478 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			478 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * Copyright 2018-2019 NXP
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <errno.h>
 | |
| #include <log.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/arch/ddr.h>
 | |
| #include <asm/arch/clock.h>
 | |
| #include <asm/arch/sys_proto.h>
 | |
| 
 | |
| static unsigned int g_cdd_rr_max[4];
 | |
| static unsigned int g_cdd_rw_max[4];
 | |
| static unsigned int g_cdd_wr_max[4];
 | |
| static unsigned int g_cdd_ww_max[4];
 | |
| 
 | |
| void ddr_cfg_umctl2(struct dram_cfg_param *ddrc_cfg, int num)
 | |
| {
 | |
| 	int i = 0;
 | |
| 
 | |
| 	for (i = 0; i < num; i++) {
 | |
| 		reg32_write(ddrc_cfg->reg, ddrc_cfg->val);
 | |
| 		ddrc_cfg++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_IMX8M_DRAM_INLINE_ECC
 | |
| void ddrc_inline_ecc_scrub(unsigned int start_address,
 | |
| 			   unsigned int range_address)
 | |
| {
 | |
| 	unsigned int tmp;
 | |
| 
 | |
| 	/* Step1: Enable quasi-dynamic programming */
 | |
| 	reg32_write(DDRC_SWCTL(0), 0x00000000);
 | |
| 	/* Step2: Set ECCCFG1.ecc_parity_region_lock to 1 */
 | |
| 	reg32setbit(DDRC_ECCCFG1(0), 0x4);
 | |
| 	/* Step3: Block the AXI ports from taking the transaction */
 | |
| 	reg32_write(DDRC_PCTRL_0(0), 0x0);
 | |
| 	/* Step4: Set scrub start address */
 | |
| 	reg32_write(DDRC_SBRSTART0(0), start_address);
 | |
| 	/* Step5: Set scrub range address */
 | |
| 	reg32_write(DDRC_SBRRANGE0(0), range_address);
 | |
| 	/* Step6: Set scrub_mode to write */
 | |
| 	reg32_write(DDRC_SBRCTL(0), 0x00000014);
 | |
| 	/* Step7: Set the desired pattern through SBRWDATA0 registers */
 | |
| 	reg32_write(DDRC_SBRWDATA0(0), 0x55aa55aa);
 | |
| 	/* Step8: Enable the SBR by programming SBRCTL.scrub_en=1 */
 | |
| 	reg32setbit(DDRC_SBRCTL(0), 0x0);
 | |
| 	/* Step9: Poll SBRSTAT.scrub_done=1 */
 | |
| 	tmp = reg32_read(DDRC_SBRSTAT(0));
 | |
| 	while (tmp != 0x00000002)
 | |
| 		tmp = reg32_read(DDRC_SBRSTAT(0)) & 0x2;
 | |
| 	/* Step10: Poll SBRSTAT.scrub_busy=0 */
 | |
| 	tmp = reg32_read(DDRC_SBRSTAT(0));
 | |
| 	while (tmp != 0x0)
 | |
| 		tmp = reg32_read(DDRC_SBRSTAT(0)) & 0x1;
 | |
| 	/* Step11: Disable SBR by programming SBRCTL.scrub_en=0 */
 | |
| 	clrbits_le32(DDRC_SBRCTL(0), 0x1);
 | |
| 	/* Step12: Prepare for normal scrub operation(Read) and set scrub_interval*/
 | |
| 	reg32_write(DDRC_SBRCTL(0), 0x100);
 | |
| 	/* Step13: Enable the SBR by programming SBRCTL.scrub_en=1 */
 | |
| 	reg32_write(DDRC_SBRCTL(0), 0x101);
 | |
| 	/* Step14: Enable AXI ports by programming */
 | |
| 	reg32_write(DDRC_PCTRL_0(0), 0x1);
 | |
