11025 lines
		
	
	
		
			326 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			11025 lines
		
	
	
		
			326 KiB
		
	
	
	
		
			C
		
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | ||
| /*
 | ||
|  * Copyright (C) 2020 Marvell International Ltd.
 | ||
|  */
 | ||
| 
 | ||
| #include <command.h>
 | ||
| #include <dm.h>
 | ||
| #include <hang.h>
 | ||
| #include <i2c.h>
 | ||
| #include <ram.h>
 | ||
| #include <time.h>
 | ||
| 
 | ||
| #include <linux/bitops.h>
 | ||
| #include <linux/io.h>
 | ||
| 
 | ||
| #include <mach/octeon_ddr.h>
 | ||
| 
 | ||
| /* Random number generator stuff */
 | ||
| 
 | ||
| #define CVMX_OCT_DID_RNG	8ULL
 | ||
| 
 | ||
| static u64 cvmx_rng_get_random64(void)
 | ||
| {
 | ||
| 	return csr_rd(cvmx_build_io_address(CVMX_OCT_DID_RNG, 0));
 | ||
| }
 | ||
| 
 | ||
| static void cvmx_rng_enable(void)
 | ||
| {
 | ||
| 	u64 val;
 | ||
| 
 | ||
| 	val = csr_rd(CVMX_RNM_CTL_STATUS);
 | ||
| 	val |= BIT(0) | BIT(1);
 | ||
| 	csr_wr(CVMX_RNM_CTL_STATUS, val);
 | ||
| }
 | ||
| 
 | ||
| #define RLEVEL_PRINTALL_DEFAULT		1
 | ||
| #define WLEVEL_PRINTALL_DEFAULT		1
 | ||
| 
 | ||
| /*
 | ||
|  * Define how many HW WL samples to take for majority voting.
 | ||
|  * MUST BE odd!!
 | ||
|  * Assume there should only be 2 possible values that will show up,
 | ||
|  * so treat ties as a problem!!!
 | ||
|  * NOTE: Do not change this without checking the code!!!
 | ||
|  */
 | ||
| #define WLEVEL_LOOPS_DEFAULT		5
 | ||
| 
 | ||
| #define ENABLE_COMPUTED_VREF_ADJUSTMENT	1
 | ||
| #define SW_WLEVEL_HW_DEFAULT		1
 | ||
| #define DEFAULT_BEST_RANK_SCORE		9999999
 | ||
| #define MAX_RANK_SCORE_LIMIT		99
 | ||
| 
 | ||
| /*
 | ||
|  * Define how many HW RL samples per rank to take multiple samples will
 | ||
|  * allow looking for the best sample score
 | ||
|  */
 | ||
| #define RLEVEL_SAMPLES_DEFAULT		3
 | ||
| 
 | ||
| #define ddr_seq_print(format, ...) do {} while (0)
 | ||
| 
 | ||
| struct wlevel_bitcnt {
 | ||
| 	int bitcnt[4];
 | ||
| };
 | ||
| 
 | ||
| static void display_dac_dbi_settings(int lmc, int dac_or_dbi,
 | ||
| 				     int ecc_ena, int *settings, char *title);
 | ||
| 
 | ||
| static unsigned short load_dac_override(struct ddr_priv *priv, int if_num,
 | ||
| 					int dac_value, int byte);
 | ||
| 
 | ||
| /* "mode" arg */
 | ||
| #define DBTRAIN_TEST 0
 | ||
| #define DBTRAIN_DBI  1
 | ||
| #define DBTRAIN_LFSR 2
 | ||
| 
 | ||
| static int run_best_hw_patterns(struct ddr_priv *priv, int lmc, u64 phys_addr,
 | ||
| 				int mode, u64 *xor_data);
 | ||
| 
 | ||
| #define LMC_DDR3_RESET_ASSERT   0
 | ||
| #define LMC_DDR3_RESET_DEASSERT 1
 | ||
| 
 | ||
| static void cn7xxx_lmc_ddr3_reset(struct ddr_priv *priv, int if_num, int reset)
 | ||
| {
 | ||
| 	union cvmx_lmcx_reset_ctl reset_ctl;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 4. Deassert DDRn_RESET_L pin by writing
 | ||
| 	 *    LMC(0..3)_RESET_CTL[DDR3RST] = 1
 | ||
| 	 *    without modifying any other LMC(0..3)_RESET_CTL fields.
 | ||
| 	 * 5. Read LMC(0..3)_RESET_CTL and wait for the result.
 | ||
| 	 * 6. Wait a minimum of 500us. This guarantees the necessary T = 500us
 | ||
| 	 *    delay between DDRn_RESET_L deassertion and DDRn_DIMM*_CKE*
 | ||
| 	 *    assertion.
 | ||
| 	 */
 | ||
| 	debug("LMC%d %s DDR_RESET_L\n", if_num,
 | ||
| 	      (reset ==
 | ||
| 	       LMC_DDR3_RESET_DEASSERT) ? "De-asserting" : "Asserting");
 | ||
| 
 | ||
| 	reset_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RESET_CTL(if_num));
 | ||
| 	reset_ctl.cn78xx.ddr3rst = reset;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_RESET_CTL(if_num), reset_ctl.u64);
 | ||
| 
 | ||
| 	lmc_rd(priv, CVMX_LMCX_RESET_CTL(if_num));
 | ||
| 
 | ||
| 	udelay(500);
 | ||
| }
 | ||
| 
 | ||
| static void perform_lmc_reset(struct ddr_priv *priv, int node, int if_num)
 | ||
| {
 | ||
| 	/*
 | ||
| 	 * 5.9.6 LMC RESET Initialization
 | ||
| 	 *
 | ||
| 	 * The purpose of this step is to assert/deassert the RESET# pin at the
 | ||
| 	 * DDR3/DDR4 parts.
 | ||
| 	 *
 | ||
| 	 * This LMC RESET step is done for all enabled LMCs.
 | ||
| 	 *
 | ||
| 	 * It may be appropriate to skip this step if the DDR3/DDR4 DRAM parts
 | ||
| 	 * are in self refresh and are currently preserving their
 | ||
| 	 * contents. (Software can determine this via
 | ||
| 	 * LMC(0..3)_RESET_CTL[DDR3PSV] in some circumstances.) The remainder of
 | ||
| 	 * this section assumes that the DRAM contents need not be preserved.
 | ||
| 	 *
 | ||
| 	 * The remainder of this section assumes that the CN78XX DDRn_RESET_L
 | ||
| 	 * pin is attached to the RESET# pin of the attached DDR3/DDR4 parts,
 | ||
| 	 * as will be appropriate in many systems.
