1226 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1226 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * This file is part of UBIFS.
 | |
|  *
 | |
|  * Copyright (C) 2006-2008 Nokia Corporation
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License version 2 as published by
 | |
|  * the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License along with
 | |
|  * this program; if not, write to the Free Software Foundation, Inc., 51
 | |
|  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  *
 | |
|  * Authors: Adrian Hunter
 | |
|  *          Artem Bityutskiy (Битюцкий Артём)
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file implements functions needed to recover from unclean un-mounts.
 | |
|  * When UBIFS is mounted, it checks a flag on the master node to determine if
 | |
|  * an un-mount was completed sucessfully. If not, the process of mounting
 | |
|  * incorparates additional checking and fixing of on-flash data structures.
 | |
|  * UBIFS always cleans away all remnants of an unclean un-mount, so that
 | |
|  * errors do not accumulate. However UBIFS defers recovery if it is mounted
 | |
|  * read-only, and the flash is not modified in that case.
 | |
|  */
 | |
| 
 | |
| #include "ubifs.h"
 | |
| 
 | |
| /**
 | |
|  * is_empty - determine whether a buffer is empty (contains all 0xff).
 | |
|  * @buf: buffer to clean
 | |
|  * @len: length of buffer
 | |
|  *
 | |
|  * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
 | |
|  * %0 is returned.
 | |
|  */
 | |
| static int is_empty(void *buf, int len)
 | |
| {
 | |
| 	uint8_t *p = buf;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < len; i++)
 | |
| 		if (*p++ != 0xff)
 | |
| 			return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_master_node - get the last valid master node allowing for corruption.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @lnum: LEB number
 | |
|  * @pbuf: buffer containing the LEB read, is returned here
 | |
|  * @mst: master node, if found, is returned here
 | |
|  * @cor: corruption, if found, is returned here
 | |
|  *
 | |
|  * This function allocates a buffer, reads the LEB into it, and finds and
 | |
|  * returns the last valid master node allowing for one area of corruption.
 | |
|  * The corrupt area, if there is one, must be consistent with the assumption
 | |
|  * that it is the result of an unclean unmount while the master node was being
 | |
|  * written. Under those circumstances, it is valid to use the previously written
 | |
|  * master node.
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
 | |
| 			   struct ubifs_mst_node **mst, void **cor)
 | |
| {
 | |
| 	const int sz = c->mst_node_alsz;
 | |
| 	int err, offs, len;
 | |
| 	void *sbuf, *buf;
 | |
| 
 | |
| 	sbuf = vmalloc(c->leb_size);
 | |
| 	if (!sbuf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size);
 | |
| 	if (err && err != -EBADMSG)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	/* Find the first position that is definitely not a node */
 | |
| 	offs = 0;
 | |
| 	buf = sbuf;
 | |
| 	len = c->leb_size;
 | |
| 	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
 | |
| 		struct ubifs_ch *ch = buf;
 | |
| 
 | |
| 		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
 | |
| 			break;
 | |
| 		offs += sz;
 | |
| 		buf  += sz;
 | |
| 		len  -= sz;
 | |
| 	}
 | |
| 	/* See if there was a valid master node before that */
 | |
| 	if (offs) {
 | |
| 		int ret;
 | |
| 
 | |
| 		offs -= sz;
 | |
| 		buf  -= sz;
 | |
| 		len  += sz;
 | |
| 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
 | |
| 		if (ret != SCANNED_A_NODE && offs) {
 | |
| 			/* Could have been corruption so check one place back */
 | |
| 			offs -= sz;
 | |
| 			buf  -= sz;
 | |
| 			len  += sz;
 | |
| 			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
 | |
| 			if (ret != SCANNED_A_NODE)
 | |
| 				/*
 | |
| 				 * We accept only one area of corruption because
 | |
| 				 * we are assuming that it was caused while
 | |
| 				 * trying to write a master node.
 | |
| 				 */
 | |
| 				goto out_err;
 | |
| 		}
 | |
| 		if (ret == SCANNED_A_NODE) {
 | |
| 			struct ubifs_ch *ch = buf;
 | |
| 
 | |
| 			if (ch->node_type != UBIFS_MST_NODE)
 | |
| 				goto out_err;
 | |
| 			dbg_rcvry("found a master node at %d:%d", lnum, offs);
 | |
| 			*mst = buf;
 | |
| 			offs += sz;
 | |
| 			buf  += sz;
 | |
| 			len  -= sz;
 | |
| 		}
 | |
| 	}
 | |
| 	/* Check for corruption */
 | |
| 	if (offs < c->leb_size) {
 | |
| 		if (!is_empty(buf, min_t(int, len, sz))) {
 | |
| 			*cor = buf;
 | |
| 			dbg_rcvry("found corruption at %d:%d", lnum, offs);
 | |
| 		}
 | |
| 		offs += sz;
 | |
| 		buf  += sz;
 | |
| 		len  -= sz;
 | |
| 	}
 | |
| 	/* Check remaining empty space */
 | |
| 	if (offs < c->leb_size)
 | |
| 		if (!is_empty(buf, len))
 | |
| 			goto out_err;
 | |
| 	*pbuf = sbuf;
 | |
| 	return 0;
 | |
| 
 | |
| out_err:
 | |
| 	err = -EINVAL;
 | |
| out_free:
 | |
| 	vfree(sbuf);
 | |
| 	*mst = NULL;
 | |
| 	*cor = NULL;
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * write_rcvrd_mst_node - write recovered master node.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @mst: master node
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| static int write_rcvrd_mst_node(struct ubifs_info *c,
 | |
| 				struct ubifs_mst_node *mst)
 | |
| {
 | |
| 	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
 | |
| 	__le32 save_flags;
 | |
| 
 | |
| 	dbg_rcvry("recovery");
 | |
| 
 | |
| 	save_flags = mst->flags;
 | |
| 	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
 | |
| 
 | |
| 	ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
 | |
| 	err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| out:
 | |
| 	mst->flags = save_flags;
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_recover_master_node - recover the master node.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function recovers the master node from corruption that may occur due to
 | |
|  * an unclean unmount.