| 	/* Step15: Disable quasi-dynamic programming */
 | |
| 	reg32_write(DDRC_SWCTL(0), 0x00000001);
 | |
| }
 | |
| 
 | |
| void ddrc_inline_ecc_scrub_end(unsigned int start_address,
 | |
| 			       unsigned int range_address)
 | |
| {
 | |
| 	/* Step1: Enable quasi-dynamic programming */
 | |
| 	reg32_write(DDRC_SWCTL(0), 0x00000000);
 | |
| 	/* Step2: Block the AXI ports from taking the transaction */
 | |
| 	reg32_write(DDRC_PCTRL_0(0), 0x0);
 | |
| 	/* Step3: Set scrub start address */
 | |
| 	reg32_write(DDRC_SBRSTART0(0), start_address);
 | |
| 	/* Step4: Set scrub range address */
 | |
| 	reg32_write(DDRC_SBRRANGE0(0), range_address);
 | |
| 	/* Step5: Disable SBR by programming SBRCTL.scrub_en=0 */
 | |
| 	clrbits_le32(DDRC_SBRCTL(0), 0x1);
 | |
| 	/* Step6: Prepare for normal scrub operation(Read) and set scrub_interval */
 | |
| 	reg32_write(DDRC_SBRCTL(0), 0x100);
 | |
| 	/* Step7: Enable the SBR by programming SBRCTL.scrub_en=1 */
 | |
| 	reg32_write(DDRC_SBRCTL(0), 0x101);
 | |
| 	/* Step8: Enable AXI ports by programming */
 | |
| 	reg32_write(DDRC_PCTRL_0(0), 0x1);
 | |
| 	/* Step9: Disable quasi-dynamic programming */
 | |
| 	reg32_write(DDRC_SWCTL(0), 0x00000001);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void __weak board_dram_ecc_scrub(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| void lpddr4_mr_write(unsigned int mr_rank, unsigned int mr_addr,
 | |
| 		     unsigned int mr_data)
 | |
| {
 | |
| 	unsigned int tmp;
 | |
| 	/*
 | |
| 	 * 1. Poll MRSTAT.mr_wr_busy until it is 0.
 | |
| 	 * This checks that there is no outstanding MR transaction.
 | |
| 	 * No writes should be performed to MRCTRL0 and MRCTRL1 if
 | |
| 	 * MRSTAT.mr_wr_busy = 1.
 | |
| 	 */
 | |
| 	do {
 | |
| 		tmp = reg32_read(DDRC_MRSTAT(0));
 | |
| 	} while (tmp & 0x1);
 | |
| 	/*
 | |
| 	 * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank and
 | |
| 	 * (for MRWs) MRCTRL1.mr_data to define the MR transaction.
 | |
| 	 */
 | |
| 	reg32_write(DDRC_MRCTRL0(0), (mr_rank << 4));
 | |
| 	reg32_write(DDRC_MRCTRL1(0), (mr_addr << 8) | mr_data);
 | |
| 	reg32setbit(DDRC_MRCTRL0(0), 31);
 | |
| }
 | |
| 
 | |
| unsigned int lpddr4_mr_read(unsigned int mr_rank, unsigned int mr_addr)
 | |
| {
 | |
| 	unsigned int tmp;
 | |
| 
 | |
| 	reg32_write(DRC_PERF_MON_MRR0_DAT(0), 0x1);
 | |
| 	do {
 | |
| 		tmp = reg32_read(DDRC_MRSTAT(0));
 | |
| 	} while (tmp & 0x1);
 | |
| 
 | |
| 	reg32_write(DDRC_MRCTRL0(0), (mr_rank << 4) | 0x1);
 | |
| 	reg32_write(DDRC_MRCTRL1(0), (mr_addr << 8));
 | |
| 	reg32setbit(DDRC_MRCTRL0(0), 31);
 | |
| 	do {
 | |
| 		tmp = reg32_read(DRC_PERF_MON_MRR0_DAT(0));
 | |