 | ||
| 	 *
 | ||
| 	 * (In other systems, such as ones that can preserve DDR3/DDR4 part
 | ||
| 	 * contents while CN78XX is powered down, it will not be appropriate to
 | ||
| 	 * directly attach the CN78XX DDRn_RESET_L pin to DRESET# of the
 | ||
| 	 * DDR3/DDR4 parts, and this section may not apply.)
 | ||
| 	 *
 | ||
| 	 * The remainder of this section describes the sequence for LMCn.
 | ||
| 	 *
 | ||
| 	 * Perform the following six substeps for LMC reset initialization:
 | ||
| 	 *
 | ||
| 	 * 1. If not done already, assert DDRn_RESET_L pin by writing
 | ||
| 	 * LMC(0..3)_RESET_ CTL[DDR3RST] = 0 without modifying any other
 | ||
| 	 * LMC(0..3)_RESET_CTL fields.
 | ||
| 	 */
 | ||
| 
 | ||
| 	if (!ddr_memory_preserved(priv)) {
 | ||
| 		/*
 | ||
| 		 * 2. Read LMC(0..3)_RESET_CTL and wait for the result.
 | ||
| 		 */
 | ||
| 
 | ||
| 		lmc_rd(priv, CVMX_LMCX_RESET_CTL(if_num));
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * 3. Wait until RESET# assertion-time requirement from JEDEC
 | ||
| 		 * DDR3/DDR4 specification is satisfied (200 us during a
 | ||
| 		 * power-on ramp, 100ns when power is already stable).
 | ||
| 		 */
 | ||
| 
 | ||
| 		udelay(200);
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * 4. Deassert DDRn_RESET_L pin by writing
 | ||
| 		 *    LMC(0..3)_RESET_CTL[DDR3RST] = 1
 | ||
| 		 *    without modifying any other LMC(0..3)_RESET_CTL fields.
 | ||
| 		 * 5. Read LMC(0..3)_RESET_CTL and wait for the result.
 | ||
| 		 * 6. Wait a minimum of 500us. This guarantees the necessary
 | ||
| 		 *    T = 500us delay between DDRn_RESET_L deassertion and
 | ||
| 		 *    DDRn_DIMM*_CKE* assertion.
 | ||
| 		 */
 | ||
| 		cn7xxx_lmc_ddr3_reset(priv, if_num, LMC_DDR3_RESET_DEASSERT);
 | ||
| 
 | ||
| 		/* Toggle Reset Again */
 | ||
| 		/* That is, assert, then de-assert, one more time */
 | ||
| 		cn7xxx_lmc_ddr3_reset(priv, if_num, LMC_DDR3_RESET_ASSERT);
 | ||
| 		cn7xxx_lmc_ddr3_reset(priv, if_num, LMC_DDR3_RESET_DEASSERT);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| void oct3_ddr3_seq(struct ddr_priv *priv, int rank_mask, int if_num,
 | ||
| 		   int sequence)
 | ||
| {
 | ||
| 	/*
 | ||
| 	 * 3. Without changing any other fields in LMC(0)_CONFIG, write
 | ||
| 	 *    LMC(0)_CONFIG[RANKMASK] then write both
 | ||
| 	 *    LMC(0)_SEQ_CTL[SEQ_SEL,INIT_START] = 1 with a single CSR write
 | ||
| 	 *    operation. LMC(0)_CONFIG[RANKMASK] bits should be set to indicate
 | ||
| 	 *    the ranks that will participate in the sequence.
 | ||
| 	 *
 | ||
| 	 *    The LMC(0)_SEQ_CTL[SEQ_SEL] value should select power-up/init or
 | ||
| 	 *    selfrefresh exit, depending on whether the DRAM parts are in
 | ||
| 	 *    self-refresh and whether their contents should be preserved. While
 | ||
| 	 *    LMC performs these sequences, it will not perform any other DDR3
 | ||
| 	 *    transactions. When the sequence is complete, hardware sets the
 | ||
| 	 *    LMC(0)_CONFIG[INIT_STATUS] bits for the ranks that have been
 | ||
| 	 *    initialized.
 | ||
| 	 *
 | ||
| 	 *    If power-up/init is selected immediately following a DRESET
 | ||
| 	 *    assertion, LMC executes the sequence described in the "Reset and
 | ||
| 	 *    Initialization Procedure" section of the JEDEC DDR3
 | ||
| 	 *    specification. This includes activating CKE, writing all four DDR3
 | ||
| 	 *    mode registers on all selected ranks, and issuing the required
 | ||
| 	 *    ZQCL
 | ||
| 	 *    command. The LMC(0)_CONFIG[RANKMASK] value should select all ranks
 | ||
| 	 *    with attached DRAM in this case. If LMC(0)_CONTROL[RDIMM_ENA] = 1,
 | ||
| 	 *    LMC writes the JEDEC standard SSTE32882 control words selected by
 | ||
| 	 *    LMC(0)_DIMM_CTL[DIMM*_WMASK] between DDR_CKE* signal assertion and
 | ||
| 	 *    the first DDR3 mode register write operation.
 | ||
| 	 *    LMC(0)_DIMM_CTL[DIMM*_WMASK] should be cleared to 0 if the
 | ||
| 	 *    corresponding DIMM is not present.
 | ||
| 	 *
 | ||
| 	 *    If self-refresh exit is selected, LMC executes the required SRX
 | ||
| 	 *    command followed by a refresh and ZQ calibration. Section 4.5
 | ||
| 	 *    describes behavior of a REF + ZQCS.  LMC does not write the DDR3
 | ||
| 	 *    mode registers as part of this sequence, and the mode register
 | ||
| 	 *    parameters must match at self-refresh entry and exit times.
 | ||
| 	 *
 | ||
| 	 * 4. Read LMC(0)_SEQ_CTL and wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE]
 | ||
| 	 *    to be set.
 | ||
| 	 *
 | ||
| 	 * 5. Read LMC(0)_CONFIG[INIT_STATUS] and confirm that all ranks have
 | ||
| 	 *    been initialized.
