | |
| #if 0
 | |
| 	/* Does the user want to wait for Auto-Neg to complete here, or
 | |
| 	 * check at a later time (for example, callback routine).
 | |
| 	 */
 | |
| 	if (hw->wait_autoneg_complete) {
 | |
| 		ret_val = e1000_wait_autoneg(hw);
 | |
| 		if (ret_val < 0) {
 | |
| 			DEBUGOUT
 | |
| 			    ("Error while waiting for autoneg to complete\n");
 | |
| 			return ret_val;
 | |
| 		}
 | |
| 	}
 | |
| #else
 | |
| 	/* If we do not wait for autonegtation to complete I
 | |
| 	 * do not see a valid link status.
 | |
| 	 */
 | |
| 	ret_val = e1000_wait_autoneg(hw);
 | |
| 	if (ret_val < 0) {
 | |
| 		DEBUGOUT("Error while waiting for autoneg to complete\n");
 | |
| 		return ret_val;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* Check link status. Wait up to 100 microseconds for link to become
 | |
| 	 * valid.
 | |
| 	 */
 | |
| 	for (i = 0; i < 10; i++) {
 | |
| 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
 | |
| 			DEBUGOUT("PHY Read Error\n");
 | |
| 			return -E1000_ERR_PHY;
 | |
| 		}
 | |
| 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
 | |
| 			DEBUGOUT("PHY Read Error\n");
 | |
| 			return -E1000_ERR_PHY;
 | |
| 		}
 | |
| 		if (phy_data & MII_SR_LINK_STATUS) {
 | |
| 			/* We have link, so we need to finish the config process:
 | |
| 			 *   1) Set up the MAC to the current PHY speed/duplex
 | |
| 			 *	if we are on 82543.  If we
 | |
| 			 *	are on newer silicon, we only need to configure
 | |
| 			 *	collision distance in the Transmit Control Register.
 | |
| 			 *   2) Set up flow control on the MAC to that established with
 | |
| 			 *	the link partner.
 | |
| 			 */
 | |
| 			if (hw->mac_type >= e1000_82544) {
 | |
| 				e1000_config_collision_dist(hw);
 | |
| 			} else {
 | |
| 				ret_val = e1000_config_mac_to_phy(hw);
 | |
| 				if (ret_val < 0) {
 | |
| 					DEBUGOUT
 | |
| 					    ("Error configuring MAC to PHY settings\n");
 | |
| 					return ret_val;
 | |
| 				}
 | |
| 			}
 | |
| 			ret_val = e1000_config_fc_after_link_up(hw);
 | |
| 			if (ret_val < 0) {
 | |
| 				DEBUGOUT("Error Configuring Flow Control\n");
 | |
| 				return ret_val;
 | |
| 			}
 | |
| 			DEBUGOUT("Valid link established!!!\n");
 | |
| 			return 0;
 | |
| 		}
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 
 | |
| 	DEBUGOUT("Unable to establish link!!!\n");
 | |
| 	return -E1000_ERR_NOLINK;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Configures PHY autoneg and flow control advertisement settings
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| ******************************************************************************/
 | |
| static int
 | |
| e1000_phy_setup_autoneg(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint16_t mii_autoneg_adv_reg;
 | |
| 	uint16_t mii_1000t_ctrl_reg;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 | |
| 	if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) {
 | |
| 		DEBUGOUT("PHY Read Error\n");
 | |
| 		return -E1000_ERR_PHY;
 | |
| 	}
 | |
| 
 | |
| 	/* Read the MII 1000Base-T Control Register (Address 9). */
 | |
| 	if (e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) {
 | |
| 		DEBUGOUT("PHY Read Error\n");
 | |
| 		return -E1000_ERR_PHY;
 | |
| 	}
 | |
| 
 | |
| 	/* Need to parse both autoneg_advertised and fc and set up
 | |
| 	 * the appropriate PHY registers.  First we will parse for
 | |
| 	 * autoneg_advertised software override.  Since we can advertise
 | |
| 	 * a plethora of combinations, we need to check each bit
 | |
| 	 * individually.
 | |
| 	 */
 | |
| 
 | |
| 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
 | |
| 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 | |
| 	 * the	1000Base-T Control Register (Address 9).
 | |
| 	 */
 | |
| 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
 | |
| 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
 | |
| 
 | |
| 	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
 | |
| 
 | |
| 	/* Do we want to advertise 10 Mb Half Duplex? */
 | |
| 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
 | |
| 		DEBUGOUT("Advertise 10mb Half duplex\n");
 | |
| 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
 | |
| 	}
 | |
| 
 | |
| 	/* Do we want to advertise 10 Mb Full Duplex? */
 | |
| 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
 | |
| 		DEBUGOUT("Advertise 10mb Full duplex\n");
 | |
| 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
 | |
| 	}
 | |
| 
 | |
| 	/* Do we want to advertise 100 Mb Half Duplex? */
 | |
| 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
 | |
| 		DEBUGOUT("Advertise 100mb Half duplex\n");
 | |
| 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
 | |
| 	}
 | |
| 
 | |
| 	/* Do we want to advertise 100 Mb Full Duplex? */
 | |
| 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
 | |
| 		DEBUGOUT("Advertise 100mb Full duplex\n");
 | |
| 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
 | |
| 	}
 | |
| 
 | |
| 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
 | |
| 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
 | |
| 		DEBUGOUT
 | |
| 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
 | |
| 	}
 | |
| 
 | |
| 	/* Do we want to advertise 1000 Mb Full Duplex? */
 | |
| 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
 | |
| 		DEBUGOUT("Advertise 1000mb Full duplex\n");
 | |
| 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
 | |
| 	}
 | |
| 
 | |
| 	/* Check for a software override of the flow control settings, and
 | |
| 	 * setup the PHY advertisement registers accordingly.  If
 | |
| 	 * auto-negotiation is enabled, then software will have to set the
 | |
| 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
 | |
| 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
 | |
| 	 *
 | |
| 	 * The possible values of the "fc" parameter are:
 | |
| 	 *	0:  Flow control is completely disabled
 | |
| 	 *	1:  Rx flow control is enabled (we can receive pause frames
 | |
| 	 *	    but not send pause frames).
 | |
| 	 *	2:  Tx flow control is enabled (we can send pause frames
 | |
| 	 *	    but we do not support receiving pause frames).
 | |
| 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
 | |
| 	 *  other:  No software override.  The flow control configuration
 | |
| 	 *	    in the EEPROM is used.
 | |
| 	 */
 | |
| 	switch (hw->fc) {
 | |
| 	case e1000_fc_none:	/* 0 */
 | |
| 		/* Flow control (RX & TX) is completely disabled by a
 | |
| 		 * software over-ride.
 | |
| 		 */
 | |
| 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 | |
| 		break;
 | |
| 	case e1000_fc_rx_pause:	/* 1 */
 | |
| 		/* RX Flow control is enabled, and TX Flow control is
 | |
| 		 * disabled, by a software over-ride.
 | |
| 		 */
 | |
| 		/* Since there really isn't a way to advertise that we are
 | |
| 		 * capable of RX Pause ONLY, we will advertise that we
 | |
| 		 * support both symmetric and asymmetric RX PAUSE.  Later
 | |
| 		 * (in e1000_config_fc_after_link_up) we will disable the
 | |
| 		 *hw's ability to send PAUSE frames.
 | |
| 		 */
 | |
| 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 | |
| 		break;
 | |
| 	case e1000_fc_tx_pause:	/* 2 */
 | |
| 		/* TX Flow control is enabled, and RX Flow control is
 | |
| 		 * disabled, by a software over-ride.
 | |
| 		 */
 | |
| 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
 | |
| 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
 | |
| 		break;
 | |
| 	case e1000_fc_full:	/* 3 */
 | |
| 		/* Flow control (both RX and TX) is enabled by a software
 | |
| 		 * over-ride.
 | |
| 		 */
 | |
| 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 | |
| 		break;
 | |
| 	default:
 | |
| 		DEBUGOUT("Flow control param set incorrectly\n");
 | |
| 		return -E1000_ERR_CONFIG;
 | |
| 	}
 | |
| 
 | |
| 	if (e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) {
 | |
| 		DEBUGOUT("PHY Write Error\n");
 | |
| 		return -E1000_ERR_PHY;
 | |
| 	}
 | |
| 
 | |
| 	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
 | |
| 
 | |
| 	if (e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) {
 | |
| 		DEBUGOUT("PHY Write Error\n");
 | |
| 		return -E1000_ERR_PHY;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Sets the collision distance in the Transmit Control register
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| *
 | |
| * Link should have been established previously. Reads the speed and duplex
 | |
| * information from the Device Status register.