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| int ubifs_recover_master_node(struct ubifs_info *c)
 | |
| {
 | |
| 	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
 | |
| 	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
 | |
| 	const int sz = c->mst_node_alsz;
 | |
| 	int err, offs1, offs2;
 | |
| 
 | |
| 	dbg_rcvry("recovery");
 | |
| 
 | |
| 	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
 | |
| 	if (err)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
 | |
| 	if (err)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	if (mst1) {
 | |
| 		offs1 = (void *)mst1 - buf1;
 | |
| 		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
 | |
| 		    (offs1 == 0 && !cor1)) {
 | |
| 			/*
 | |
| 			 * mst1 was written by recovery at offset 0 with no
 | |
| 			 * corruption.
 | |
| 			 */
 | |
| 			dbg_rcvry("recovery recovery");
 | |
| 			mst = mst1;
 | |
| 		} else if (mst2) {
 | |
| 			offs2 = (void *)mst2 - buf2;
 | |
| 			if (offs1 == offs2) {
 | |
| 				/* Same offset, so must be the same */
 | |
| 				if (memcmp((void *)mst1 + UBIFS_CH_SZ,
 | |
| 					   (void *)mst2 + UBIFS_CH_SZ,
 | |
| 					   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
 | |
| 					goto out_err;
 | |
| 				mst = mst1;
 | |
| 			} else if (offs2 + sz == offs1) {
 | |
| 				/* 1st LEB was written, 2nd was not */
 | |
| 				if (cor1)
 | |
| 					goto out_err;
 | |
| 				mst = mst1;
 | |
| 			} else if (offs1 == 0 && offs2 + sz >= c->leb_size) {
 | |
| 				/* 1st LEB was unmapped and written, 2nd not */
 | |
| 				if (cor1)
 | |
| 					goto out_err;
 | |
| 				mst = mst1;
 | |
| 			} else
 | |
| 				goto out_err;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * 2nd LEB was unmapped and about to be written, so
 | |
| 			 * there must be only one master node in the first LEB
 | |
| 			 * and no corruption.
 | |
| 			 */
 | |
| 			if (offs1 != 0 || cor1)
 | |
| 				goto out_err;
 | |
| 			mst = mst1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (!mst2)
 | |
| 			goto out_err;
 | |
| 		/*
 | |
| 		 * 1st LEB was unmapped and about to be written, so there must
 | |
| 		 * be no room left in 2nd LEB.
 | |
| 		 */
 | |
| 		offs2 = (void *)mst2 - buf2;
 | |
| 		if (offs2 + sz + sz <= c->leb_size)
 | |
| 			goto out_err;
 | |
| 		mst = mst2;
 | |
| 	}
 | |
| 
 | |
| 	dbg_rcvry("recovered master node from LEB %d",
 | |
| 		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
 | |
| 
 | |
| 	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
 | |
| 
 | |
| 	if ((c->vfs_sb->s_flags & MS_RDONLY)) {
 | |
| 		/* Read-only mode. Keep a copy for switching to rw mode */
 | |
| 		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
 | |
| 		if (!c->rcvrd_mst_node) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
 | |
| 	}
 | |
| 
 | |
| 	vfree(buf2);
 | |
| 	vfree(buf1);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_err:
 | |
| 	err = -EINVAL;
 | |
| out_free:
 | |
| 	ubifs_err("failed to recover master node");
 | |
| 	if (mst1) {
 | |
| 		dbg_err("dumping first master node");
 | |
| 		dbg_dump_node(c, mst1);
 | |
| 	}
 | |
| 	if (mst2) {
 | |
| 		dbg_err("dumping second master node");
 | |
| 		dbg_dump_node(c, mst2);
 | |
| 	}
 | |
| 	vfree(buf2);
 | |
| 	vfree(buf1);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_write_rcvrd_mst_node - write the recovered master node.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function writes the master node that was recovered during mounting in
 | |
|  * read-only mode and must now be written because we are remounting rw.