 | ||
| 	 */
 | ||
| 
 | ||
| 	union cvmx_lmcx_seq_ctl seq_ctl;
 | ||
| 	union cvmx_lmcx_config lmc_config;
 | ||
| 	int timeout;
 | ||
| 
 | ||
| 	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
 | ||
| 	lmc_config.s.rankmask = rank_mask;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
 | ||
| 
 | ||
| 	seq_ctl.u64 = 0;
 | ||
| 
 | ||
| 	seq_ctl.s.init_start = 1;
 | ||
| 	seq_ctl.s.seq_sel = sequence;
 | ||
| 
 | ||
| 	ddr_seq_print
 | ||
| 	    ("Performing LMC sequence: rank_mask=0x%02x, sequence=0x%x, %s\n",
 | ||
| 	     rank_mask, sequence, sequence_str[sequence]);
 | ||
| 
 | ||
| 	if (seq_ctl.s.seq_sel == 3)
 | ||
| 		debug("LMC%d: Exiting Self-refresh Rank_mask:%x\n", if_num,
 | ||
| 		      rank_mask);
 | ||
| 
 | ||
| 	lmc_wr(priv, CVMX_LMCX_SEQ_CTL(if_num), seq_ctl.u64);
 | ||
| 	lmc_rd(priv, CVMX_LMCX_SEQ_CTL(if_num));
 | ||
| 
 | ||
| 	timeout = 100;
 | ||
| 	do {
 | ||
| 		udelay(100);	/* Wait a while */
 | ||
| 		seq_ctl.u64 = lmc_rd(priv, CVMX_LMCX_SEQ_CTL(if_num));
 | ||
| 		if (--timeout == 0) {
 | ||
| 			printf("Sequence %d timed out\n", sequence);
 | ||
| 			break;
 | ||
| 		}
 | ||
| 	} while (seq_ctl.s.seq_complete != 1);
 | ||
| 
 | ||
| 	ddr_seq_print("           LMC sequence=%x: Completed.\n", sequence);
 | ||
| }
 | ||
| 
 | ||
| #define bdk_numa_get_address(n, p)	((p) | ((u64)n) << CVMX_NODE_MEM_SHIFT)
 | ||
| #define AREA_BASE_OFFSET		BIT_ULL(26)
 | ||
| 
 | ||
| static int test_dram_byte64(struct ddr_priv *priv, int lmc, u64 p,
 | ||
| 			    u64 bitmask, u64 *xor_data)
 | ||
| {
 | ||
| 	u64 p1, p2, d1, d2;
 | ||
| 	u64 v, v1;
 | ||
| 	u64 p2offset = (1ULL << 26);	// offset to area 2
 | ||
| 	u64 datamask;
 | ||
| 	u64 xor;
 | ||
| 	u64 i, j, k;
 | ||
| 	u64 ii;
 | ||
| 	int errors = 0;
 | ||
| 	//u64 index;
 | ||
| 	u64 pattern1 = cvmx_rng_get_random64();
 | ||
| 	u64 pattern2 = 0;
 | ||
| 	u64 bad_bits[2] = { 0, 0 };
 | ||
| 	int kbitno = (octeon_is_cpuid(OCTEON_CN7XXX)) ? 20 : 18;
 | ||
| 	union cvmx_l2c_ctl l2c_ctl;
 | ||
| 	int burst;
 | ||
| 	int saved_dissblkdty;
 | ||
| 	int node = 0;
 | ||
| 
 | ||
| 	// Force full cacheline write-backs to boost traffic
 | ||
| 	l2c_ctl.u64 = l2c_rd(priv, CVMX_L2C_CTL_REL);
 | ||
| 	saved_dissblkdty = l2c_ctl.cn78xx.dissblkdty;
 | ||
| 	l2c_ctl.cn78xx.dissblkdty = 1;
 | ||
| 	l2c_wr(priv, CVMX_L2C_CTL_REL, l2c_ctl.u64);
 | ||
| 
 | ||
| 	if (octeon_is_cpuid(OCTEON_CN73XX) || octeon_is_cpuid(OCTEON_CNF75XX))
 | ||
| 		kbitno = 18;
 | ||
| 
 | ||
| 	// Byte lanes may be clear in the mask to indicate no testing on that
 | ||
| 	//lane.
 | ||
| 	datamask = bitmask;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Add offset to both test regions to not clobber boot stuff
 | ||
| 	 * when running from L2 for NAND boot.
 | ||
| 	 */
 | ||
| 	p += AREA_BASE_OFFSET;	// make sure base is out of the way of boot
 | ||
| 
 | ||
| 	// final address must include LMC and node
 | ||
| 	p |= (lmc << 7);	/* Map address into proper interface */
 | ||
| 	p = bdk_numa_get_address(node, p);	/* Map to node */
 | ||
| 	p |= 1ull << 63;
 | ||
| 
 | ||
| #define II_INC BIT_ULL(22)
 | ||
| #define II_MAX BIT_ULL(22)
 | ||
| #define K_INC  BIT_ULL(14)
 | ||
| #define K_MAX  BIT_ULL(kbitno)
 | ||
| #define J_INC  BIT_ULL(9)
 | ||
| #define J_MAX  BIT_ULL(12)
 | ||
| #define I_INC  BIT_ULL(3)
 | ||
| #define I_MAX  BIT_ULL(7)
 | ||
| 
 | ||
| 	debug("N%d.LMC%d: %s: phys_addr=0x%llx/0x%llx (0x%llx)\n",
 | ||
| 	      node, lmc, __func__, p, p + p2offset, 1ULL << kbitno);
 | ||
| 
 | ||
| 	// loops are ordered so that only a single 64-bit slot is written to
 | ||
| 	// each cacheline at one time, then the cachelines are forced out;
 | ||
| 	// this should maximize read/write traffic
 | ||
| 
 | ||
| 	// FIXME? extend the range of memory tested!!
 | ||
| 	for (ii = 0; ii < II_MAX; ii += II_INC) {
 | ||
| 		for (i = 0; i < I_MAX; i += I_INC) {
 | ||
| 			for (k = 0; k < K_MAX; k += K_INC) {
 | ||
| 				for (j = 0; j < J_MAX; j += J_INC) {
 | ||
| 					p1 = p + ii + k + j;
 | ||
| 					p2 = p1 + p2offset;
 | ||
| 
 | ||
| 					v = pattern1 * (p1 + i);
 | ||
| 					// write the same thing to both areas
 | ||
| 					v1 = v;
 | ||
| 
 | ||
| 					cvmx_write64_uint64(p1 + i, v);
 | ||
| 					cvmx_write64_uint64(p2 + i, v1);
 | ||
| 
 | ||
| 					CVMX_CACHE_WBIL2(p1, 0);
 | ||
| 					CVMX_CACHE_WBIL2(p2, 0);
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	CVMX_DCACHE_INVALIDATE;
 | ||
| 
 | ||
| 	debug("N%d.LMC%d: dram_tuning_mem_xor: done INIT loop\n", node, lmc);
 | ||
| 
 | ||
| 	/* Make a series of passes over the memory areas. */
 | ||
| 
 | ||
| 	for (burst = 0; burst < 1 /* was: dram_tune_use_bursts */ ; burst++) {
 | ||
| 		u64 this_pattern = cvmx_rng_get_random64();
 | ||
| 
 | ||
| 		pattern2 ^= this_pattern;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * XOR the data with a random value, applying the change to both
 | ||
| 		 * memory areas.
 | ||
| 		 */
 | ||
| 
 | ||
| 		// FIXME? extend the range of memory tested!!