 | |
| ******************************************************************************/
 | |
| static void
 | |
| e1000_config_collision_dist(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t tctl;
 | |
| 
 | |
| 	tctl = E1000_READ_REG(hw, TCTL);
 | |
| 
 | |
| 	tctl &= ~E1000_TCTL_COLD;
 | |
| 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, TCTL, tctl);
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Sets MAC speed and duplex settings to reflect the those in the PHY
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| * mii_reg - data to write to the MII control register
 | |
| *
 | |
| * The contents of the PHY register containing the needed information need to
 | |
| * be passed in.
 | |
| ******************************************************************************/
 | |
| static int
 | |
| e1000_config_mac_to_phy(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t ctrl;
 | |
| 	uint16_t phy_data;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* Read the Device Control Register and set the bits to Force Speed
 | |
| 	 * and Duplex.
 | |
| 	 */
 | |
| 	ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
 | |
| 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
 | |
| 
 | |
| 	/* Set up duplex in the Device Control and Transmit Control
 | |
| 	 * registers depending on negotiated values.
 | |
| 	 */
 | |
| 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
 | |
| 		DEBUGOUT("PHY Read Error\n");
 | |
| 		return -E1000_ERR_PHY;
 | |
| 	}
 | |
| 	if (phy_data & M88E1000_PSSR_DPLX)
 | |
| 		ctrl |= E1000_CTRL_FD;
 | |
| 	else
 | |
| 		ctrl &= ~E1000_CTRL_FD;
 | |
| 
 | |
| 	e1000_config_collision_dist(hw);
 | |
| 
 | |
| 	/* Set up speed in the Device Control register depending on
 | |
| 	 * negotiated values.
 | |
| 	 */
 | |
| 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
 | |
| 		ctrl |= E1000_CTRL_SPD_1000;
 | |
| 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
 | |
| 		ctrl |= E1000_CTRL_SPD_100;
 | |
| 	/* Write the configured values back to the Device Control Reg. */
 | |
| 	E1000_WRITE_REG(hw, CTRL, ctrl);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Forces the MAC's flow control settings.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * Sets the TFCE and RFCE bits in the device control register to reflect
 | |
|  * the adapter settings. TFCE and RFCE need to be explicitly set by
 | |
|  * software when a Copper PHY is used because autonegotiation is managed
 | |
|  * by the PHY rather than the MAC. Software must also configure these
 | |
|  * bits when link is forced on a fiber connection.
 | |
|  *****************************************************************************/
 | |
| static int
 | |
| e1000_force_mac_fc(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t ctrl;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* Get the current configuration of the Device Control Register */
 | |
| 	ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 
 | |
| 	/* Because we didn't get link via the internal auto-negotiation
 | |
| 	 * mechanism (we either forced link or we got link via PHY
 | |
| 	 * auto-neg), we have to manually enable/disable transmit an
 | |
| 	 * receive flow control.
 | |
| 	 *
 | |
| 	 * The "Case" statement below enables/disable flow control
 | |
| 	 * according to the "hw->fc" parameter.
 | |
| 	 *
 | |
| 	 * The possible values of the "fc" parameter are:
 | |
| 	 *	0:  Flow control is completely disabled
 | |
| 	 *	1:  Rx flow control is enabled (we can receive pause
 | |
| 	 *	    frames but not send pause frames).
 | |
| 	 *	2:  Tx flow control is enabled (we can send pause frames
 | |
| 	 *	    frames but we do not receive pause frames).
 | |
| 	 *	3:  Both Rx and TX flow control (symmetric) is enabled.
 | |
| 	 *  other:  No other values should be possible at this point.
 | |
| 	 */
 | |
| 
 | |
| 	switch (hw->fc) {
 | |
| 	case e1000_fc_none:
 | |
| 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
 | |
| 		break;
 | |
| 	case e1000_fc_rx_pause:
 | |
| 		ctrl &= (~E1000_CTRL_TFCE);
 | |
| 		ctrl |= E1000_CTRL_RFCE;
 | |
| 		break;
 | |
| 	case e1000_fc_tx_pause:
 | |
| 		ctrl &= (~E1000_CTRL_RFCE);
 | |
| 		ctrl |= E1000_CTRL_TFCE;
 | |
| 		break;
 | |
| 	case e1000_fc_full:
 | |
| 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
 | |
| 		break;
 | |
| 	default:
 | |
| 		DEBUGOUT("Flow control param set incorrectly\n");
 | |
| 		return -E1000_ERR_CONFIG;
 | |
| 	}
 | |
| 
 | |
| 	/* Disable TX Flow Control for 82542 (rev 2.0) */
 | |
| 	if (hw->mac_type == e1000_82542_rev2_0)
 | |
| 		ctrl &= (~E1000_CTRL_TFCE);
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, CTRL, ctrl);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Configures flow control settings after link is established
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * Should be called immediately after a valid link has been established.
 | |
|  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
 | |
|  * and autonegotiation is enabled, the MAC flow control settings will be set
 | |
|  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
 | |
|  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
 | |
|  *****************************************************************************/
 | |
| static int
 | |
| e1000_config_fc_after_link_up(struct e1000_hw *hw)
 | |
| {
 | |
| 	int32_t ret_val;
 | |
| 	uint16_t mii_status_reg;
 | |
| 	uint16_t mii_nway_adv_reg;
 | |
| 	uint16_t mii_nway_lp_ability_reg;
 | |
| 	uint16_t speed;
 | |
| 	uint16_t duplex;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* Check for the case where we have fiber media and auto-neg failed
 | |
| 	 * so we had to force link.  In this case, we need to force the
 | |
| 	 * configuration of the MAC to match the "fc" parameter.
 | |
| 	 */
 | |
| 	if ((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) {
 | |
| 		ret_val = e1000_force_mac_fc(hw);
 | |
| 		if (ret_val < 0) {
 | |
| 			DEBUGOUT("Error forcing flow control settings\n");
 | |
| 			return ret_val;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Check for the case where we have copper media and auto-neg is
 | |
| 	 * enabled.  In this case, we need to check and see if Auto-Neg
 | |
| 	 * has completed, and if so, how the PHY and link partner has
 | |
| 	 * flow control configured.
 | |
| 	 */
 | |
| 	if (hw->media_type == e1000_media_type_copper) {
 | |
| 		/* Read the MII Status Register and check to see if AutoNeg
 | |
| 		 * has completed.  We read this twice because this reg has
 | |
| 		 * some "sticky" (latched) bits.
 | |
| 		 */
 | |
| 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
 | |
| 			DEBUGOUT("PHY Read Error \n");
 | |
| 			return -E1000_ERR_PHY;
 | |
| 		}
 | |
| 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
 | |
| 			DEBUGOUT("PHY Read Error \n");
 | |
| 			return -E1000_ERR_PHY;
 | |
| 		}
 | |
| 
 | |
| 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
 | |
| 			/* The AutoNeg process has completed, so we now need to
 | |
| 			 * read both the Auto Negotiation Advertisement Register
 | |
| 			 * (Address 4) and the Auto_Negotiation Base Page Ability
 | |
| 			 * Register (Address 5) to determine how flow control was
 | |
| 			 * negotiated.
 | |
| 			 */
 | |
| 			if (e1000_read_phy_reg
 | |
| 			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
 | |
| 				DEBUGOUT("PHY Read Error\n");
 | |
| 				return -E1000_ERR_PHY;
 | |
| 			}
 | |
| 			if (e1000_read_phy_reg
 | |
| 			    (hw, PHY_LP_ABILITY,
 | |
| 			     &mii_nway_lp_ability_reg) < 0) {
 | |
| 				DEBUGOUT("PHY Read Error\n");
 | |
| 				return -E1000_ERR_PHY;
 | |
| 			}
 | |
| 
 | |
| 			/* Two bits in the Auto Negotiation Advertisement Register
 | |
| 			 * (Address 4) and two bits in the Auto Negotiation Base
 | |
| 			 * Page Ability Register (Address 5) determine flow control
 | |
| 			 * for both the PHY and the link partner.  The following
 | |
| 			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
 | |
| 			 * 1999, describes these PAUSE resolution bits and how flow
 | |
| 			 * control is determined based upon these settings.