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (!c->rcvrd_mst_node)
 | |
| 		return 0;
 | |
| 	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
 | |
| 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
 | |
| 	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	kfree(c->rcvrd_mst_node);
 | |
| 	c->rcvrd_mst_node = NULL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * is_last_write - determine if an offset was in the last write to a LEB.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @buf: buffer to check
 | |
|  * @offs: offset to check
 | |
|  *
 | |
|  * This function returns %1 if @offs was in the last write to the LEB whose data
 | |
|  * is in @buf, otherwise %0 is returned.  The determination is made by checking
 | |
|  * for subsequent empty space starting from the next min_io_size boundary (or a
 | |
|  * bit less than the common header size if min_io_size is one).
 | |
|  */
 | |
| static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
 | |
| {
 | |
| 	int empty_offs;
 | |
| 	int check_len;
 | |
| 	uint8_t *p;
 | |
| 
 | |
| 	if (c->min_io_size == 1) {
 | |
| 		check_len = c->leb_size - offs;
 | |
| 		p = buf + check_len;
 | |
| 		for (; check_len > 0; check_len--)
 | |
| 			if (*--p != 0xff)
 | |
| 				break;
 | |
| 		/*
 | |
| 		 * 'check_len' is the size of the corruption which cannot be
 | |
| 		 * more than the size of 1 node if it was caused by an unclean
 | |
| 		 * unmount.
 | |
| 		 */
 | |
| 		if (check_len > UBIFS_MAX_NODE_SZ)
 | |
| 			return 0;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Round up to the next c->min_io_size boundary i.e. 'offs' is in the
 | |
| 	 * last wbuf written. After that should be empty space.
 | |
| 	 */
 | |
| 	empty_offs = ALIGN(offs + 1, c->min_io_size);
 | |
| 	check_len = c->leb_size - empty_offs;
 | |
| 	p = buf + empty_offs - offs;
 | |
| 
 | |
| 	for (; check_len > 0; check_len--)
 | |
| 		if (*p++ != 0xff)
 | |
| 			return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * clean_buf - clean the data from an LEB sitting in a buffer.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @buf: buffer to clean
 | |
|  * @lnum: LEB number to clean
 | |
|  * @offs: offset from which to clean
 | |
|  * @len: length of buffer
 | |
|  *
 | |
|  * This function pads up to the next min_io_size boundary (if there is one) and
 | |
|  * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
 | |
|  * min_io_size boundary (if there is one).
 | |
|  */
 | |
| static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
 | |
| 		      int *offs, int *len)
 | |
| {
 | |
| 	int empty_offs, pad_len;
 | |
| 
 | |
| 	lnum = lnum;
 | |
| 	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
 | |
| 
 | |
| 	if (c->min_io_size == 1) {
 | |
| 		memset(*buf, 0xff, c->leb_size - *offs);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ubifs_assert(!(*offs & 7));
 | |
| 	empty_offs = ALIGN(*offs, c->min_io_size);
 | |
| 	pad_len = empty_offs - *offs;
 | |
| 	ubifs_pad(c, *buf, pad_len);
 | |
| 	*offs += pad_len;
 | |
| 	*buf += pad_len;
 | |
| 	*len -= pad_len;
 | |
| 	memset(*buf, 0xff, c->leb_size - empty_offs);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * no_more_nodes - determine if there are no more nodes in a buffer.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @buf: buffer to check
 | |
|  * @len: length of buffer
 | |
|  * @lnum: LEB number of the LEB from which @buf was read
 | |
|  * @offs: offset from which @buf was read
 | |
|  *
 | |
|  * This function ensures that the corrupted node at @offs is the last thing
 | |
|  * written to a LEB. This function returns %1 if more data is not found and
 | |
|  * %0 if more data is found.
 | |
|  */
 | |
| static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
 | |
| 			int lnum, int offs)
 | |
| {
 | |
| 	struct ubifs_ch *ch = buf;
 | |
| 	int skip, dlen = le32_to_cpu(ch->len);
 | |
| 
 | |
| 	/* Check for empty space after the corrupt node's common header */
 | |
| 	skip = ALIGN(offs + UBIFS_CH_SZ, c->min_io_size) - offs;
 | |
| 	if (is_empty(buf + skip, len - skip))
 | |
| 		return 1;
 | |
| 	/*
 | |
| 	 * The area after the common header size is not empty, so the common
 | |
| 	 * header must be intact. Check it.