 | ||
| 		for (ii = 0; ii < II_MAX; ii += II_INC) {
 | ||
| 			// FIXME: rearranged, did not make much difference?
 | ||
| 			for (i = 0; i < I_MAX; i += I_INC) {
 | ||
| 				for (k = 0; k < K_MAX; k += K_INC) {
 | ||
| 					for (j = 0; j < J_MAX; j += J_INC) {
 | ||
| 						p1 = p + ii + k + j;
 | ||
| 						p2 = p1 + p2offset;
 | ||
| 
 | ||
| 						v = cvmx_read64_uint64(p1 +
 | ||
| 								      i) ^
 | ||
| 						    this_pattern;
 | ||
| 						v1 = cvmx_read64_uint64(p2 +
 | ||
| 								       i) ^
 | ||
| 						    this_pattern;
 | ||
| 
 | ||
| 						cvmx_write64_uint64(p1 + i, v);
 | ||
| 						cvmx_write64_uint64(p2 + i, v1);
 | ||
| 
 | ||
| 						CVMX_CACHE_WBIL2(p1, 0);
 | ||
| 						CVMX_CACHE_WBIL2(p2, 0);
 | ||
| 					}
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		CVMX_DCACHE_INVALIDATE;
 | ||
| 
 | ||
| 		debug("N%d.LMC%d: dram_tuning_mem_xor: done MODIFY loop\n",
 | ||
| 		      node, lmc);
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Look for differences in the areas. If there is a mismatch,
 | ||
| 		 * reset both memory locations with the same pattern. Failing
 | ||
| 		 * to do so means that on all subsequent passes the pair of
 | ||
| 		 * locations remain out of sync giving spurious errors.
 | ||
| 		 */
 | ||
| 
 | ||
| 		// FIXME: Change the loop order so that an entire cache line
 | ||
| 		//        is compared at one time. This is so that a read
 | ||
| 		//        error that occurs *anywhere* on the cacheline will
 | ||
| 		//        be caught, rather than comparing only 1 cacheline
 | ||
| 		//        slot at a time, where an error on a different
 | ||
| 		//        slot will be missed that time around
 | ||
| 		// Does the above make sense?
 | ||
| 
 | ||
| 		// FIXME? extend the range of memory tested!!
 | ||
| 		for (ii = 0; ii < II_MAX; ii += II_INC) {
 | ||
| 			for (k = 0; k < K_MAX; k += K_INC) {
 | ||
| 				for (j = 0; j < J_MAX; j += J_INC) {
 | ||
| 					p1 = p + ii + k + j;
 | ||
| 					p2 = p1 + p2offset;
 | ||
| 
 | ||
| 					// process entire cachelines in the
 | ||
| 					//innermost loop
 | ||
| 					for (i = 0; i < I_MAX; i += I_INC) {
 | ||
| 						int bybit = 1;
 | ||
| 						// start in byte lane 0
 | ||
| 						u64 bymsk = 0xffULL;
 | ||
| 
 | ||
| 						// FIXME: this should predict
 | ||
| 						// what we find...???
 | ||
| 						v = ((p1 + i) * pattern1) ^
 | ||
| 							pattern2;
 | ||
| 						d1 = cvmx_read64_uint64(p1 + i);
 | ||
| 						d2 = cvmx_read64_uint64(p2 + i);
 | ||
| 
 | ||
| 						// union of error bits only in
 | ||
| 						// active byte lanes
 | ||
| 						xor = ((d1 ^ v) | (d2 ^ v)) &
 | ||
| 							datamask;
 | ||
| 
 | ||
| 						if (!xor)
 | ||
| 							continue;
 | ||
| 
 | ||
| 						// accumulate bad bits
 | ||
| 						bad_bits[0] |= xor;
 | ||
| 
 | ||
| 						while (xor != 0) {
 | ||
| 							debug("ERROR(%03d): [0x%016llX] [0x%016llX]  expected 0x%016llX d1 %016llX d2 %016llX\n",
 | ||
| 							      burst, p1, p2, v,
 | ||
| 							      d1, d2);
 | ||
| 							// error(s) in this lane
 | ||
| 							if (xor & bymsk) {
 | ||
| 								// set the byte
 | ||
| 								// error bit
 | ||
| 								errors |= bybit;
 | ||
| 								// clear byte
 | ||
| 								// lane in
 | ||
| 								// error bits
 | ||
| 								xor &= ~bymsk;
 | ||
| 								// clear the
 | ||
| 								// byte lane in
 | ||
| 								// the mask
 | ||
| 								datamask &= ~bymsk;
 | ||
| #if EXIT_WHEN_ALL_LANES_HAVE_ERRORS
 | ||
| 								// nothing
 | ||
| 								// left to do
 | ||
| 								if (datamask == 0) {
 | ||
| 									return errors;
 | ||
| 								}
 | ||
| #endif /* EXIT_WHEN_ALL_LANES_HAVE_ERRORS */
 | ||
| 							}
 | ||
| 							// move mask into
 | ||
| 							// next byte lane
 | ||
| 							bymsk <<= 8;
 | ||
| 							// move bit into next
 | ||
| 							// byte position
 | ||
| 							bybit <<= 1;
 | ||
| 						}
 | ||
| 					}
 | ||
| 					CVMX_CACHE_WBIL2(p1, 0);
 | ||
| 					CVMX_CACHE_WBIL2(p2, 0);
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		debug("N%d.LMC%d: dram_tuning_mem_xor: done TEST loop\n",
 | ||
| 		      node, lmc);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (xor_data) {		// send the bad bits back...