 | |
| 			 * NOTE:  DC = Don't Care
 | |
| 			 *
 | |
| 			 *   LOCAL DEVICE  |   LINK PARTNER
 | |
| 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
 | |
| 			 *-------|---------|-------|---------|--------------------
 | |
| 			 *   0	 |    0    |  DC   |   DC    | e1000_fc_none
 | |
| 			 *   0	 |    1    |   0   |   DC    | e1000_fc_none
 | |
| 			 *   0	 |    1    |   1   |	0    | e1000_fc_none
 | |
| 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
 | |
| 			 *   1	 |    0    |   0   |   DC    | e1000_fc_none
 | |
| 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
 | |
| 			 *   1	 |    1    |   0   |	0    | e1000_fc_none
 | |
| 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
 | |
| 			 *
 | |
| 			 */
 | |
| 			/* Are both PAUSE bits set to 1?  If so, this implies
 | |
| 			 * Symmetric Flow Control is enabled at both ends.  The
 | |
| 			 * ASM_DIR bits are irrelevant per the spec.
 | |
| 			 *
 | |
| 			 * For Symmetric Flow Control:
 | |
| 			 *
 | |
| 			 *   LOCAL DEVICE  |   LINK PARTNER
 | |
| 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 | |
| 			 *-------|---------|-------|---------|--------------------
 | |
| 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
 | |
| 			 *
 | |
| 			 */
 | |
| 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 | |
| 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
 | |
| 				/* Now we need to check if the user selected RX ONLY
 | |
| 				 * of pause frames.  In this case, we had to advertise
 | |
| 				 * FULL flow control because we could not advertise RX
 | |
| 				 * ONLY. Hence, we must now check to see if we need to
 | |
| 				 * turn OFF  the TRANSMISSION of PAUSE frames.
 | |
| 				 */
 | |
| 				if (hw->original_fc == e1000_fc_full) {
 | |
| 					hw->fc = e1000_fc_full;
 | |
| 					DEBUGOUT("Flow Control = FULL.\r\n");
 | |
| 				} else {
 | |
| 					hw->fc = e1000_fc_rx_pause;
 | |
| 					DEBUGOUT
 | |
| 					    ("Flow Control = RX PAUSE frames only.\r\n");
 | |
| 				}
 | |
| 			}
 | |
| 			/* For receiving PAUSE frames ONLY.
 | |
| 			 *
 | |
| 			 *   LOCAL DEVICE  |   LINK PARTNER
 | |
| 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 | |
| 			 *-------|---------|-------|---------|--------------------
 | |
| 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
 | |
| 			 *
 | |
| 			 */
 | |
| 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 | |
| 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
 | |
| 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
 | |
| 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
 | |
| 			{
 | |
| 				hw->fc = e1000_fc_tx_pause;
 | |
| 				DEBUGOUT
 | |
| 				    ("Flow Control = TX PAUSE frames only.\r\n");
 | |
| 			}
 | |
| 			/* For transmitting PAUSE frames ONLY.
 | |
| 			 *
 | |
| 			 *   LOCAL DEVICE  |   LINK PARTNER
 | |
| 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 | |
| 			 *-------|---------|-------|---------|--------------------
 | |
| 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
 | |
| 			 *
 | |
| 			 */
 | |
| 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 | |
| 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
 | |
| 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
 | |
| 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
 | |
| 			{
 | |
| 				hw->fc = e1000_fc_rx_pause;
 | |
| 				DEBUGOUT
 | |
| 				    ("Flow Control = RX PAUSE frames only.\r\n");
 | |
| 			}
 | |
| 			/* Per the IEEE spec, at this point flow control should be
 | |
| 			 * disabled.  However, we want to consider that we could
 | |
| 			 * be connected to a legacy switch that doesn't advertise
 | |
| 			 * desired flow control, but can be forced on the link
 | |
| 			 * partner.  So if we advertised no flow control, that is
 | |
| 			 * what we will resolve to.  If we advertised some kind of
 | |
| 			 * receive capability (Rx Pause Only or Full Flow Control)
 | |
| 			 * and the link partner advertised none, we will configure
 | |
| 			 * ourselves to enable Rx Flow Control only.  We can do
 | |
| 			 * this safely for two reasons:  If the link partner really
 | |
| 			 * didn't want flow control enabled, and we enable Rx, no
 | |
| 			 * harm done since we won't be receiving any PAUSE frames
 | |
| 			 * anyway.  If the intent on the link partner was to have
 | |
| 			 * flow control enabled, then by us enabling RX only, we
 | |
| 			 * can at least receive pause frames and process them.
 | |
| 			 * This is a good idea because in most cases, since we are
 | |
| 			 * predominantly a server NIC, more times than not we will
 | |
| 			 * be asked to delay transmission of packets than asking
 | |
| 			 * our link partner to pause transmission of frames.
 | |
| 			 */
 | |
| 			else if (hw->original_fc == e1000_fc_none ||
 | |
| 				 hw->original_fc == e1000_fc_tx_pause) {
 | |
| 				hw->fc = e1000_fc_none;
 | |
| 				DEBUGOUT("Flow Control = NONE.\r\n");
 | |
| 			} else {
 | |
| 				hw->fc = e1000_fc_rx_pause;
 | |
| 				DEBUGOUT
 | |
| 				    ("Flow Control = RX PAUSE frames only.\r\n");
 | |
| 			}
 | |
| 
 | |
| 			/* Now we need to do one last check...	If we auto-
 | |
| 			 * negotiated to HALF DUPLEX, flow control should not be
 | |
| 			 * enabled per IEEE 802.3 spec.
 | |
| 			 */
 | |
| 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
 | |
| 
 | |
| 			if (duplex == HALF_DUPLEX)
 | |
| 				hw->fc = e1000_fc_none;
 | |
| 
 | |
| 			/* Now we call a subroutine to actually force the MAC
 | |
| 			 * controller to use the correct flow control settings.
 | |
| 			 */
 | |
| 			ret_val = e1000_force_mac_fc(hw);
 | |
| 			if (ret_val < 0) {
 | |
| 				DEBUGOUT
 | |
| 				    ("Error forcing flow control settings\n");
 | |
| 				return ret_val;
 | |
| 			}
 | |
| 		} else {
 | |
| 			DEBUGOUT
 | |
| 			    ("Copper PHY and Auto Neg has not completed.\r\n");
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Checks to see if the link status of the hardware has changed.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * Called by any function that needs to check the link status of the adapter.
 | |
|  *****************************************************************************/
 | |
| static int
 | |
| e1000_check_for_link(struct eth_device *nic)
 | |
| {
 | |
| 	struct e1000_hw *hw = nic->priv;
 | |
| 	uint32_t rxcw;
 | |
| 	uint32_t ctrl;
 | |
| 	uint32_t status;
 | |
| 	uint32_t rctl;
 | |
| 	uint32_t signal;
 | |
| 	int32_t ret_val;
 | |
| 	uint16_t phy_data;
 | |
| 	uint16_t lp_capability;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
 | |
| 	 * set when the optics detect a signal. On older adapters, it will be
 | |
| 	 * cleared when there is a signal
 | |
| 	 */
 | |
| 	ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
 | |
| 		signal = E1000_CTRL_SWDPIN1;
 | |
| 	else
 | |
| 		signal = 0;
 | |
| 
 | |
| 	status = E1000_READ_REG(hw, STATUS);
 | |
| 	rxcw = E1000_READ_REG(hw, RXCW);
 | |
| 	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
 | |
| 
 | |
| 	/* If we have a copper PHY then we only want to go out to the PHY
 | |
| 	 * registers to see if Auto-Neg has completed and/or if our link
 | |
| 	 * status has changed.	The get_link_status flag will be set if we
 | |
| 	 * receive a Link Status Change interrupt or we have Rx Sequence
 | |
| 	 * Errors.
 | |
| 	 */
 | |
| 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
 | |
| 		/* First we want to see if the MII Status Register reports
 | |
| 		 * link.  If so, then we want to get the current speed/duplex
 | |
| 		 * of the PHY.
 | |
| 		 * Read the register twice since the link bit is sticky.