 | |
| 	 */
 | |
| 	if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
 | |
| 		dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/* Now we know the corrupt node's length we can skip over it */
 | |
| 	skip = ALIGN(offs + dlen, c->min_io_size) - offs;
 | |
| 	/* After which there should be empty space */
 | |
| 	if (is_empty(buf + skip, len - skip))
 | |
| 		return 1;
 | |
| 	dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fix_unclean_leb - fix an unclean LEB.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @sleb: scanned LEB information
 | |
|  * @start: offset where scan started
 | |
|  */
 | |
| static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 | |
| 			   int start)
 | |
| {
 | |
| 	int lnum = sleb->lnum, endpt = start;
 | |
| 
 | |
| 	/* Get the end offset of the last node we are keeping */
 | |
| 	if (!list_empty(&sleb->nodes)) {
 | |
| 		struct ubifs_scan_node *snod;
 | |
| 
 | |
| 		snod = list_entry(sleb->nodes.prev,
 | |
| 				  struct ubifs_scan_node, list);
 | |
| 		endpt = snod->offs + snod->len;
 | |
| 	}
 | |
| 
 | |
| 	if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) {
 | |
| 		/* Add to recovery list */
 | |
| 		struct ubifs_unclean_leb *ucleb;
 | |
| 
 | |
| 		dbg_rcvry("need to fix LEB %d start %d endpt %d",
 | |
| 			  lnum, start, sleb->endpt);
 | |
| 		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
 | |
| 		if (!ucleb)
 | |
| 			return -ENOMEM;
 | |
| 		ucleb->lnum = lnum;
 | |
| 		ucleb->endpt = endpt;
 | |
| 		list_add_tail(&ucleb->list, &c->unclean_leb_list);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * drop_incomplete_group - drop nodes from an incomplete group.
 | |
|  * @sleb: scanned LEB information
 | |
|  * @offs: offset of dropped nodes is returned here
 | |
|  *
 | |
|  * This function returns %1 if nodes are dropped and %0 otherwise.
 | |
|  */
 | |
| static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
 | |
| {
 | |
| 	int dropped = 0;
 | |
| 
 | |
| 	while (!list_empty(&sleb->nodes)) {
 | |
| 		struct ubifs_scan_node *snod;
 | |
| 		struct ubifs_ch *ch;
 | |
| 
 | |
| 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
 | |
| 				  list);
 | |
| 		ch = snod->node;
 | |
| 		if (ch->group_type != UBIFS_IN_NODE_GROUP)
 | |
| 			return dropped;
 | |
| 		dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
 | |
| 		*offs = snod->offs;
 | |
| 		list_del(&snod->list);
 | |
| 		kfree(snod);
 | |
| 		sleb->nodes_cnt -= 1;
 | |
| 		dropped = 1;
 | |
| 	}
 | |
| 	return dropped;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_recover_leb - scan and recover a LEB.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @lnum: LEB number
 | |
|  * @offs: offset
 | |
|  * @sbuf: LEB-sized buffer to use
 | |
|  * @grouped: nodes may be grouped for recovery
 | |
|  *
 | |
|  * This function does a scan of a LEB, but caters for errors that might have
 | |
|  * been caused by the unclean unmount from which we are attempting to recover.
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
 | |
| 					 int offs, void *sbuf, int grouped)
 | |
| {
 | |
| 	int err, len = c->leb_size - offs, need_clean = 0, quiet = 1;
 | |
| 	int empty_chkd = 0, start = offs;
 | |
| 	struct ubifs_scan_leb *sleb;
 | |
| 	void *buf = sbuf + offs;
 | |
| 
 | |
| 	dbg_rcvry("%d:%d", lnum, offs);
 | |
| 
 | |
| 	sleb = ubifs_start_scan(c, lnum, offs, sbuf);
 | |
| 	if (IS_ERR(sleb))
 | |
| 		return sleb;
 | |
| 
 | |
| 	if (sleb->ecc)
 | |
| 		need_clean = 1;
 | |
| 
 | |
| 	while (len >= 8) {
 | |
| 		int ret;
 | |
| 
 | |
| 		dbg_scan("look at LEB %d:%d (%d bytes left)",
 | |
| 			 lnum, offs, len);
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		/*
 | |
| 		 * Scan quietly until there is an error from which we cannot
 | |
| 		 * recover
 | |
| 		 */
 | |
| 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
 | |
| 
 | |
| 		if (ret == SCANNED_A_NODE) {
 | |
| 			/* A valid node, and not a padding node */
 | |
| 			struct ubifs_ch *ch = buf;
 | |
| 			int node_len;
 | |
| 
 | |
| 			err = ubifs_add_snod(c, sleb, buf, offs);
 | |
| 			if (err)
 | |
| 				goto error;
 | |
| 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
 | |
| 			offs += node_len;
 | |
| 			buf += node_len;
 | |
| 			len -= node_len;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (ret > 0) {
 | |
| 			/* Padding bytes or a valid padding node */
 | |
| 			offs += ret;
 | |
| 			buf += ret;
 | |