| 	} while ((tmp & 0x8) == 0);
 | |
| 	tmp = reg32_read(DRC_PERF_MON_MRR1_DAT(0));
 | |
| 	reg32_write(DRC_PERF_MON_MRR0_DAT(0), 0x4);
 | |
| 	while (tmp) { //try to find a significant byte in the word
 | |
| 		if (tmp & 0xff) {
 | |
| 			tmp &= 0xff;
 | |
| 			break;
 | |
| 		}
 | |
| 		tmp >>= 8;
 | |
| 	}
 | |
| 
 | |
| 	return tmp;
 | |
| }
 | |
| 
 | |
| static unsigned int look_for_max(unsigned int data[], unsigned int addr_start,
 | |
| 				 unsigned int addr_end)
 | |
| {
 | |
| 	unsigned int i, imax = 0;
 | |
| 
 | |
| 	for (i = addr_start; i <= addr_end; i++) {
 | |
| 		if (((data[i] >> 7) == 0) && data[i] > imax)
 | |
| 			imax = data[i];
 | |
| 	}
 | |
| 
 | |
| 	return imax;
 | |
| }
 | |
| 
 | |
| void get_trained_CDD(u32 fsp)
 | |
| {
 | |
| 	unsigned int i, ddr_type, tmp;
 | |
| 	unsigned int cdd_cha[12], cdd_chb[12];
 | |
| 	unsigned int cdd_cha_rr_max, cdd_cha_rw_max, cdd_cha_wr_max, cdd_cha_ww_max;
 | |
| 	unsigned int cdd_chb_rr_max, cdd_chb_rw_max, cdd_chb_wr_max, cdd_chb_ww_max;
 | |
| 
 | |
| 	ddr_type = reg32_read(DDRC_MSTR(0)) & 0x3f;
 | |
| 	if (ddr_type == 0x20) {
 | |
| 		for (i = 0; i < 6; i++) {
 | |
| 			tmp = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + (0x54013 + i) * 4);
 | |
| 			cdd_cha[i * 2] = tmp & 0xff;
 | |
| 			cdd_cha[i * 2 + 1] = (tmp >> 8) & 0xff;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < 7; i++) {
 | |
| 			tmp = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + (0x5402c + i) * 4);
 | |
| 			if (i == 0) {
 | |
| 				cdd_cha[0] = (tmp >> 8) & 0xff;
 | |
| 			} else if (i == 6) {
 | |
| 				cdd_cha[11] = tmp & 0xff;
 | |
| 			} else {
 | |
| 				cdd_chb[i * 2 - 1] = tmp & 0xff;
 | |
| 				cdd_chb[i * 2] = (tmp >> 8) & 0xff;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		cdd_cha_rr_max = look_for_max(cdd_cha, 0, 1);
 | |
| 		cdd_cha_rw_max = look_for_max(cdd_cha, 2, 5);
 | |
| 		cdd_cha_wr_max = look_for_max(cdd_cha, 6, 9);
 | |
| 		cdd_cha_ww_max = look_for_max(cdd_cha, 10, 11);
 | |
| 		cdd_chb_rr_max = look_for_max(cdd_chb, 0, 1);
 | |
| 		cdd_chb_rw_max = look_for_max(cdd_chb, 2, 5);
 | |
| 		cdd_chb_wr_max = look_for_max(cdd_chb, 6, 9);
 | |
| 		cdd_chb_ww_max = look_for_max(cdd_chb, 10, 11);
 | |
| 		g_cdd_rr_max[fsp] =
 | |
| 			cdd_cha_rr_max > cdd_chb_rr_max ? cdd_cha_rr_max : cdd_chb_rr_max;
 | |
| 		g_cdd_rw_max[fsp] =
 | |
| 			cdd_cha_rw_max > cdd_chb_rw_max ? cdd_cha_rw_max : cdd_chb_rw_max;
 | |
| 		g_cdd_wr_max[fsp] =
 | |
| 			cdd_cha_wr_max > cdd_chb_wr_max ? cdd_cha_wr_max : cdd_chb_wr_max;
 | |
| 		g_cdd_ww_max[fsp] =
 | |
| 			cdd_cha_ww_max > cdd_chb_ww_max ? cdd_cha_ww_max : cdd_chb_ww_max;
 | |