 | |
| 		 */
 | |
| 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
 | |
| 			DEBUGOUT("PHY Read Error\n");
 | |
| 			return -E1000_ERR_PHY;
 | |
| 		}
 | |
| 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
 | |
| 			DEBUGOUT("PHY Read Error\n");
 | |
| 			return -E1000_ERR_PHY;
 | |
| 		}
 | |
| 
 | |
| 		if (phy_data & MII_SR_LINK_STATUS) {
 | |
| 			hw->get_link_status = FALSE;
 | |
| 		} else {
 | |
| 			/* No link detected */
 | |
| 			return -E1000_ERR_NOLINK;
 | |
| 		}
 | |
| 
 | |
| 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
 | |
| 		 * have Si on board that is 82544 or newer, Auto
 | |
| 		 * Speed Detection takes care of MAC speed/duplex
 | |
| 		 * configuration.  So we only need to configure Collision
 | |
| 		 * Distance in the MAC.  Otherwise, we need to force
 | |
| 		 * speed/duplex on the MAC to the current PHY speed/duplex
 | |
| 		 * settings.
 | |
| 		 */
 | |
| 		if (hw->mac_type >= e1000_82544)
 | |
| 			e1000_config_collision_dist(hw);
 | |
| 		else {
 | |
| 			ret_val = e1000_config_mac_to_phy(hw);
 | |
| 			if (ret_val < 0) {
 | |
| 				DEBUGOUT
 | |
| 				    ("Error configuring MAC to PHY settings\n");
 | |
| 				return ret_val;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Configure Flow Control now that Auto-Neg has completed. First, we
 | |
| 		 * need to restore the desired flow control settings because we may
 | |
| 		 * have had to re-autoneg with a different link partner.
 | |
| 		 */
 | |
| 		ret_val = e1000_config_fc_after_link_up(hw);
 | |
| 		if (ret_val < 0) {
 | |
| 			DEBUGOUT("Error configuring flow control\n");
 | |
| 			return ret_val;
 | |
| 		}
 | |
| 
 | |
| 		/* At this point we know that we are on copper and we have
 | |
| 		 * auto-negotiated link.  These are conditions for checking the link
 | |
| 		 * parter capability register.	We use the link partner capability to
 | |
| 		 * determine if TBI Compatibility needs to be turned on or off.  If
 | |
| 		 * the link partner advertises any speed in addition to Gigabit, then
 | |
| 		 * we assume that they are GMII-based, and TBI compatibility is not
 | |
| 		 * needed. If no other speeds are advertised, we assume the link
 | |
| 		 * partner is TBI-based, and we turn on TBI Compatibility.
 | |
| 		 */
 | |
| 		if (hw->tbi_compatibility_en) {
 | |
| 			if (e1000_read_phy_reg
 | |
| 			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
 | |
| 				DEBUGOUT("PHY Read Error\n");
 | |
| 				return -E1000_ERR_PHY;
 | |
| 			}
 | |
| 			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
 | |
| 					     NWAY_LPAR_10T_FD_CAPS |
 | |
| 					     NWAY_LPAR_100TX_HD_CAPS |
 | |
| 					     NWAY_LPAR_100TX_FD_CAPS |
 | |
| 					     NWAY_LPAR_100T4_CAPS)) {
 | |
| 				/* If our link partner advertises anything in addition to
 | |
| 				 * gigabit, we do not need to enable TBI compatibility.
 | |
| 				 */
 | |
| 				if (hw->tbi_compatibility_on) {
 | |
| 					/* If we previously were in the mode, turn it off. */
 | |
| 					rctl = E1000_READ_REG(hw, RCTL);
 | |
| 					rctl &= ~E1000_RCTL_SBP;
 | |
| 					E1000_WRITE_REG(hw, RCTL, rctl);
 | |
| 					hw->tbi_compatibility_on = FALSE;
 | |
| 				}
 | |
| 			} else {
 | |
| 				/* If TBI compatibility is was previously off, turn it on. For
 | |
| 				 * compatibility with a TBI link partner, we will store bad
 | |
| 				 * packets. Some frames have an additional byte on the end and
 | |
| 				 * will look like CRC errors to to the hardware.
 | |
| 				 */
 | |
| 				if (!hw->tbi_compatibility_on) {
 | |
| 					hw->tbi_compatibility_on = TRUE;
 | |
| 					rctl = E1000_READ_REG(hw, RCTL);
 | |
| 					rctl |= E1000_RCTL_SBP;
 | |
| 					E1000_WRITE_REG(hw, RCTL, rctl);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	/* If we don't have link (auto-negotiation failed or link partner cannot
 | |
| 	 * auto-negotiate), the cable is plugged in (we have signal), and our
 | |
| 	 * link partner is not trying to auto-negotiate with us (we are receiving
 | |
| 	 * idles or data), we need to force link up. We also need to give
 | |
| 	 * auto-negotiation time to complete, in case the cable was just plugged
 | |
| 	 * in. The autoneg_failed flag does this.
 | |
| 	 */
 | |
| 	else if ((hw->media_type == e1000_media_type_fiber) &&
 | |
| 		 (!(status & E1000_STATUS_LU)) &&
 | |
| 		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
 | |
| 		 (!(rxcw & E1000_RXCW_C))) {
 | |
| 		if (hw->autoneg_failed == 0) {
 | |
| 			hw->autoneg_failed = 1;
 | |
| 			return 0;
 | |
| 		}
 | |
| 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
 | |
| 
 | |
| 		/* Disable auto-negotiation in the TXCW register */
 | |
| 		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
 | |
| 
 | |
| 		/* Force link-up and also force full-duplex. */
 | |
| 		ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 | |
| 		E1000_WRITE_REG(hw, CTRL, ctrl);
 | |
| 
 | |
| 		/* Configure Flow Control after forcing link up. */
 | |
| 		ret_val = e1000_config_fc_after_link_up(hw);
 | |
| 		if (ret_val < 0) {
 | |
| 			DEBUGOUT("Error configuring flow control\n");
 | |
| 			return ret_val;
 | |
| 		}
 | |
| 	}
 | |
| 	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
 | |
| 	 * auto-negotiation in the TXCW register and disable forced link in the
 | |
| 	 * Device Control register in an attempt to auto-negotiate with our link
 | |
| 	 * partner.
 | |
| 	 */
 | |
| 	else if ((hw->media_type == e1000_media_type_fiber) &&
 | |
| 		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 | |
| 		DEBUGOUT
 | |
| 		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
 | |
| 		E1000_WRITE_REG(hw, TXCW, hw->txcw);
 | |
| 		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Detects the current speed and duplex settings of the hardware.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  * speed - Speed of the connection
 | |
|  * duplex - Duplex setting of the connection
 | |
|  *****************************************************************************/
 | |
| static void
 | |
| e1000_get_speed_and_duplex(struct e1000_hw *hw,
 | |
| 			   uint16_t * speed, uint16_t * duplex)
 | |
| {
 | |
| 	uint32_t status;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	if (hw->mac_type >= e1000_82543) {
 | |
| 		status = E1000_READ_REG(hw, STATUS);
 | |
| 		if (status & E1000_STATUS_SPEED_1000) {
 | |
| 			*speed = SPEED_1000;
 | |
| 			DEBUGOUT("1000 Mbs, ");
 | |
| 		} else if (status & E1000_STATUS_SPEED_100) {
 | |
| 			*speed = SPEED_100;
 | |
| 			DEBUGOUT("100 Mbs, ");
 | |
| 		} else {
 | |
| 			*speed = SPEED_10;
 | |
| 			DEBUGOUT("10 Mbs, ");
 | |
| 		}
 | |
| 
 | |
| 		if (status & E1000_STATUS_FD) {
 | |
| 			*duplex = FULL_DUPLEX;
 | |
| 			DEBUGOUT("Full Duplex\r\n");
 | |
| 		} else {
 | |
| 			*duplex = HALF_DUPLEX;
 | |
| 			DEBUGOUT(" Half Duplex\r\n");
 | |
| 		}
 | |
| 	} else {
 | |
| 		DEBUGOUT("1000 Mbs, Full Duplex\r\n");
 | |
| 		*speed = SPEED_1000;
 | |
| 		*duplex = FULL_DUPLEX;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Blocks until autoneg completes or times out (~4.5 seconds)
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| ******************************************************************************/
 | |
| static int
 | |
| e1000_wait_autoneg(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint16_t i;
 | |
| 	uint16_t phy_data;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
 | |
| 
 | |
| 	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
 | |
| 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
 | |
| 		/* Read the MII Status Register and wait for Auto-Neg
 | |
| 		 * Complete bit to be set.