 | ||
| 		xor_data[0] = bad_bits[0];
 | ||
| 		xor_data[1] = bad_bits[1];	// let it be zeroed
 | ||
| 	}
 | ||
| 
 | ||
| 	// Restore original setting that could enable partial cacheline writes
 | ||
| 	l2c_ctl.u64 = l2c_rd(priv, CVMX_L2C_CTL_REL);
 | ||
| 	l2c_ctl.cn78xx.dissblkdty = saved_dissblkdty;
 | ||
| 	l2c_wr(priv, CVMX_L2C_CTL_REL, l2c_ctl.u64);
 | ||
| 
 | ||
| 	return errors;
 | ||
| }
 | ||
| 
 | ||
| static void ddr4_mrw(struct ddr_priv *priv, int if_num, int rank,
 | ||
| 		     int mr_wr_addr, int mr_wr_sel, int mr_wr_bg1)
 | ||
| {
 | ||
| 	union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl;
 | ||
| 
 | ||
| 	lmc_mr_mpr_ctl.u64 = 0;
 | ||
| 	lmc_mr_mpr_ctl.cn78xx.mr_wr_addr = (mr_wr_addr == -1) ? 0 : mr_wr_addr;
 | ||
| 	lmc_mr_mpr_ctl.cn78xx.mr_wr_sel = mr_wr_sel;
 | ||
| 	lmc_mr_mpr_ctl.cn78xx.mr_wr_rank = rank;
 | ||
| 	lmc_mr_mpr_ctl.cn78xx.mr_wr_use_default_value =
 | ||
| 		(mr_wr_addr == -1) ? 1 : 0;
 | ||
| 	lmc_mr_mpr_ctl.cn78xx.mr_wr_bg1 = mr_wr_bg1;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
 | ||
| 
 | ||
| 	/* Mode Register Write */
 | ||
| 	oct3_ddr3_seq(priv, 1 << rank, if_num, 0x8);
 | ||
| }
 | ||
| 
 | ||
| #define INV_A0_17(x)	((x) ^ 0x22bf8)
 | ||
| 
 | ||
| static void set_mpr_mode(struct ddr_priv *priv, int rank_mask,
 | ||
| 			 int if_num, int dimm_count, int mpr, int bg1)
 | ||
| {
 | ||
| 	int rankx;
 | ||
| 
 | ||
| 	debug("All Ranks: Set mpr mode = %x %c-side\n",
 | ||
| 	      mpr, (bg1 == 0) ? 'A' : 'B');
 | ||
| 
 | ||
| 	for (rankx = 0; rankx < dimm_count * 4; rankx++) {
 | ||
| 		if (!(rank_mask & (1 << rankx)))
 | ||
| 			continue;
 | ||
| 		if (bg1 == 0) {
 | ||
| 			/* MR3 A-side */
 | ||
| 			ddr4_mrw(priv, if_num, rankx, mpr << 2, 3, bg1);
 | ||
| 		} else {
 | ||
| 			/* MR3 B-side */
 | ||
| 			ddr4_mrw(priv, if_num, rankx, INV_A0_17(mpr << 2), ~3,
 | ||
| 				 bg1);
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void do_ddr4_mpr_read(struct ddr_priv *priv, int if_num,
 | ||
| 			     int rank, int page, int location)
 | ||
| {
 | ||
| 	union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl;
 | ||
| 
 | ||
| 	lmc_mr_mpr_ctl.u64 = lmc_rd(priv, CVMX_LMCX_MR_MPR_CTL(if_num));
 | ||
| 	lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = 0;
 | ||
| 	lmc_mr_mpr_ctl.cn70xx.mr_wr_sel = page;	/* Page */
 | ||
| 	lmc_mr_mpr_ctl.cn70xx.mr_wr_rank = rank;
 | ||
| 	lmc_mr_mpr_ctl.cn70xx.mpr_loc = location;
 | ||
| 	lmc_mr_mpr_ctl.cn70xx.mpr_wr = 0;	/* Read=0, Write=1 */
 | ||
| 	lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
 | ||
| 
 | ||
| 	/* MPR register access sequence */
 | ||
| 	oct3_ddr3_seq(priv, 1 << rank, if_num, 0x9);
 | ||
| 
 | ||
| 	debug("LMC_MR_MPR_CTL                  : 0x%016llx\n",
 | ||
| 	      lmc_mr_mpr_ctl.u64);
 | ||
| 	debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_addr: 0x%02x\n",
 | ||
| 	      lmc_mr_mpr_ctl.cn70xx.mr_wr_addr);
 | ||
| 	debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_sel : 0x%02x\n",
 | ||
| 	      lmc_mr_mpr_ctl.cn70xx.mr_wr_sel);
 | ||
| 	debug("lmc_mr_mpr_ctl.cn70xx.mpr_loc   : 0x%02x\n",
 | ||
| 	      lmc_mr_mpr_ctl.cn70xx.mpr_loc);
 | ||
| 	debug("lmc_mr_mpr_ctl.cn70xx.mpr_wr    : 0x%02x\n",
 | ||
| 	      lmc_mr_mpr_ctl.cn70xx.mpr_wr);
 | ||
| }
 | ||
| 
 | ||
| static int set_rdimm_mode(struct ddr_priv *priv, int if_num, int enable)
 | ||
| {
 | ||
| 	union cvmx_lmcx_control lmc_control;
 | ||
| 	int save_rdimm_mode;
 | ||
| 
 | ||
| 	lmc_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
 | ||
| 	save_rdimm_mode = lmc_control.s.rdimm_ena;
 | ||
| 	lmc_control.s.rdimm_ena = enable;
 | ||
| 	debug("Setting RDIMM_ENA = %x\n", enable);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), lmc_control.u64);
 | ||
| 
 | ||
| 	return save_rdimm_mode;
 | ||
| }
 | ||
| 
 | ||
| static void ddr4_mpr_read(struct ddr_priv *priv, int if_num, int rank,
 | ||
| 			  int page, int location, u64 *mpr_data)
 | ||
| {
 | ||
| 	do_ddr4_mpr_read(priv, if_num, rank, page, location);
 | ||
| 
 | ||
| 	mpr_data[0] = lmc_rd(priv, CVMX_LMCX_MPR_DATA0(if_num));
 | ||
| }
 | ||
| 
 | ||
| /* Display MPR values for Page */
 | ||
| static void display_mpr_page(struct ddr_priv *priv, int rank_mask,
 | ||
| 			     int if_num, int page)
 | ||
| {
 | ||
| 	int rankx, location;
 | ||
| 	u64 mpr_data[3];
 | ||
| 
 | ||
| 	for (rankx = 0; rankx < 4; rankx++) {
 | ||
| 		if (!(rank_mask & (1 << rankx)))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		debug("N0.LMC%d.R%d: MPR Page %d loc [0:3]: ",
 | ||
| 		      if_num, rankx, page);
 | ||
| 		for (location = 0; location < 4; location++) {
 | ||
| 			ddr4_mpr_read(priv, if_num, rankx, page, location,
 | ||
| 				      mpr_data);
 | ||
| 			debug("0x%02llx ", mpr_data[0] & 0xFF);
 | ||
| 		}
 | ||
| 		debug("\n");
 | ||
| 
 | ||
| 	}			/* for (rankx = 0; rankx < 4; rankx++) */
 | ||
| }
 | ||
| 
 | ||
| static void ddr4_mpr_write(struct ddr_priv *priv, int if_num, int rank,
 | ||
| 			   int page, int location, u8 mpr_data)
 | ||
| {
 | ||
| 	union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl;
 | ||
| 
 | ||
| 	lmc_mr_mpr_ctl.u64 = 0;
 | ||
| 	lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = mpr_data;
 | ||
| 	lmc_mr_mpr_ctl.cn70xx.mr_wr_sel = page;	/* Page */
 | ||
| 	lmc_mr_mpr_ctl.cn70xx.mr_wr_rank = rank;
 | ||
| 	lmc_mr_mpr_ctl.cn70xx.mpr_loc = location;
 | ||
| 	lmc_mr_mpr_ctl.cn70xx.mpr_wr = 1;	/* Read=0, Write=1 */
 | ||
| 	lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
 | ||
| 
 | ||
| 	/* MPR register access sequence */
 | ||
| 	oct3_ddr3_seq(priv, 1 << rank, if_num, 0x9);