| 	} else {
 | |
| 		unsigned int ddr4_cdd[64];
 | |
| 
 | |
| 		for (i = 0; i < 29; i++) {
 | |
| 			tmp = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + (0x54012 + i) * 4);
 | |
| 			ddr4_cdd[i * 2] = tmp & 0xff;
 | |
| 			ddr4_cdd[i * 2 + 1] = (tmp >> 8) & 0xff;
 | |
| 		}
 | |
| 
 | |
| 		g_cdd_rr_max[fsp] = look_for_max(ddr4_cdd, 1, 12);
 | |
| 		g_cdd_ww_max[fsp] = look_for_max(ddr4_cdd, 13, 24);
 | |
| 		g_cdd_rw_max[fsp] = look_for_max(ddr4_cdd, 25, 40);
 | |
| 		g_cdd_wr_max[fsp] = look_for_max(ddr4_cdd, 41, 56);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void update_umctl2_rank_space_setting(unsigned int pstat_num)
 | |
| {
 | |
| 	unsigned int i, ddr_type;
 | |
| 	unsigned int addr_slot, rdata, tmp, tmp_t;
 | |
| 	unsigned int ddrc_w2r, ddrc_r2w, ddrc_wr_gap, ddrc_rd_gap;
 | |
| 
 | |
| 	ddr_type = reg32_read(DDRC_MSTR(0)) & 0x3f;
 | |
| 	for (i = 0; i < pstat_num; i++) {
 | |
| 		addr_slot = i ? (i + 1) * 0x1000 : 0;
 | |
| 		if (ddr_type == 0x20) {
 | |
| 			/* update r2w:[13:8], w2r:[5:0] */
 | |
| 			rdata = reg32_read(DDRC_DRAMTMG2(0) + addr_slot);
 | |
| 			ddrc_w2r = rdata & 0x3f;
 | |
| 			if (is_imx8mp())
 | |
| 				tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1);
 | |
| 			else
 | |
| 				tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1) + 1;
 | |
| 			ddrc_w2r = (tmp > 0x3f) ? 0x3f : tmp;
 | |
| 
 | |
| 			ddrc_r2w = (rdata >> 8) & 0x3f;
 | |
| 			if (is_imx8mp())
 | |
| 				tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1);
 | |
| 			else
 | |
| 				tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1) + 1;
 | |
| 			ddrc_r2w = (tmp > 0x3f) ? 0x3f : tmp;
 | |
| 
 | |
| 			tmp_t = (rdata & 0xffffc0c0) | (ddrc_r2w << 8) | ddrc_w2r;
 | |
| 			reg32_write((DDRC_DRAMTMG2(0) + addr_slot), tmp_t);
 | |
| 		} else {
 | |
| 			/* update w2r:[5:0] */
 | |
| 			rdata = reg32_read(DDRC_DRAMTMG9(0) + addr_slot);
 | |
| 			ddrc_w2r = rdata & 0x3f;
 | |
| 			if (is_imx8mp())
 | |
| 				tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1);
 | |
| 			else
 | |
| 				tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1) + 1;
 | |
| 			ddrc_w2r = (tmp > 0x3f) ? 0x3f : tmp;
 | |
| 			tmp_t = (rdata & 0xffffffc0) | ddrc_w2r;
 | |
| 			reg32_write((DDRC_DRAMTMG9(0) + addr_slot), tmp_t);
 | |
| 
 | |
| 			/* update r2w:[13:8] */
 | |
| 			rdata = reg32_read(DDRC_DRAMTMG2(0) + addr_slot);
 | |
| 			ddrc_r2w = (rdata >> 8) & 0x3f;
 | |
| 			if (is_imx8mp())
 | |
| 				tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1);
 | |
| 			else
 | |
| 				tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1) + 1;
 | |
| 			ddrc_r2w = (tmp > 0x3f) ? 0x3f : tmp;