 | |
| 		 */
 | |
| 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
 | |
| 			DEBUGOUT("PHY Read Error\n");
 | |
| 			return -E1000_ERR_PHY;
 | |
| 		}
 | |
| 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
 | |
| 			DEBUGOUT("PHY Read Error\n");
 | |
| 			return -E1000_ERR_PHY;
 | |
| 		}
 | |
| 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
 | |
| 			DEBUGOUT("Auto-Neg complete.\n");
 | |
| 			return 0;
 | |
| 		}
 | |
| 		mdelay(100);
 | |
| 	}
 | |
| 	DEBUGOUT("Auto-Neg timedout.\n");
 | |
| 	return -E1000_ERR_TIMEOUT;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Raises the Management Data Clock
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| * ctrl - Device control register's current value
 | |
| ******************************************************************************/
 | |
| static void
 | |
| e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
 | |
| {
 | |
| 	/* Raise the clock input to the Management Data Clock (by setting the MDC
 | |
| 	 * bit), and then delay 2 microseconds.
 | |
| 	 */
 | |
| 	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| 	udelay(2);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Lowers the Management Data Clock
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| * ctrl - Device control register's current value
 | |
| ******************************************************************************/
 | |
| static void
 | |
| e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
 | |
| {
 | |
| 	/* Lower the clock input to the Management Data Clock (by clearing the MDC
 | |
| 	 * bit), and then delay 2 microseconds.
 | |
| 	 */
 | |
| 	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| 	udelay(2);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Shifts data bits out to the PHY
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| * data - Data to send out to the PHY
 | |
| * count - Number of bits to shift out
 | |
| *
 | |
| * Bits are shifted out in MSB to LSB order.
 | |
| ******************************************************************************/
 | |
| static void
 | |
| e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
 | |
| {
 | |
| 	uint32_t ctrl;
 | |
| 	uint32_t mask;
 | |
| 
 | |
| 	/* We need to shift "count" number of bits out to the PHY. So, the value
 | |
| 	 * in the "data" parameter will be shifted out to the PHY one bit at a
 | |
| 	 * time. In order to do this, "data" must be broken down into bits.
 | |
| 	 */
 | |
| 	mask = 0x01;
 | |
| 	mask <<= (count - 1);
 | |
| 
 | |
| 	ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 
 | |
| 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
 | |
| 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
 | |
| 
 | |
| 	while (mask) {
 | |
| 		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
 | |
| 		 * then raising and lowering the Management Data Clock. A "0" is
 | |
| 		 * shifted out to the PHY by setting the MDIO bit to "0" and then
 | |
| 		 * raising and lowering the clock.
 | |
| 		 */
 | |
| 		if (data & mask)
 | |
| 			ctrl |= E1000_CTRL_MDIO;
 | |
| 		else
 | |
| 			ctrl &= ~E1000_CTRL_MDIO;
 | |
| 
 | |
| 		E1000_WRITE_REG(hw, CTRL, ctrl);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 
 | |
| 		udelay(2);
 | |
| 
 | |
| 		e1000_raise_mdi_clk(hw, &ctrl);
 | |
| 		e1000_lower_mdi_clk(hw, &ctrl);
 | |
| 
 | |
| 		mask = mask >> 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Shifts data bits in from the PHY
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| *
 | |
| * Bits are shifted in in MSB to LSB order.
 | |
| ******************************************************************************/
 | |
| static uint16_t
 | |
| e1000_shift_in_mdi_bits(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t ctrl;
 | |
| 	uint16_t data = 0;
 | |
| 	uint8_t i;
 | |
| 
 | |
| 	/* In order to read a register from the PHY, we need to shift in a total
 | |
| 	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
 | |
| 	 * to avoid contention on the MDIO pin when a read operation is performed.
 | |
| 	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
 | |
| 	 * by raising the input to the Management Data Clock (setting the MDC bit),
 | |
| 	 * and then reading the value of the MDIO bit.
 | |
| 	 */
 | |
| 	ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 
 | |
| 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
 | |
| 	ctrl &= ~E1000_CTRL_MDIO_DIR;
 | |
| 	ctrl &= ~E1000_CTRL_MDIO;
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, CTRL, ctrl);
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| 
 | |
| 	/* Raise and Lower the clock before reading in the data. This accounts for
 | |
| 	 * the turnaround bits. The first clock occurred when we clocked out the
 | |
| 	 * last bit of the Register Address.
 | |
| 	 */
 | |
| 	e1000_raise_mdi_clk(hw, &ctrl);
 | |
| 	e1000_lower_mdi_clk(hw, &ctrl);
 | |
| 
 | |
| 	for (data = 0, i = 0; i < 16; i++) {
 | |
| 		data = data << 1;
 | |
| 		e1000_raise_mdi_clk(hw, &ctrl);
 | |
| 		ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 		/* Check to see if we shifted in a "1". */
 | |
| 		if (ctrl & E1000_CTRL_MDIO)
 | |
| 			data |= 1;
 | |
| 		e1000_lower_mdi_clk(hw, &ctrl);
 | |
| 	}
 | |
| 
 | |
| 	e1000_raise_mdi_clk(hw, &ctrl);
 | |
| 	e1000_lower_mdi_clk(hw, &ctrl);
 | |
| 
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| /*****************************************************************************
 | |
| * Reads the value from a PHY register
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| * reg_addr - address of the PHY register to read
 | |
| ******************************************************************************/
 | |
| static int
 | |
| e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
 | |
| {
 | |
| 	uint32_t i;
 | |
| 	uint32_t mdic = 0;
 | |
| 	const uint32_t phy_addr = 1;
 | |
| 
 | |
| 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
 | |
| 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
 | |
| 		return -E1000_ERR_PARAM;
 | |
| 	}
 | |
| 
 | |
| 	if (hw->mac_type > e1000_82543) {
 | |
| 		/* Set up Op-code, Phy Address, and register address in the MDI
 | |
| 		 * Control register.  The MAC will take care of interfacing with the
 | |
| 		 * PHY to retrieve the desired data.
 | |
| 		 */
 | |
| 		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
 | |
| 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
 | |
| 			(E1000_MDIC_OP_READ));
 | |
| 
 | |
| 		E1000_WRITE_REG(hw, MDIC, mdic);
 | |
| 
 | |
| 		/* Poll the ready bit to see if the MDI read completed */
 | |
| 		for (i = 0; i < 64; i++) {
 | |
| 			udelay(10);
 | |
| 			mdic = E1000_READ_REG(hw, MDIC);
 | |
| 			if (mdic & E1000_MDIC_READY)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (!(mdic & E1000_MDIC_READY)) {
 | |
| 			DEBUGOUT("MDI Read did not complete\n");
 | |
| 			return -E1000_ERR_PHY;
 | |
| 		}
 | |
| 		if (mdic & E1000_MDIC_ERROR) {
 | |
| 			DEBUGOUT("MDI Error\n");
 | |
| 			return -E1000_ERR_PHY;
 | |
| 		}
 | |
| 		*phy_data = (uint16_t) mdic;
 | |
| 	} else {
 | |
| 		/* We must first send a preamble through the MDIO pin to signal the
 | |
| 		 * beginning of an MII instruction.  This is done by sending 32
 | |
| 		 * consecutive "1" bits.
 | |
| 		 */
 | |
| 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
 | |
| 
 | |
| 		/* Now combine the next few fields that are required for a read
 | |
| 		 * operation.  We use this method instead of calling the
 | |
| 		 * e1000_shift_out_mdi_bits routine five different times. The format of
 | |
| 		 * a MII read instruction consists of a shift out of 14 bits and is
 | |
| 		 * defined as follows:
 | |
| 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
 | |
| 		 * followed by a shift in of 18 bits.  This first two bits shifted in
 | |
| 		 * are TurnAround bits used to avoid contention on the MDIO pin when a
 | |
| 		 * READ operation is performed.  These two bits are thrown away
 | |
| 		 * followed by a shift in of 16 bits which contains the desired data.
 | |
| 		 */
 | |
| 		mdic = ((reg_addr) | (phy_addr << 5) |
 | |
| 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
 | |
| 
 | |
| 		e1000_shift_out_mdi_bits(hw, mdic, 14);
 | |
| 
 | |
| 		/* Now that we've shifted out the read command to the MII, we need to
 | |
| 		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
 | |
| 		 * register address.