| 			len -= ret;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (ret == SCANNED_EMPTY_SPACE) {
 | |
| 			if (!is_empty(buf, len)) {
 | |
| 				if (!is_last_write(c, buf, offs))
 | |
| 					break;
 | |
| 				clean_buf(c, &buf, lnum, &offs, &len);
 | |
| 				need_clean = 1;
 | |
| 			}
 | |
| 			empty_chkd = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE)
 | |
| 			if (is_last_write(c, buf, offs)) {
 | |
| 				clean_buf(c, &buf, lnum, &offs, &len);
 | |
| 				need_clean = 1;
 | |
| 				empty_chkd = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 		if (ret == SCANNED_A_CORRUPT_NODE)
 | |
| 			if (no_more_nodes(c, buf, len, lnum, offs)) {
 | |
| 				clean_buf(c, &buf, lnum, &offs, &len);
 | |
| 				need_clean = 1;
 | |
| 				empty_chkd = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 		if (quiet) {
 | |
| 			/* Redo the last scan but noisily */
 | |
| 			quiet = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		switch (ret) {
 | |
| 		case SCANNED_GARBAGE:
 | |
| 			dbg_err("garbage");
 | |
| 			goto corrupted;
 | |
| 		case SCANNED_A_CORRUPT_NODE:
 | |
| 		case SCANNED_A_BAD_PAD_NODE:
 | |
| 			dbg_err("bad node");
 | |
| 			goto corrupted;
 | |
| 		default:
 | |
| 			dbg_err("unknown");
 | |
| 			goto corrupted;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!empty_chkd && !is_empty(buf, len)) {
 | |
| 		if (is_last_write(c, buf, offs)) {
 | |
| 			clean_buf(c, &buf, lnum, &offs, &len);
 | |
| 			need_clean = 1;
 | |
| 		} else {
 | |
| 			ubifs_err("corrupt empty space at LEB %d:%d",
 | |
| 				  lnum, offs);
 | |
| 			goto corrupted;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Drop nodes from incomplete group */
 | |
| 	if (grouped && drop_incomplete_group(sleb, &offs)) {
 | |
| 		buf = sbuf + offs;
 | |
| 		len = c->leb_size - offs;
 | |
| 		clean_buf(c, &buf, lnum, &offs, &len);
 | |
| 		need_clean = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (offs % c->min_io_size) {
 | |
| 		clean_buf(c, &buf, lnum, &offs, &len);
 | |
| 		need_clean = 1;
 | |
| 	}
 | |
| 
 | |
| 	ubifs_end_scan(c, sleb, lnum, offs);
 | |
| 
 | |
| 	if (need_clean) {
 | |
| 		err = fix_unclean_leb(c, sleb, start);
 | |
| 		if (err)
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	return sleb;
 | |
| 
 | |
| corrupted:
 | |
| 	ubifs_scanned_corruption(c, lnum, offs, buf);
 | |
| 	err = -EUCLEAN;
 | |
| error:
 | |
| 	ubifs_err("LEB %d scanning failed", lnum);
 | |
| 	ubifs_scan_destroy(sleb);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_cs_sqnum - get commit start sequence number.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @lnum: LEB number of commit start node
 | |
|  * @offs: offset of commit start node
 | |
|  * @cs_sqnum: commit start sequence number is returned here
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
 | |
| 			unsigned long long *cs_sqnum)
 | |
| {
 | |
| 	struct ubifs_cs_node *cs_node = NULL;
 | |
| 	int err, ret;
 | |
| 
 | |
| 	dbg_rcvry("at %d:%d", lnum, offs);
 | |
| 	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
 | |
| 	if (!cs_node)
 | |
| 		return -ENOMEM;
 | |
| 	if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
 | |
| 		goto out_err;
 | |
| 	err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ);
 | |
| 	if (err && err != -EBADMSG)
 | |
| 		goto out_free;
 | |
| 	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
 | |
| 	if (ret != SCANNED_A_NODE) {
 | |
| 		dbg_err("Not a valid node");
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 	if (cs_node->ch.node_type != UBIFS_CS_NODE) {
 | |
| 		dbg_err("Node a CS node, type is %d", cs_node->ch.node_type);
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
 | |
| 		dbg_err("CS node cmt_no %llu != current cmt_no %llu",
 | |
| 			(unsigned long long)le64_to_cpu(cs_node->cmt_no),
 | |
| 			c->cmt_no);
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
 | |
| 	dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
 | |
| 	kfree(cs_node);
 | |
| 	return 0;
 | |
| 
 | |
| out_err:
 | |
| 	err = -EINVAL;
 | |
| out_free:
 | |
| 	ubifs_err("failed to get CS sqnum");
 | |
| 	kfree(cs_node);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_recover_log_leb - scan and recover a log LEB.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @lnum: LEB number
 | |
|  * @offs: offset
 | |
|  * @sbuf: LEB-sized buffer to use
 | |
|  *
 | |
|  * This function does a scan of a LEB, but caters for errors that might have
 | |
|  * been caused by the unclean unmount from which we are attempting to recover.