 | ||
| 
 | ||
| 	debug("LMC_MR_MPR_CTL                  : 0x%016llx\n",
 | ||
| 	      lmc_mr_mpr_ctl.u64);
 | ||
| 	debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_addr: 0x%02x\n",
 | ||
| 	      lmc_mr_mpr_ctl.cn70xx.mr_wr_addr);
 | ||
| 	debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_sel : 0x%02x\n",
 | ||
| 	      lmc_mr_mpr_ctl.cn70xx.mr_wr_sel);
 | ||
| 	debug("lmc_mr_mpr_ctl.cn70xx.mpr_loc   : 0x%02x\n",
 | ||
| 	      lmc_mr_mpr_ctl.cn70xx.mpr_loc);
 | ||
| 	debug("lmc_mr_mpr_ctl.cn70xx.mpr_wr    : 0x%02x\n",
 | ||
| 	      lmc_mr_mpr_ctl.cn70xx.mpr_wr);
 | ||
| }
 | ||
| 
 | ||
| static void set_vref(struct ddr_priv *priv, int if_num, int rank,
 | ||
| 		     int range, int value)
 | ||
| {
 | ||
| 	union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl;
 | ||
| 	union cvmx_lmcx_modereg_params3 lmc_modereg_params3;
 | ||
| 	int mr_wr_addr = 0;
 | ||
| 
 | ||
| 	lmc_mr_mpr_ctl.u64 = 0;
 | ||
| 	lmc_modereg_params3.u64 = lmc_rd(priv,
 | ||
| 					 CVMX_LMCX_MODEREG_PARAMS3(if_num));
 | ||
| 
 | ||
| 	/* A12:A10 tCCD_L */
 | ||
| 	mr_wr_addr |= lmc_modereg_params3.s.tccd_l << 10;
 | ||
| 	mr_wr_addr |= 1 << 7;	/* A7 1 = Enable(Training Mode) */
 | ||
| 	mr_wr_addr |= range << 6;	/* A6 vrefDQ Training Range */
 | ||
| 	mr_wr_addr |= value << 0;	/* A5:A0 vrefDQ Training Value */
 | ||
| 
 | ||
| 	lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = mr_wr_addr;
 | ||
| 	lmc_mr_mpr_ctl.cn70xx.mr_wr_sel = 6;	/* Write MR6 */
 | ||
| 	lmc_mr_mpr_ctl.cn70xx.mr_wr_rank = rank;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
 | ||
| 
 | ||
| 	/* 0x8 = Mode Register Write */
 | ||
| 	oct3_ddr3_seq(priv, 1 << rank, if_num, 0x8);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * It is vendor specific whether vref_value is captured with A7=1.
 | ||
| 	 * A subsequent MRS might be necessary.
 | ||
| 	 */
 | ||
| 	oct3_ddr3_seq(priv, 1 << rank, if_num, 0x8);
 | ||
| 
 | ||
| 	mr_wr_addr &= ~(1 << 7);	/* A7 0 = Disable(Training Mode) */
 | ||
| 	lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = mr_wr_addr;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
 | ||
| }
 | ||
| 
 | ||
| static void set_dram_output_inversion(struct ddr_priv *priv, int if_num,
 | ||
| 				      int dimm_count, int rank_mask,
 | ||
| 				      int inversion)
 | ||
| {
 | ||
| 	union cvmx_lmcx_ddr4_dimm_ctl lmc_ddr4_dimm_ctl;
 | ||
| 	union cvmx_lmcx_dimmx_params lmc_dimmx_params;
 | ||
| 	union cvmx_lmcx_dimm_ctl lmc_dimm_ctl;
 | ||
| 	int dimm_no;
 | ||
| 
 | ||
| 	/* Don't touch extenced register control words */
 | ||
| 	lmc_ddr4_dimm_ctl.u64 = 0;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_DDR4_DIMM_CTL(if_num), lmc_ddr4_dimm_ctl.u64);
 | ||
| 
 | ||
| 	debug("All DIMMs: Register Control Word          RC0 : %x\n",
 | ||
| 	      (inversion & 1));
 | ||
| 
 | ||
| 	for (dimm_no = 0; dimm_no < dimm_count; ++dimm_no) {
 | ||
| 		lmc_dimmx_params.u64 =
 | ||
| 		    lmc_rd(priv, CVMX_LMCX_DIMMX_PARAMS(dimm_no, if_num));
 | ||
| 		lmc_dimmx_params.s.rc0 =
 | ||
| 		    (lmc_dimmx_params.s.rc0 & ~1) | (inversion & 1);
 | ||
| 
 | ||
| 		lmc_wr(priv,
 | ||
| 		       CVMX_LMCX_DIMMX_PARAMS(dimm_no, if_num),
 | ||
| 		       lmc_dimmx_params.u64);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* LMC0_DIMM_CTL */
 | ||
| 	lmc_dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num));
 | ||
| 	lmc_dimm_ctl.s.dimm0_wmask = 0x1;
 | ||
| 	lmc_dimm_ctl.s.dimm1_wmask = (dimm_count > 1) ? 0x0001 : 0x0000;
 | ||
| 
 | ||
| 	debug("LMC DIMM_CTL                                  : 0x%016llx\n",
 | ||
| 	      lmc_dimm_ctl.u64);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), lmc_dimm_ctl.u64);
 | ||
| 
 | ||
| 	oct3_ddr3_seq(priv, rank_mask, if_num, 0x7);	/* Init RCW */
 | ||
| }
 | ||
| 
 | ||
| static void write_mpr_page0_pattern(struct ddr_priv *priv, int rank_mask,
 | ||
| 				    int if_num, int dimm_count, int pattern,
 | ||
| 				    int location_mask)
 | ||
| {
 | ||
| 	int rankx;
 | ||
| 	int location;
 | ||
| 
 | ||
| 	for (rankx = 0; rankx < dimm_count * 4; rankx++) {
 | ||
| 		if (!(rank_mask & (1 << rankx)))
 | ||
| 			continue;
 | ||
| 		for (location = 0; location < 4; ++location) {
 | ||
| 			if (!(location_mask & (1 << location)))
 | ||
| 				continue;
 | ||
| 
 | ||
| 			ddr4_mpr_write(priv, if_num, rankx,
 | ||
| 				       /* page */ 0, /* location */ location,
 | ||
| 				       pattern);
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void change_rdimm_mpr_pattern(struct ddr_priv *priv, int rank_mask,
 | ||
| 				     int if_num, int dimm_count)
 | ||
| {
 | ||
| 	int save_ref_zqcs_int;
 | ||
| 	union cvmx_lmcx_config lmc_config;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Okay, here is the latest sequence.  This should work for all
 | ||
| 	 * chips and passes (78,88,73,etc).  This sequence should be run
 | ||
| 	 * immediately after DRAM INIT.  The basic idea is to write the
 | ||
| 	 * same pattern into each of the 4 MPR locations in the DRAM, so
 | ||
| 	 * that the same value is returned when doing MPR reads regardless
 | ||
| 	 * of the inversion state.  My advice is to put this into a
 | ||
| 	 * function, change_rdimm_mpr_pattern or something like that, so
 | ||
| 	 * that it can be called multiple times, as I think David wants a
 | ||
| 	 * clock-like pattern for OFFSET training, but does not want a
 | ||
| 	 * clock pattern for Bit-Deskew.  You should then be able to call
 | ||
| 	 * this at any point in the init sequence (after DRAM init) to
 | ||
| 	 * change the pattern to a new value.