 | |
| 		 */
 | |
| 		*phy_data = e1000_shift_in_mdi_bits(hw);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Writes a value to a PHY register
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| * reg_addr - address of the PHY register to write
 | |
| * data - data to write to the PHY
 | |
| ******************************************************************************/
 | |
| static int
 | |
| e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
 | |
| {
 | |
| 	uint32_t i;
 | |
| 	uint32_t mdic = 0;
 | |
| 	const uint32_t phy_addr = 1;
 | |
| 
 | |
| 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
 | |
| 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
 | |
| 		return -E1000_ERR_PARAM;
 | |
| 	}
 | |
| 
 | |
| 	if (hw->mac_type > e1000_82543) {
 | |
| 		/* Set up Op-code, Phy Address, register address, and data intended
 | |
| 		 * for the PHY register in the MDI Control register.  The MAC will take
 | |
| 		 * care of interfacing with the PHY to send the desired data.
 | |
| 		 */
 | |
| 		mdic = (((uint32_t) phy_data) |
 | |
| 			(reg_addr << E1000_MDIC_REG_SHIFT) |
 | |
| 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
 | |
| 			(E1000_MDIC_OP_WRITE));
 | |
| 
 | |
| 		E1000_WRITE_REG(hw, MDIC, mdic);
 | |
| 
 | |
| 		/* Poll the ready bit to see if the MDI read completed */
 | |
| 		for (i = 0; i < 64; i++) {
 | |
| 			udelay(10);
 | |
| 			mdic = E1000_READ_REG(hw, MDIC);
 | |
| 			if (mdic & E1000_MDIC_READY)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (!(mdic & E1000_MDIC_READY)) {
 | |
| 			DEBUGOUT("MDI Write did not complete\n");
 | |
| 			return -E1000_ERR_PHY;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* We'll need to use the SW defined pins to shift the write command
 | |
| 		 * out to the PHY. We first send a preamble to the PHY to signal the
 | |
| 		 * beginning of the MII instruction.  This is done by sending 32
 | |
| 		 * consecutive "1" bits.
 | |
| 		 */
 | |
| 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
 | |
| 
 | |
| 		/* Now combine the remaining required fields that will indicate a
 | |
| 		 * write operation. We use this method instead of calling the
 | |
| 		 * e1000_shift_out_mdi_bits routine for each field in the command. The
 | |
| 		 * format of a MII write instruction is as follows:
 | |
| 		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
 | |
| 		 */
 | |
| 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
 | |
| 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
 | |
| 		mdic <<= 16;
 | |
| 		mdic |= (uint32_t) phy_data;
 | |
| 
 | |
| 		e1000_shift_out_mdi_bits(hw, mdic, 32);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Returns the PHY to the power-on reset state
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| ******************************************************************************/
 | |
| static void
 | |
| e1000_phy_hw_reset(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t ctrl;
 | |
| 	uint32_t ctrl_ext;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	DEBUGOUT("Resetting Phy...\n");
 | |
| 
 | |
| 	if (hw->mac_type > e1000_82543) {
 | |
| 		/* Read the device control register and assert the E1000_CTRL_PHY_RST
 | |
| 		 * bit. Then, take it out of reset.
 | |
| 		 */
 | |
| 		ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 		mdelay(10);
 | |
| 		E1000_WRITE_REG(hw, CTRL, ctrl);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 	} else {
 | |
| 		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
 | |
| 		 * bit to put the PHY into reset. Then, take it out of reset.
 | |
| 		 */
 | |
| 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
 | |
| 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
 | |
| 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
 | |
| 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 		mdelay(10);
 | |
| 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
 | |
| 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 	}
 | |
| 	udelay(150);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Resets the PHY
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| *
 | |
| * Sets bit 15 of the MII Control regiser
 | |
| ******************************************************************************/
 | |
| static int
 | |
| e1000_phy_reset(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint16_t phy_data;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
 | |
| 		DEBUGOUT("PHY Read Error\n");
 | |
| 		return -E1000_ERR_PHY;
 | |
| 	}
 | |
| 	phy_data |= MII_CR_RESET;
 | |
| 	if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
 | |
| 		DEBUGOUT("PHY Write Error\n");
 | |
| 		return -E1000_ERR_PHY;
 | |
| 	}
 | |
| 	udelay(1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int e1000_set_phy_type (struct e1000_hw *hw)
 | |
| {
 | |
| 	DEBUGFUNC ();
 | |
| 
 | |
| 	if (hw->mac_type == e1000_undefined)
 | |
| 		return -E1000_ERR_PHY_TYPE;
 | |
| 
 | |
| 	switch (hw->phy_id) {
 | |
| 	case M88E1000_E_PHY_ID:
 | |
| 	case M88E1000_I_PHY_ID:
 | |
| 	case M88E1011_I_PHY_ID:
 | |
| 		hw->phy_type = e1000_phy_m88;
 | |
| 		break;
 | |
| 	case IGP01E1000_I_PHY_ID:
 | |
| 		if (hw->mac_type == e1000_82541 ||
 | |
| 		    hw->mac_type == e1000_82541_rev_2) {
 | |
| 			hw->phy_type = e1000_phy_igp;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* Fall Through */
 | |
| 	default:
 | |
| 		/* Should never have loaded on this device */
 | |
| 		hw->phy_type = e1000_phy_undefined;
 | |
| 		return -E1000_ERR_PHY_TYPE;
 | |
| 	}
 | |
| 
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Probes the expected PHY address for known PHY IDs
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| ******************************************************************************/
 | |
| static int
 | |
| e1000_detect_gig_phy(struct e1000_hw *hw)
 | |
| {
 | |
| 	int32_t phy_init_status;
 | |
| 	uint16_t phy_id_high, phy_id_low;
 | |
| 	int match = FALSE;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* Read the PHY ID Registers to identify which PHY is onboard. */
 | |
| 	if (e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) {
 | |
| 		DEBUGOUT("PHY Read Error\n");
 | |
| 		return -E1000_ERR_PHY;
 | |
| 	}
 | |
| 	hw->phy_id = (uint32_t) (phy_id_high << 16);
 | |
| 	udelay(2);
 | |
| 	if (e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) {
 | |
| 		DEBUGOUT("PHY Read Error\n");
 | |
| 		return -E1000_ERR_PHY;
 | |
| 	}
 | |
| 	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
 | |
| 
 | |
| 	switch (hw->mac_type) {
 | |
| 	case e1000_82543:
 | |
| 		if (hw->phy_id == M88E1000_E_PHY_ID)
 | |
| 			match = TRUE;
 | |
| 		break;
 | |
| 	case e1000_82544:
 | |
| 		if (hw->phy_id == M88E1000_I_PHY_ID)
 | |
| 			match = TRUE;
 | |
| 		break;
 | |
| 	case e1000_82540:
 | |
| 	case e1000_82545:
 | |
| 	case e1000_82546:
 | |
| 		if (hw->phy_id == M88E1011_I_PHY_ID)
 | |
| 			match = TRUE;
 | |
| 		break;
 | |
| 	case e1000_82541_rev_2:
 | |
| 		if(hw->phy_id == IGP01E1000_I_PHY_ID)
 | |
| 			match = TRUE;
 | |
| 
 | |
| 		break;
 | |
| 	default:
 | |
| 		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
 | |
| 		return -E1000_ERR_CONFIG;
 | |
| 	}
 | |
| 
 | |
| 	phy_init_status = e1000_set_phy_type(hw);
 | |
| 
 | |
| 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
 | |
| 		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
 | |
| 	return -E1000_ERR_PHY;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 | |
|  *
 | |
|  * e1000_sw_init initializes the Adapter private data structure.
 | |
|  * Fields are initialized based on PCI device information and
 | |
|  * OS network device settings (MTU size).