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
 | |
| 					     int offs, void *sbuf)
 | |
| {
 | |
| 	struct ubifs_scan_leb *sleb;
 | |
| 	int next_lnum;
 | |
| 
 | |
| 	dbg_rcvry("LEB %d", lnum);
 | |
| 	next_lnum = lnum + 1;
 | |
| 	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
 | |
| 		next_lnum = UBIFS_LOG_LNUM;
 | |
| 	if (next_lnum != c->ltail_lnum) {
 | |
| 		/*
 | |
| 		 * We can only recover at the end of the log, so check that the
 | |
| 		 * next log LEB is empty or out of date.
 | |
| 		 */
 | |
| 		sleb = ubifs_scan(c, next_lnum, 0, sbuf);
 | |
| 		if (IS_ERR(sleb))
 | |
| 			return sleb;
 | |
| 		if (sleb->nodes_cnt) {
 | |
| 			struct ubifs_scan_node *snod;
 | |
| 			unsigned long long cs_sqnum = c->cs_sqnum;
 | |
| 
 | |
| 			snod = list_entry(sleb->nodes.next,
 | |
| 					  struct ubifs_scan_node, list);
 | |
| 			if (cs_sqnum == 0) {
 | |
| 				int err;
 | |
| 
 | |
| 				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
 | |
| 				if (err) {
 | |
| 					ubifs_scan_destroy(sleb);
 | |
| 					return ERR_PTR(err);
 | |
| 				}
 | |
| 			}
 | |
| 			if (snod->sqnum > cs_sqnum) {
 | |
| 				ubifs_err("unrecoverable log corruption "
 | |
| 					  "in LEB %d", lnum);
 | |
| 				ubifs_scan_destroy(sleb);
 | |
| 				return ERR_PTR(-EUCLEAN);
 | |
| 			}
 | |
| 		}
 | |
| 		ubifs_scan_destroy(sleb);
 | |
| 	}
 | |
| 	return ubifs_recover_leb(c, lnum, offs, sbuf, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * recover_head - recover a head.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @lnum: LEB number of head to recover
 | |
|  * @offs: offset of head to recover
 | |
|  * @sbuf: LEB-sized buffer to use
 | |
|  *
 | |
|  * This function ensures that there is no data on the flash at a head location.
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| static int recover_head(const struct ubifs_info *c, int lnum, int offs,
 | |
| 			void *sbuf)
 | |
| {
 | |
| 	int len, err, need_clean = 0;
 | |
| 
 | |
| 	if (c->min_io_size > 1)
 | |
| 		len = c->min_io_size;
 | |
| 	else
 | |
| 		len = 512;
 | |
| 	if (offs + len > c->leb_size)
 | |
| 		len = c->leb_size - offs;
 | |
| 
 | |
| 	if (!len)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Read at the head location and check it is empty flash */
 | |
| 	err = ubi_read(c->ubi, lnum, sbuf, offs, len);
 | |
| 	if (err)
 | |
| 		need_clean = 1;
 | |
| 	else {
 | |
| 		uint8_t *p = sbuf;
 | |
| 
 | |
| 		while (len--)
 | |
| 			if (*p++ != 0xff) {
 | |
| 				need_clean = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 	}
 | |
| 
 | |
| 	if (need_clean) {
 | |
| 		dbg_rcvry("cleaning head at %d:%d", lnum, offs);
 | |
| 		if (offs == 0)
 | |
| 			return ubifs_leb_unmap(c, lnum);
 | |
| 		err = ubi_read(c->ubi, lnum, sbuf, 0, offs);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_recover_inl_heads - recover index and LPT heads.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @sbuf: LEB-sized buffer to use
 | |
|  *
 | |
|  * This function ensures that there is no data on the flash at the index and
 | |
|  * LPT head locations.
 | |
|  *
 | |
|  * This deals with the recovery of a half-completed journal commit. UBIFS is
 | |
|  * careful never to overwrite the last version of the index or the LPT. Because
 | |
|  * the index and LPT are wandering trees, data from a half-completed commit will
 | |
|  * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
 | |
|  * assumed to be empty and will be unmapped anyway before use, or in the index
 | |
|  * and LPT heads.
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw);
 | |
| 
 | |
| 	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
 | |
| 	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
 | |
| 	err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  clean_an_unclean_leb - read and write a LEB to remove corruption.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @ucleb: unclean LEB information
 | |
|  * @sbuf: LEB-sized buffer to use
 | |
|  *
 | |
|  * This function reads a LEB up to a point pre-determined by the mount recovery,
 | |
|  * checks the nodes, and writes the result back to the flash, thereby cleaning
 | |
|  * off any following corruption, or non-fatal ECC errors.