 | |
| 
 | |
| 			tmp_t = (rdata & 0xffffc0ff) | (ddrc_r2w << 8);
 | |
| 			reg32_write((DDRC_DRAMTMG2(0) + addr_slot), tmp_t);
 | |
| 		}
 | |
| 
 | |
| 		if (!is_imx8mq()) {
 | |
| 			/*
 | |
| 			 * update rankctl: wr_gap:11:8; rd:gap:7:4; quasi-dymic, doc wrong(static)
 | |
| 			 */
 | |
| 			rdata = reg32_read(DDRC_RANKCTL(0) + addr_slot);
 | |
| 			ddrc_wr_gap = (rdata >> 8) & 0xf;
 | |
| 			if (is_imx8mp())
 | |
| 				tmp = ddrc_wr_gap + (g_cdd_ww_max[i] >> 1);
 | |
| 			else
 | |
| 				tmp = ddrc_wr_gap + (g_cdd_ww_max[i] >> 1) + 1;
 | |
| 			ddrc_wr_gap = (tmp > 0xf) ? 0xf : tmp;
 | |
| 
 | |
| 			ddrc_rd_gap = (rdata >> 4) & 0xf;
 | |
| 			if (is_imx8mp())
 | |
| 				tmp = ddrc_rd_gap + (g_cdd_rr_max[i] >> 1);
 | |
| 			else
 | |
| 				tmp = ddrc_rd_gap + (g_cdd_rr_max[i] >> 1) + 1;
 | |
| 			ddrc_rd_gap = (tmp > 0xf) ? 0xf : tmp;
 | |
| 
 | |
| 			tmp_t = (rdata & 0xfffff00f) | (ddrc_wr_gap << 8) | (ddrc_rd_gap << 4);
 | |
| 			reg32_write((DDRC_RANKCTL(0) + addr_slot), tmp_t);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (is_imx8mq()) {
 | |
| 		/* update rankctl: wr_gap:11:8; rd:gap:7:4; quasi-dymic, doc wrong(static) */
 | |
| 		rdata = reg32_read(DDRC_RANKCTL(0));
 | |
| 		ddrc_wr_gap = (rdata >> 8) & 0xf;
 | |
| 		tmp = ddrc_wr_gap + (g_cdd_ww_max[0] >> 1) + 1;
 | |
| 		ddrc_wr_gap = (tmp > 0xf) ? 0xf : tmp;
 | |
| 
 | |
| 		ddrc_rd_gap = (rdata >> 4) & 0xf;
 | |
| 		tmp = ddrc_rd_gap + (g_cdd_rr_max[0] >> 1) + 1;
 | |
| 		ddrc_rd_gap = (tmp > 0xf) ? 0xf : tmp;
 | |
| 
 | |
| 		tmp_t = (rdata & 0xfffff00f) | (ddrc_wr_gap << 8) | (ddrc_rd_gap << 4);
 | |
| 		reg32_write(DDRC_RANKCTL(0), tmp_t);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int ddr_init(struct dram_timing_info *dram_timing)
 | |
| {
 | |
| 	unsigned int tmp, initial_drate, target_freq;
 | |
| 	int ret;
 | |
| 
 | |
| 	debug("DDRINFO: start DRAM init\n");
 | |
| 
 | |
| 	/* Step1: Follow the power up procedure */
 | |
| 	if (is_imx8mq()) {
 | |
| 		reg32_write(SRC_DDRC_RCR_ADDR + 0x04, 0x8F00000F);
 | |
| 		reg32_write(SRC_DDRC_RCR_ADDR, 0x8F00000F);
 | |
| 		reg32_write(SRC_DDRC_RCR_ADDR + 0x04, 0x8F000000);
 | |
| 	} else {
 | |
| 		reg32_write(SRC_DDRC_RCR_ADDR, 0x8F00001F);
 | |
| 		reg32_write(SRC_DDRC_RCR_ADDR, 0x8F00000F);
 | |
| 	}
 | |
| 
 | |
| 	debug("DDRINFO: cfg clk\n");
 | |
| 	/* change the clock source of dram_apb_clk_root: source 4 800MHz /4 = 200MHz */
 | |
| 	clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(4) |
 | |
| 			     CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV4));
 | |
| 
 | |
| 	/* disable iso */
 | |
| 	reg32_write(0x303A00EC, 0x0000ffff); /* PGC_CPU_MAPPING */