 | |
|  **/
 | |
| 
 | |
| static int
 | |
| e1000_sw_init(struct eth_device *nic, int cardnum)
 | |
| {
 | |
| 	struct e1000_hw *hw = (typeof(hw)) nic->priv;
 | |
| 	int result;
 | |
| 
 | |
| 	/* PCI config space info */
 | |
| 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
 | |
| 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
 | |
| 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
 | |
| 			     &hw->subsystem_vendor_id);
 | |
| 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
 | |
| 
 | |
| 	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
 | |
| 	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
 | |
| 
 | |
| 	/* identify the MAC */
 | |
| 	result = e1000_set_mac_type(hw);
 | |
| 	if (result) {
 | |
| 		E1000_ERR("Unknown MAC Type\n");
 | |
| 		return result;
 | |
| 	}
 | |
| 
 | |
| 	/* lan a vs. lan b settings */
 | |
| 	if (hw->mac_type == e1000_82546)
 | |
| 		/*this also works w/ multiple 82546 cards */
 | |
| 		/*but not if they're intermingled /w other e1000s */
 | |
| 		hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a;
 | |
| 	else
 | |
| 		hw->lan_loc = e1000_lan_a;
 | |
| 
 | |
| 	/* flow control settings */
 | |
| 	hw->fc_high_water = E1000_FC_HIGH_THRESH;
 | |
| 	hw->fc_low_water = E1000_FC_LOW_THRESH;
 | |
| 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 | |
| 	hw->fc_send_xon = 1;
 | |
| 
 | |
| 	/* Media type - copper or fiber */
 | |
| 
 | |
| 	if (hw->mac_type >= e1000_82543) {
 | |
| 		uint32_t status = E1000_READ_REG(hw, STATUS);
 | |
| 
 | |
| 		if (status & E1000_STATUS_TBIMODE) {
 | |
| 			DEBUGOUT("fiber interface\n");
 | |
| 			hw->media_type = e1000_media_type_fiber;
 | |
| 		} else {
 | |
| 			DEBUGOUT("copper interface\n");
 | |
| 			hw->media_type = e1000_media_type_copper;
 | |
| 		}
 | |
| 	} else {
 | |
| 		hw->media_type = e1000_media_type_fiber;
 | |
| 	}
 | |
| 
 | |
| 	if (hw->mac_type < e1000_82543)
 | |
| 		hw->report_tx_early = 0;
 | |
| 	else
 | |
| 		hw->report_tx_early = 1;
 | |
| 
 | |
| 	hw->tbi_compatibility_en = TRUE;
 | |
| #if 0
 | |
| 	hw->wait_autoneg_complete = FALSE;
 | |
| 	hw->adaptive_ifs = TRUE;
 | |
| 
 | |
| 	/* Copper options */
 | |
| 	if (hw->media_type == e1000_media_type_copper) {
 | |
| 		hw->mdix = AUTO_ALL_MODES;
 | |
| 		hw->disable_polarity_correction = FALSE;
 | |
| 	}
 | |
| #endif
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| void
 | |
| fill_rx(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_rx_desc *rd;
 | |
| 
 | |
| 	rx_last = rx_tail;
 | |
| 	rd = rx_base + rx_tail;
 | |
| 	rx_tail = (rx_tail + 1) % 8;
 | |
| 	memset(rd, 0, 16);
 | |
| 	rd->buffer_addr = cpu_to_le64((u32) & packet);
 | |
| 	E1000_WRITE_REG(hw, RDT, rx_tail);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
 | |
|  * @adapter: board private structure
 | |
|  *
 | |
|  * Configure the Tx unit of the MAC after a reset.
 | |
|  **/
 | |
| 
 | |
| static void
 | |
| e1000_configure_tx(struct e1000_hw *hw)
 | |
| {
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long tctl;
 | |
| 	unsigned long tipg;
 | |
| 
 | |
| 	ptr = (u32) tx_pool;
 | |
| 	if (ptr & 0xf)
 | |
| 		ptr = (ptr + 0x10) & (~0xf);
 | |
| 
 | |
| 	tx_base = (typeof(tx_base)) ptr;
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
 | |
| 	E1000_WRITE_REG(hw, TDBAH, 0);
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, TDLEN, 128);
 | |
| 
 | |
| 	/* Setup the HW Tx Head and Tail descriptor pointers */
 | |
| 	E1000_WRITE_REG(hw, TDH, 0);
 | |
| 	E1000_WRITE_REG(hw, TDT, 0);
 | |
| 	tx_tail = 0;
 | |
| 
 | |
| 	/* Set the default values for the Tx Inter Packet Gap timer */
 | |
| 	switch (hw->mac_type) {
 | |
| 	case e1000_82542_rev2_0:
 | |
| 	case e1000_82542_rev2_1:
 | |
| 		tipg = DEFAULT_82542_TIPG_IPGT;
 | |
| 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
 | |
| 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (hw->media_type == e1000_media_type_fiber)
 | |
| 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
 | |
| 		else
 | |
| 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
 | |
| 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
 | |
| 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
 | |
| 	}
 | |
| 	E1000_WRITE_REG(hw, TIPG, tipg);
 | |
| #if 0
 | |
| 	/* Set the Tx Interrupt Delay register */
 | |
| 	E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
 | |
| 	if (hw->mac_type >= e1000_82540)
 | |
| 		E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
 | |
| #endif
 | |
| 	/* Program the Transmit Control Register */
 | |
| 	tctl = E1000_READ_REG(hw, TCTL);
 | |
| 	tctl &= ~E1000_TCTL_CT;
 | |
| 	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
 | |
| 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
 | |
| 	E1000_WRITE_REG(hw, TCTL, tctl);
 | |
| 
 | |
| 	e1000_config_collision_dist(hw);
 | |
| #if 0
 | |
| 	/* Setup Transmit Descriptor Settings for this adapter */
 | |
| 	adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_IDE;
 | |
| 
 | |
| 	if (adapter->hw.report_tx_early == 1)
 | |
| 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
 | |
| 	else
 | |
| 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_setup_rctl - configure the receive control register
 | |
|  * @adapter: Board private structure
 | |
|  **/
 | |
| static void
 | |
| e1000_setup_rctl(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t rctl;
 | |
| 
 | |
| 	rctl = E1000_READ_REG(hw, RCTL);
 | |
| 
 | |
| 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
 | |
| 
 | |
| 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF;	/* |
 | |
| 												   (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
 | |
| 
 | |
| 	if (hw->tbi_compatibility_on == 1)
 | |
| 		rctl |= E1000_RCTL_SBP;
 | |
| 	else
 | |
| 		rctl &= ~E1000_RCTL_SBP;
 | |
| 
 | |
| 	rctl &= ~(E1000_RCTL_SZ_4096);
 | |
| #if 0
 | |
| 	switch (adapter->rx_buffer_len) {
 | |
| 	case E1000_RXBUFFER_2048:
 | |
| 	default:
 | |
| #endif
 | |
| 		rctl |= E1000_RCTL_SZ_2048;
 | |
| 		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
 | |
| #if 0
 | |
| 		break;
 | |
| 	case E1000_RXBUFFER_4096:
 | |
| 		rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
 | |
| 		break;
 | |
| 	case E1000_RXBUFFER_8192:
 | |
| 		rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
 | |
| 		break;
 | |
| 	case E1000_RXBUFFER_16384:
 | |
| 		rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
 | |
| 		break;
 | |
| 	}
 | |
| #endif
 | |
| 	E1000_WRITE_REG(hw, RCTL, rctl);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
 | |
|  * @adapter: board private structure
 | |
|  *
 | |
|  * Configure the Rx unit of the MAC after a reset.