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| static int clean_an_unclean_leb(const struct ubifs_info *c,
 | |
| 				struct ubifs_unclean_leb *ucleb, void *sbuf)
 | |
| {
 | |
| 	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
 | |
| 	void *buf = sbuf;
 | |
| 
 | |
| 	dbg_rcvry("LEB %d len %d", lnum, len);
 | |
| 
 | |
| 	if (len == 0) {
 | |
| 		/* Nothing to read, just unmap it */
 | |
| 		err = ubifs_leb_unmap(c, lnum);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	err = ubi_read(c->ubi, lnum, buf, offs, len);
 | |
| 	if (err && err != -EBADMSG)
 | |
| 		return err;
 | |
| 
 | |
| 	while (len >= 8) {
 | |
| 		int ret;
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		/* Scan quietly until there is an error */
 | |
| 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
 | |
| 
 | |
| 		if (ret == SCANNED_A_NODE) {
 | |
| 			/* A valid node, and not a padding node */
 | |
| 			struct ubifs_ch *ch = buf;
 | |
| 			int node_len;
 | |
| 
 | |
| 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
 | |
| 			offs += node_len;
 | |
| 			buf += node_len;
 | |
| 			len -= node_len;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (ret > 0) {
 | |
| 			/* Padding bytes or a valid padding node */
 | |
| 			offs += ret;
 | |
| 			buf += ret;
 | |
| 			len -= ret;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (ret == SCANNED_EMPTY_SPACE) {
 | |
| 			ubifs_err("unexpected empty space at %d:%d",
 | |
| 				  lnum, offs);
 | |
| 			return -EUCLEAN;
 | |
| 		}
 | |
| 
 | |
| 		if (quiet) {
 | |
| 			/* Redo the last scan but noisily */
 | |
| 			quiet = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ubifs_scanned_corruption(c, lnum, offs, buf);
 | |
| 		return -EUCLEAN;
 | |
| 	}
 | |
| 
 | |
| 	/* Pad to min_io_size */
 | |
| 	len = ALIGN(ucleb->endpt, c->min_io_size);
 | |
| 	if (len > ucleb->endpt) {
 | |
| 		int pad_len = len - ALIGN(ucleb->endpt, 8);
 | |
| 
 | |
| 		if (pad_len > 0) {
 | |
| 			buf = c->sbuf + len - pad_len;
 | |
| 			ubifs_pad(c, buf, pad_len);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Write back the LEB atomically */
 | |
| 	err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dbg_rcvry("cleaned LEB %d", lnum);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @sbuf: LEB-sized buffer to use
 | |
|  *
 | |
|  * This function cleans a LEB identified during recovery that needs to be
 | |
|  * written but was not because UBIFS was mounted read-only. This happens when
 | |
|  * remounting to read-write mode.
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
 | |
| {
 | |
| 	dbg_rcvry("recovery");
 | |
| 	while (!list_empty(&c->unclean_leb_list)) {
 | |
| 		struct ubifs_unclean_leb *ucleb;
 | |
| 		int err;
 | |
| 
 | |
| 		ucleb = list_entry(c->unclean_leb_list.next,
 | |
| 				   struct ubifs_unclean_leb, list);
 | |
| 		err = clean_an_unclean_leb(c, ucleb, sbuf);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		list_del(&ucleb->list);
 | |
| 		kfree(ucleb);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * struct size_entry - inode size information for recovery.
 | |
|  * @rb: link in the RB-tree of sizes
 | |
|  * @inum: inode number
 | |
|  * @i_size: size on inode
 | |
|  * @d_size: maximum size based on data nodes
 | |
|  * @exists: indicates whether the inode exists
 | |
|  * @inode: inode if pinned in memory awaiting rw mode to fix it
 | |
|  */
 | |
| struct size_entry {
 | |
| 	struct rb_node rb;
 | |
| 	ino_t inum;
 | |
| 	loff_t i_size;
 | |
| 	loff_t d_size;
 | |
| 	int exists;
 | |
| 	struct inode *inode;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * add_ino - add an entry to the size tree.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @inum: inode number
 | |
|  * @i_size: size on inode
 | |
|  * @d_size: maximum size based on data nodes
 | |
|  * @exists: indicates whether the inode exists
 | |
|  */
 | |
| static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
 | |
| 		   loff_t d_size, int exists)
 | |
| {
 | |
| 	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
 | |
| 	struct size_entry *e;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		e = rb_entry(parent, struct size_entry, rb);
 | |
| 		if (inum < e->inum)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else
 | |
| 			p = &(*p)->rb_right;
 | |
| 	}
 | |
| 
 | |
| 	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
 | |
| 	if (!e)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	e->inum = inum;
 | |
| 	e->i_size = i_size;
 | |
| 	e->d_size = d_size;
 | |
| 	e->exists = exists;
 | |
| 
 | |
| 	rb_link_node(&e->rb, parent, p);
 | |
| 	rb_insert_color(&e->rb, &c->size_tree);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_ino - find an entry on the size tree.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @inum: inode number
 | |
|  */
 | |
| static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
 | |
| {
 | |
| 	struct rb_node *p = c->size_tree.rb_node;
 | |
| 	struct size_entry *e;
 | |
| 
 | |
| 	while (p) {
 | |
| 		e = rb_entry(p, struct size_entry, rb);
 | |
| 		if (inum < e->inum)
 | |
| 			p = p->rb_left;
 | |
| 		else if (inum > e->inum)
 | |
| 			p = p->rb_right;
 | |
| 		else
 | |
| 			return e;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * remove_ino - remove an entry from the size tree.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @inum: inode number
 | |
|  */
 | |
| static void remove_ino(struct ubifs_info *c, ino_t inum)
 | |
| {
 | |
| 	struct size_entry *e = find_ino(c, inum);
 | |
| 
 | |
| 	if (!e)
 | |
| 		return;
 | |
| 	rb_erase(&e->rb, &c->size_tree);
 | |
| 	kfree(e);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_recover_size_accum - accumulate inode sizes for recovery.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key: node key
 | |
|  * @deletion: node is for a deletion
 | |
|  * @new_size: inode size
 | |
|  *
 | |
|  * This function has two purposes:
 | |
|  *     1) to ensure there are no data nodes that fall outside the inode size
 | |
|  *     2) to ensure there are no data nodes for inodes that do not exist
 | |
|  * To accomplish those purposes, a rb-tree is constructed containing an entry
 | |
|  * for each inode number in the journal that has not been deleted, and recording
 | |
|  * the size from the inode node, the maximum size of any data node (also altered
 | |
|  * by truncations) and a flag indicating a inode number for which no inode node
 | |
|  * was present in the journal.