 | |
| 	reg32setbit(0x303A00F8, 5); /* PU_PGC_SW_PUP_REQ */
 | |
| 
 | |
| 	initial_drate = dram_timing->fsp_msg[0].drate;
 | |
| 	/* default to the frequency point 0 clock */
 | |
| 	ddrphy_init_set_dfi_clk(initial_drate);
 | |
| 
 | |
| 	/* D-aasert the presetn */
 | |
| 	reg32_write(SRC_DDRC_RCR_ADDR, 0x8F000006);
 | |
| 
 | |
| 	/* Step2: Program the dwc_ddr_umctl2 registers */
 | |
| 	debug("DDRINFO: ddrc config start\n");
 | |
| 	ddr_cfg_umctl2(dram_timing->ddrc_cfg, dram_timing->ddrc_cfg_num);
 | |
| 	debug("DDRINFO: ddrc config done\n");
 | |
| 
 | |
| 	/* Step3: De-assert reset signal(core_ddrc_rstn & aresetn_n) */
 | |
| 	reg32_write(SRC_DDRC_RCR_ADDR, 0x8F000004);
 | |
| 	reg32_write(SRC_DDRC_RCR_ADDR, 0x8F000000);
 | |
| 
 | |
| 	/*
 | |
| 	 * Step4: Disable auto-refreshes, self-refresh, powerdown, and
 | |
| 	 * assertion of dfi_dram_clk_disable by setting RFSHCTL3.dis_auto_refresh = 1,
 | |
| 	 * PWRCTL.powerdown_en = 0, and PWRCTL.selfref_en = 0, PWRCTL.en_dfi_dram_clk_disable = 0
 | |
| 	 */
 | |
| 	reg32_write(DDRC_DBG1(0), 0x00000000);
 | |
| 	reg32_write(DDRC_RFSHCTL3(0), 0x0000001);
 | |
| 	reg32_write(DDRC_PWRCTL(0), 0xa0);
 | |
| 
 | |
| 	/* if ddr type is LPDDR4, do it */
 | |
| 	tmp = reg32_read(DDRC_MSTR(0));
 | |
| 	if (tmp & (0x1 << 5) && !is_imx8mn())
 | |
| 		reg32_write(DDRC_DDR_SS_GPR0, 0x01); /* LPDDR4 mode */
 | |
| 
 | |
| 	/* determine the initial boot frequency */
 | |
| 	target_freq = reg32_read(DDRC_MSTR2(0)) & 0x3;
 | |
| 	target_freq = (tmp & (0x1 << 29)) ? target_freq : 0x0;
 | |
| 
 | |
| 	/* Step5: Set SWCT.sw_done to 0 */
 | |
| 	reg32_write(DDRC_SWCTL(0), 0x00000000);
 | |
| 
 | |
| 	/* Set the default boot frequency point */
 | |
| 	clrsetbits_le32(DDRC_DFIMISC(0), (0x1f << 8), target_freq << 8);
 | |
| 	/* Step6: Set DFIMISC.dfi_init_complete_en to 0 */
 | |
| 	clrbits_le32(DDRC_DFIMISC(0), 0x1);
 | |
| 
 | |
| 	/* Step7: Set SWCTL.sw_done to 1; need to polling SWSTAT.sw_done_ack */
 | |
| 	reg32_write(DDRC_SWCTL(0), 0x00000001);
 | |
| 	do {
 | |
| 		tmp = reg32_read(DDRC_SWSTAT(0));
 | |
| 	} while ((tmp & 0x1) == 0x0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Step8 ~ Step13: Start PHY initialization and training by
 | |
| 	 * accessing relevant PUB registers
 | |
| 	 */
 | |
| 	debug("DDRINFO:ddrphy config start\n");
 | |
| 
 | |
| 	ret = ddr_cfg_phy(dram_timing);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	debug("DDRINFO: ddrphy config done\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * step14 CalBusy.0 =1, indicates the calibrator is actively
 | |
| 	 * calibrating. Wait Calibrating done.