 | ||
| 	 * Mike
 | ||
| 	 *
 | ||
| 	 * A correction: PHY doesn't need any pattern during offset
 | ||
| 	 * training, but needs clock like pattern for internal vref and
 | ||
| 	 * bit-dskew training.  So for that reason, these steps below have
 | ||
| 	 * to be conducted before those trainings to pre-condition
 | ||
| 	 * the pattern.  David
 | ||
| 	 *
 | ||
| 	 * Note: Step 3, 4, 8 and 9 have to be done through RDIMM
 | ||
| 	 * sequence. If you issue MRW sequence to do RCW write (in o78 pass
 | ||
| 	 * 1 at least), LMC will still do two commands because
 | ||
| 	 * CONTROL[RDIMM_ENA] is still set high. We don't want it to have
 | ||
| 	 * any unintentional mode register write so it's best to do what
 | ||
| 	 * Mike is doing here.
 | ||
| 	 * Andrew
 | ||
| 	 */
 | ||
| 
 | ||
| 	/* 1) Disable refresh (REF_ZQCS_INT = 0) */
 | ||
| 
 | ||
| 	debug("1) Disable refresh (REF_ZQCS_INT = 0)\n");
 | ||
| 
 | ||
| 	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
 | ||
| 	save_ref_zqcs_int = lmc_config.cn78xx.ref_zqcs_int;
 | ||
| 	lmc_config.cn78xx.ref_zqcs_int = 0;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 2) Put all devices in MPR mode (Run MRW sequence (sequence=8)
 | ||
| 	 * with MODEREG_PARAMS0[MPRLOC]=0,
 | ||
| 	 * MODEREG_PARAMS0[MPR]=1, MR_MPR_CTL[MR_WR_SEL]=3, and
 | ||
| 	 * MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=1)
 | ||
| 	 */
 | ||
| 
 | ||
| 	debug("2) Put all devices in MPR mode (Run MRW sequence (sequence=8)\n");
 | ||
| 
 | ||
| 	/* A-side */
 | ||
| 	set_mpr_mode(priv, rank_mask, if_num, dimm_count, 1, 0);
 | ||
| 	/* B-side */
 | ||
| 	set_mpr_mode(priv, rank_mask, if_num, dimm_count, 1, 1);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * a. Or you can set MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=0 and set
 | ||
| 	 * the value you would like directly into
 | ||
| 	 * MR_MPR_CTL[MR_WR_ADDR]
 | ||
| 	 */
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 3) Disable RCD Parity (if previously enabled) - parity does not
 | ||
| 	 * work if inversion disabled
 | ||
| 	 */
 | ||
| 
 | ||
| 	debug("3) Disable RCD Parity\n");
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 4) Disable Inversion in the RCD.
 | ||
| 	 * a. I did (3&4) via the RDIMM sequence (seq_sel=7), but it
 | ||
| 	 * may be easier to use the MRW sequence (seq_sel=8).  Just set
 | ||
| 	 * MR_MPR_CTL[MR_WR_SEL]=7, MR_MPR_CTL[MR_WR_ADDR][3:0]=data,
 | ||
| 	 * MR_MPR_CTL[MR_WR_ADDR][7:4]=RCD reg
 | ||
| 	 */
 | ||
| 
 | ||
| 	debug("4) Disable Inversion in the RCD.\n");
 | ||
| 
 | ||
| 	set_dram_output_inversion(priv, if_num, dimm_count, rank_mask, 1);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 5) Disable CONTROL[RDIMM_ENA] so that MR sequence goes out
 | ||
| 	 * non-inverted.
 | ||
| 	 */
 | ||
| 
 | ||
| 	debug("5) Disable CONTROL[RDIMM_ENA]\n");
 | ||
| 
 | ||
| 	set_rdimm_mode(priv, if_num, 0);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 6) Write all 4 MPR registers with the desired pattern (have to
 | ||
| 	 * do this for all enabled ranks)
 | ||
| 	 * a. MR_MPR_CTL.MPR_WR=1, MR_MPR_CTL.MPR_LOC=0..3,
 | ||
| 	 * MR_MPR_CTL.MR_WR_SEL=0, MR_MPR_CTL.MR_WR_ADDR[7:0]=pattern
 | ||
| 	 */
 | ||
| 
 | ||
| 	debug("6) Write all 4 MPR page 0 Training Patterns\n");
 | ||
| 
 | ||
| 	write_mpr_page0_pattern(priv, rank_mask, if_num, dimm_count, 0x55, 0x8);
 | ||
| 
 | ||
| 	/* 7) Re-enable RDIMM_ENA */
 | ||
| 
 | ||
| 	debug("7) Re-enable RDIMM_ENA\n");
 | ||
| 
 | ||
| 	set_rdimm_mode(priv, if_num, 1);
 | ||
| 
 | ||
| 	/* 8) Re-enable RDIMM inversion */
 | ||
| 
 | ||
| 	debug("8) Re-enable RDIMM inversion\n");
 | ||
| 
 | ||
| 	set_dram_output_inversion(priv, if_num, dimm_count, rank_mask, 0);
 | ||
| 
 | ||
| 	/* 9) Re-enable RDIMM parity (if desired) */
 | ||
| 
 | ||
| 	debug("9) Re-enable RDIMM parity (if desired)\n");
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 10)Take B-side devices out of MPR mode (Run MRW sequence
 | ||
| 	 * (sequence=8) with MODEREG_PARAMS0[MPRLOC]=0,
 | ||
| 	 * MODEREG_PARAMS0[MPR]=0, MR_MPR_CTL[MR_WR_SEL]=3, and
 | ||
| 	 * MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=1)
 | ||
| 	 */
 | ||
| 
 | ||
| 	debug("10)Take B-side devices out of MPR mode\n");
 | ||
| 
 | ||
| 	set_mpr_mode(priv, rank_mask, if_num, dimm_count,
 | ||