 | |
|  *
 | |
|  * Note that there is still the possibility that there are data nodes that have
 | |
|  * been committed that are beyond the inode size, however the only way to find
 | |
|  * them would be to scan the entire index. Alternatively, some provision could
 | |
|  * be made to record the size of inodes at the start of commit, which would seem
 | |
|  * very cumbersome for a scenario that is quite unlikely and the only negative
 | |
|  * consequence of which is wasted space.
 | |
|  *
 | |
|  * This functions returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
 | |
| 			     int deletion, loff_t new_size)
 | |
| {
 | |
| 	ino_t inum = key_inum(c, key);
 | |
| 	struct size_entry *e;
 | |
| 	int err;
 | |
| 
 | |
| 	switch (key_type(c, key)) {
 | |
| 	case UBIFS_INO_KEY:
 | |
| 		if (deletion)
 | |
| 			remove_ino(c, inum);
 | |
| 		else {
 | |
| 			e = find_ino(c, inum);
 | |
| 			if (e) {
 | |
| 				e->i_size = new_size;
 | |
| 				e->exists = 1;
 | |
| 			} else {
 | |
| 				err = add_ino(c, inum, new_size, 0, 1);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 			}
 | |
| 		}
 | |
| 		break;
 | |
| 	case UBIFS_DATA_KEY:
 | |
| 		e = find_ino(c, inum);
 | |
| 		if (e) {
 | |
| 			if (new_size > e->d_size)
 | |
| 				e->d_size = new_size;
 | |
| 		} else {
 | |
| 			err = add_ino(c, inum, 0, new_size, 0);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 		break;
 | |
| 	case UBIFS_TRUN_KEY:
 | |
| 		e = find_ino(c, inum);
 | |
| 		if (e)
 | |
| 			e->d_size = new_size;
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_recover_size - recover inode size.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function attempts to fix inode size discrepancies identified by the
 | |
|  * 'ubifs_recover_size_accum()' function.
 | |
|  *
 | |
|  * This functions returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| int ubifs_recover_size(struct ubifs_info *c)
 | |
| {
 | |
| 	struct rb_node *this = rb_first(&c->size_tree);
 | |
| 
 | |
| 	while (this) {
 | |
| 		struct size_entry *e;
 | |
| 		int err;
 | |
| 
 | |
| 		e = rb_entry(this, struct size_entry, rb);
 | |
| 		if (!e->exists) {
 | |
| 			union ubifs_key key;
 | |
| 
 | |
| 			ino_key_init(c, &key, e->inum);
 | |
| 			err = ubifs_tnc_lookup(c, &key, c->sbuf);
 | |
| 			if (err && err != -ENOENT)
 | |
| 				return err;
 | |
| 			if (err == -ENOENT) {
 | |
| 				/* Remove data nodes that have no inode */
 | |
| 				dbg_rcvry("removing ino %lu",
 | |
| 					  (unsigned long)e->inum);
 | |
| 				err = ubifs_tnc_remove_ino(c, e->inum);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 			} else {
 | |
| 				struct ubifs_ino_node *ino = c->sbuf;
 | |
| 
 | |
| 				e->exists = 1;
 | |
| 				e->i_size = le64_to_cpu(ino->size);
 | |
| 			}
 | |
| 		}
 | |
| 		if (e->exists && e->i_size < e->d_size) {
 | |
| 			if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) {
 | |
| 				/* Fix the inode size and pin it in memory */
 | |
| 				struct inode *inode;
 | |
| 
 | |
| 				inode = ubifs_iget(c->vfs_sb, e->inum);
 | |
| 				if (IS_ERR(inode))
 | |
| 					return PTR_ERR(inode);
 | |
| 				if (inode->i_size < e->d_size) {
 | |
| 					dbg_rcvry("ino %lu size %lld -> %lld",
 | |
| 						  (unsigned long)e->inum,
 | |
| 						  e->d_size, inode->i_size);
 | |
| 					inode->i_size = e->d_size;
 | |
| 					ubifs_inode(inode)->ui_size = e->d_size;
 | |
| 					e->inode = inode;
 | |
| 					this = rb_next(this);
 | |
| 					continue;
 | |
| 				}
 | |
| 				iput(inode);
 | |
| 			}
 | |
| 		}
 | |
| 		this = rb_next(this);
 | |
| 		rb_erase(&e->rb, &c->size_tree);
 | |
| 		kfree(e);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 |