 | |
| 	 */
 | |
| 	do {
 | |
| 		tmp = reg32_read(DDRPHY_CalBusy(0));
 | |
| 	} while ((tmp & 0x1));
 | |
| 
 | |
| 	debug("DDRINFO:ddrphy calibration done\n");
 | |
| 
 | |
| 	/* Step15: Set SWCTL.sw_done to 0 */
 | |
| 	reg32_write(DDRC_SWCTL(0), 0x00000000);
 | |
| 
 | |
| 	/* Apply rank-to-rank workaround */
 | |
| 	update_umctl2_rank_space_setting(dram_timing->fsp_msg_num - 1);
 | |
| 
 | |
| 	/* Step16: Set DFIMISC.dfi_init_start to 1 */
 | |
| 	setbits_le32(DDRC_DFIMISC(0), (0x1 << 5));
 | |
| 
 | |
| 	/* Step17: Set SWCTL.sw_done to 1; need to polling SWSTAT.sw_done_ack */
 | |
| 	reg32_write(DDRC_SWCTL(0), 0x00000001);
 | |
| 	do {
 | |
| 		tmp = reg32_read(DDRC_SWSTAT(0));
 | |
| 	} while ((tmp & 0x1) == 0x0);
 | |
| 
 | |
| 	/* Step18: Polling DFISTAT.dfi_init_complete = 1 */
 | |
| 	do {
 | |
| 		tmp = reg32_read(DDRC_DFISTAT(0));
 | |
| 	} while ((tmp & 0x1) == 0x0);
 | |
| 
 | |
| 	/* Step19: Set SWCTL.sw_done to 0 */
 | |
| 	reg32_write(DDRC_SWCTL(0), 0x00000000);
 | |
| 
 | |
| 	/* Step20: Set DFIMISC.dfi_init_start to 0 */
 | |
| 	clrbits_le32(DDRC_DFIMISC(0), (0x1 << 5));
 | |
| 
 | |
| 	/* Step21: optional */
 | |
| 
 | |
| 	/* Step22: Set DFIMISC.dfi_init_complete_en to 1 */
 | |
| 	setbits_le32(DDRC_DFIMISC(0), 0x1);
 | |
| 
 | |
| 	/* Step23: Set PWRCTL.selfref_sw to 0 */
 | |
| 	clrbits_le32(DDRC_PWRCTL(0), (0x1 << 5));
 | |
| 
 | |
| 	/* Step24: Set SWCTL.sw_done to 1; need polling SWSTAT.sw_done_ack */
 | |
| 	reg32_write(DDRC_SWCTL(0), 0x00000001);
 | |
| 	do {
 | |
| 		tmp = reg32_read(DDRC_SWSTAT(0));
 | |
| 	} while ((tmp & 0x1) == 0x0);
 | |
| 
 | |
| 	/* Step25: Wait for dwc_ddr_umctl2 to move to normal operating mode by monitoring
 | |
| 	 * STAT.operating_mode signal */
 | |
| 	do {
 | |
| 		tmp = reg32_read(DDRC_STAT(0));
 | |
| 	} while ((tmp & 0x3) != 0x1);
 | |
| 
 | |
| 	/* Step26: Set back register in Step4 to the original values if desired */
 | |
| 	reg32_write(DDRC_RFSHCTL3(0), 0x0000000);
 | |
| 
 | |
| 	/* enable port 0 */
 | |
| 	reg32_write(DDRC_PCTRL_0(0), 0x00000001);
 | |
| 	debug("DDRINFO: ddrmix config done\n");
 | |
| 
 | |
| 	board_dram_ecc_scrub();
 | |
| 
 | |
| 	/* enable selfref_en by default */
 | |
| 	setbits_le32(DDRC_PWRCTL(0), 0x1);
 | |
| 
 | |
| 	/* save the dram timing config into memory */
 | |
| 	dram_config_save(dram_timing, CONFIG_SAVED_DRAM_TIMING_BASE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| ulong ddrphy_addr_remap(uint32_t paddr_apb_from_ctlr)
 | |
| {
 | |
| 	return 4 * paddr_apb_from_ctlr;
 | |
| }
 |