 | |
|  **/
 | |
| static void
 | |
| e1000_configure_rx(struct e1000_hw *hw)
 | |
| {
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long rctl;
 | |
| #if 0
 | |
| 	unsigned long rxcsum;
 | |
| #endif
 | |
| 	rx_tail = 0;
 | |
| 	/* make sure receives are disabled while setting up the descriptors */
 | |
| 	rctl = E1000_READ_REG(hw, RCTL);
 | |
| 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
 | |
| #if 0
 | |
| 	/* set the Receive Delay Timer Register */
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
 | |
| #endif
 | |
| 	if (hw->mac_type >= e1000_82540) {
 | |
| #if 0
 | |
| 		E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
 | |
| #endif
 | |
| 		/* Set the interrupt throttling rate.  Value is calculated
 | |
| 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
 | |
| #define MAX_INTS_PER_SEC	8000
 | |
| #define DEFAULT_ITR		1000000000/(MAX_INTS_PER_SEC * 256)
 | |
| 		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
 | |
| 	}
 | |
| 
 | |
| 	/* Setup the Base and Length of the Rx Descriptor Ring */
 | |
| 	ptr = (u32) rx_pool;
 | |
| 	if (ptr & 0xf)
 | |
| 		ptr = (ptr + 0x10) & (~0xf);
 | |
| 	rx_base = (typeof(rx_base)) ptr;
 | |
| 	E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
 | |
| 	E1000_WRITE_REG(hw, RDBAH, 0);
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, RDLEN, 128);
 | |
| 
 | |
| 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
 | |
| 	E1000_WRITE_REG(hw, RDH, 0);
 | |
| 	E1000_WRITE_REG(hw, RDT, 0);
 | |
| #if 0
 | |
| 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
 | |
| 	if ((adapter->hw.mac_type >= e1000_82543) && (adapter->rx_csum == TRUE)) {
 | |
| 		rxcsum = E1000_READ_REG(hw, RXCSUM);
 | |
| 		rxcsum |= E1000_RXCSUM_TUOFL;
 | |
| 		E1000_WRITE_REG(hw, RXCSUM, rxcsum);
 | |
| 	}
 | |
| #endif
 | |
| 	/* Enable Receives */
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, RCTL, rctl);
 | |
| 	fill_rx(hw);
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
| POLL - Wait for a frame
 | |
| ***************************************************************************/
 | |
| static int
 | |
| e1000_poll(struct eth_device *nic)
 | |
| {
 | |
| 	struct e1000_hw *hw = nic->priv;
 | |
| 	struct e1000_rx_desc *rd;
 | |
| 	/* return true if there's an ethernet packet ready to read */
 | |
| 	rd = rx_base + rx_last;
 | |
| 	if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
 | |
| 		return 0;
 | |
| 	/*DEBUGOUT("recv: packet len=%d \n", rd->length); */
 | |
| 	NetReceive((uchar *)packet, le32_to_cpu(rd->length));
 | |
| 	fill_rx(hw);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
| TRANSMIT - Transmit a frame
 | |
| ***************************************************************************/
 | |
| static int
 | |
| e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
 | |
| {
 | |
| 	struct e1000_hw *hw = nic->priv;
 | |
| 	struct e1000_tx_desc *txp;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	txp = tx_base + tx_tail;
 | |
| 	tx_tail = (tx_tail + 1) % 8;
 | |
| 
 | |
| 	txp->buffer_addr = cpu_to_le64(virt_to_bus(packet));
 | |
| 	txp->lower.data = cpu_to_le32(E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP |
 | |
| 				      E1000_TXD_CMD_IFCS | length);
 | |
| 	txp->upper.data = 0;
 | |
| 	E1000_WRITE_REG(hw, TDT, tx_tail);
 | |
| 
 | |
| 	while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
 | |
| 		if (i++ > TOUT_LOOP) {
 | |
| 			DEBUGOUT("e1000: tx timeout\n");
 | |
| 			return 0;
 | |
| 		}
 | |
| 		udelay(10);	/* give the nic a chance to write to the register */
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*reset function*/
 | |
| static inline int
 | |
| e1000_reset(struct eth_device *nic)
 | |
| {
 | |
| 	struct e1000_hw *hw = nic->priv;
 | |
| 
 | |
| 	e1000_reset_hw(hw);
 | |
| 	if (hw->mac_type >= e1000_82544) {
 | |
| 		E1000_WRITE_REG(hw, WUC, 0);
 | |
| 	}
 | |
| 	return e1000_init_hw(nic);
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
| DISABLE - Turn off ethernet interface
 | |
| ***************************************************************************/
 | |
| static void
 | |
| e1000_disable(struct eth_device *nic)
 | |
| {
 | |
| 	struct e1000_hw *hw = nic->priv;
 | |
| 
 | |
| 	/* Turn off the ethernet interface */
 | |
| 	E1000_WRITE_REG(hw, RCTL, 0);
 | |
| 	E1000_WRITE_REG(hw, TCTL, 0);
 | |
| 
 | |
| 	/* Clear the transmit ring */
 | |
| 	E1000_WRITE_REG(hw, TDH, 0);
 | |
| 	E1000_WRITE_REG(hw, TDT, 0);
 | |
| 
 | |
| 	/* Clear the receive ring */
 | |
| 	E1000_WRITE_REG(hw, RDH, 0);
 | |
| 	E1000_WRITE_REG(hw, RDT, 0);
 | |
| 
 | |
| 	/* put the card in its initial state */
 | |
| #if 0
 | |
| 	E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
 | |
| #endif
 | |
| 	mdelay(10);
 | |
| 
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
| INIT - set up ethernet interface(s)
 | |
| ***************************************************************************/
 | |
| static int
 | |
| e1000_init(struct eth_device *nic, bd_t * bis)
 | |
| {
 | |
| 	struct e1000_hw *hw = nic->priv;
 | |
| 	int ret_val = 0;
 | |
| 
 | |
| 	ret_val = e1000_reset(nic);
 | |
| 	if (ret_val < 0) {
 | |
| 		if ((ret_val == -E1000_ERR_NOLINK) ||
 | |
| 		    (ret_val == -E1000_ERR_TIMEOUT)) {
 | |
| 			E1000_ERR("Valid Link not detected\n");
 | |
| 		} else {
 | |
| 			E1000_ERR("Hardware Initialization Failed\n");
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	e1000_configure_tx(hw);
 | |
| 	e1000_setup_rctl(hw);
 | |
| 	e1000_configure_rx(hw);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
| PROBE - Look for an adapter, this routine's visible to the outside
 | |
| You should omit the last argument struct pci_device * for a non-PCI NIC
 | |
| ***************************************************************************/
 | |
| int
 | |
| e1000_initialize(bd_t * bis)
 | |
| {
 | |
| 	pci_dev_t devno;
 | |
| 	int card_number = 0;
 | |
| 	struct eth_device *nic = NULL;
 | |
| 	struct e1000_hw *hw = NULL;
 | |
| 	u32 iobase;
 | |
| 	int idx = 0;
 | |
| 	u32 PciCommandWord;
 | |
| 
 | |
| 	while (1) {		/* Find PCI device(s) */
 | |
| 		if ((devno = pci_find_devices(supported, idx++)) < 0) {
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
 | |
| 		iobase &= ~0xf;	/* Mask the bits that say "this is an io addr" */
 | |
| 		DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase);
 | |
| 
 | |
| 		pci_write_config_dword(devno, PCI_COMMAND,
 | |
| 				       PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
 | |
| 		/* Check if I/O accesses and Bus Mastering are enabled. */
 | |
| 		pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord);
 | |
| 		if (!(PciCommandWord & PCI_COMMAND_MEMORY)) {
 | |
| 			printf("Error: Can not enable MEM access.\n");
 | |
| 			continue;
 | |
| 		} else if (!(PciCommandWord & PCI_COMMAND_MASTER)) {
 | |
| 			printf("Error: Can not enable Bus Mastering.\n");
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		nic = (struct eth_device *) malloc(sizeof (*nic));
 | |
| 		hw = (struct e1000_hw *) malloc(sizeof (*hw));
 | |
| 		hw->pdev = devno;
 | |
| 		nic->priv = hw;
 | |
| 		nic->iobase = bus_to_phys(devno, iobase);
 | |
| 
 | |
| 		sprintf(nic->name, "e1000#%d", card_number);
 | |
| 
 | |
| 		/* Are these variables needed? */
 | |
| #if 0
 | |
| 		hw->fc = e1000_fc_none;
 | |
| 		hw->original_fc = e1000_fc_none;
 | |
| #else
 | |
| 		hw->fc = e1000_fc_default;
 | |
| 		hw->original_fc = e1000_fc_default;
 | |
| #endif
 | |
| 		hw->autoneg_failed = 0;
 | |
| 		hw->get_link_status = TRUE;
 | |
| 		hw->hw_addr = (typeof(hw->hw_addr)) iobase;
 | |
| 		hw->mac_type = e1000_undefined;
 | |
| 
 | |
| 		/* MAC and Phy settings */
 | |
| 		if (e1000_sw_init(nic, card_number) < 0) {
 | |
| 			free(hw);
 | |
| 			free(nic);
 | |
| 			return 0;
 | |
| 		}
 | |
| #if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
 | |
| 		if (e1000_validate_eeprom_checksum(nic) < 0) {
 | |
| 			printf("The EEPROM Checksum Is Not Valid\n");
 | |
| 			free(hw);
 | |
| 			free(nic);
 | |
| 			return 0;
 | |
| 		}
 | |
| #endif
 | |
| 		e1000_read_mac_addr(nic);
 | |
| 
 | |
| 		E1000_WRITE_REG(hw, PBA, E1000_DEFAULT_PBA);
 | |
| 
 | |
| 		printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n",
 | |
| 		       nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
 | |
| 		       nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
 | |
| 
 | |
| 		nic->init = e1000_init;
 | |
| 		nic->recv = e1000_poll;
 | |
| 		nic->send = e1000_transmit;
 | |
| 		nic->halt = e1000_disable;
 | |
| 
 | |
| 		eth_register(nic);
 | |
| 
 | |
| 		card_number++;
 | |
| 	}
 | |
| 	return card_number;
 | |
| }
 |