| 		     /* mpr */ 0, /* bg1 */ 1);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * a. Or you can set MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=0 and
 | ||
| 	 * set the value you would like directly into MR_MPR_CTL[MR_WR_ADDR]
 | ||
| 	 */
 | ||
| 
 | ||
| 	/* 11)Re-enable refresh (REF_ZQCS_INT=previous value) */
 | ||
| 
 | ||
| 	debug("11)Re-enable refresh (REF_ZQCS_INT=previous value)\n");
 | ||
| 
 | ||
| 	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
 | ||
| 	lmc_config.cn78xx.ref_zqcs_int = save_ref_zqcs_int;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
 | ||
| }
 | ||
| 
 | ||
| static int validate_hwl_seq(int *wl, int *seq)
 | ||
| {
 | ||
| 	// sequence index, step through the sequence array
 | ||
| 	int seqx;
 | ||
| 	int bitnum;
 | ||
| 
 | ||
| 	seqx = 0;
 | ||
| 
 | ||
| 	while (seq[seqx + 1] >= 0) {	// stop on next seq entry == -1
 | ||
| 		// but now, check current versus next
 | ||
| 		bitnum = (wl[seq[seqx]] << 2) | wl[seq[seqx + 1]];
 | ||
| 		// magic validity number (see matrix above)
 | ||
| 		if (!((1 << bitnum) & 0xBDE7))
 | ||
| 			return 1;
 | ||
| 		seqx++;
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int validate_hw_wl_settings(int if_num,
 | ||
| 				   union cvmx_lmcx_wlevel_rankx
 | ||
| 				   *lmc_wlevel_rank, int is_rdimm, int ecc_ena)
 | ||
| {
 | ||
| 	int wl[9], byte, errors;
 | ||
| 
 | ||
| 	// arrange the sequences so
 | ||
| 	// index 0 has byte 0, etc, ECC in middle
 | ||
| 	int useq[] = { 0, 1, 2, 3, 8, 4, 5, 6, 7, -1 };
 | ||
| 	// index 0 is ECC, then go down
 | ||
| 	int rseq1[] = { 8, 3, 2, 1, 0, -1 };
 | ||
| 	// index 0 has byte 4, then go up
 | ||
| 	int rseq2[] = { 4, 5, 6, 7, -1 };
 | ||
| 	// index 0 has byte 0, etc, no ECC
 | ||
| 	int useqno[] = { 0, 1, 2, 3, 4, 5, 6, 7, -1 };
 | ||
| 	// index 0 is byte 3, then go down, no ECC
 | ||
| 	int rseq1no[] = { 3, 2, 1, 0, -1 };
 | ||
| 
 | ||
| 	// in the CSR, bytes 0-7 are always data, byte 8 is ECC
 | ||
| 	for (byte = 0; byte < (8 + ecc_ena); byte++) {
 | ||
| 		// preprocess :-)
 | ||
| 		wl[byte] = (get_wl_rank(lmc_wlevel_rank, byte) >>
 | ||
| 			    1) & 3;
 | ||
| 	}
 | ||
| 
 | ||
| 	errors = 0;
 | ||
| 	if (is_rdimm) {		// RDIMM order
 | ||
| 		errors = validate_hwl_seq(wl, (ecc_ena) ? rseq1 : rseq1no);
 | ||
| 		errors += validate_hwl_seq(wl, rseq2);
 | ||
| 	} else {		// UDIMM order
 | ||
| 		errors = validate_hwl_seq(wl, (ecc_ena) ? useq : useqno);
 | ||
| 	}
 | ||
| 
 | ||
| 	return errors;
 | ||
| }
 | ||
| 
 | ||
| static unsigned int extr_wr(u64 u, int x)
 | ||
| {
 | ||
| 	return (unsigned int)(((u >> (x * 12 + 5)) & 0x3ULL) |
 | ||
| 			      ((u >> (51 + x - 2)) & 0x4ULL));
 | ||
| }
 | ||
| 
 | ||
| static void insrt_wr(u64 *up, int x, int v)
 | ||
| {
 | ||
| 	u64 u = *up;
 | ||
| 
 | ||
| 	u &= ~(((0x3ULL) << (x * 12 + 5)) | ((0x1ULL) << (51 + x)));
 | ||
| 	*up = (u | ((v & 0x3ULL) << (x * 12 + 5)) |
 | ||
| 	       ((v & 0x4ULL) << (51 + x - 2)));
 | ||
| }
 | ||
| 
 | ||
| /* Read out Deskew Settings for DDR */
 | ||
| 
 | ||
| struct deskew_bytes {
 | ||
| 	u16 bits[8];
 | ||
| };
 | ||
| 
 | ||
| struct deskew_data {
 | ||
| 	struct deskew_bytes bytes[9];
 | ||
| };
 | ||
| 
 | ||
| struct dac_data {
 | ||
| 	int bytes[9];
 | ||
| };
 | ||
| 
 | ||
| // T88 pass 1, skip 4=DAC
 | ||
| static const u8 dsk_bit_seq_p1[8] = { 0, 1, 2, 3, 5, 6, 7, 8 };
 | ||
| // T88 Pass 2, skip 4=DAC and 5=DBI
 | ||
| static const u8 dsk_bit_seq_p2[8] = { 0, 1, 2, 3, 6, 7, 8, 9 };
 | ||
| 
 | ||
| static void get_deskew_settings(struct ddr_priv *priv, int if_num,
 | ||
| 				struct deskew_data *dskdat)
 | ||
| {
 | ||
| 	union cvmx_lmcx_phy_ctl phy_ctl;
 | ||
| 	union cvmx_lmcx_config lmc_config;
 | ||
| 	int bit_index;
 | ||
| 	int byte_lane, byte_limit;
 | ||
| 	// NOTE: these are for pass 2.x
 | ||
| 	int is_o78p2 = !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X);
 | ||
| 	const u8 *bit_seq = (is_o78p2) ? dsk_bit_seq_p2 : dsk_bit_seq_p1;
 | ||
| 
 | ||
| 	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
 | ||
| 	byte_limit = ((!lmc_config.s.mode32b) ? 8 : 4) + lmc_config.s.ecc_ena;
 | ||
| 
 | ||
| 	memset(dskdat, 0, sizeof(*dskdat));
 | ||
| 
 | ||
| 	phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
 | ||
| 	phy_ctl.s.dsk_dbg_clk_scaler = 3;
 | ||
| 
 | ||
| 	for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
 | ||
| 		phy_ctl.s.dsk_dbg_byte_sel = byte_lane;	// set byte lane
 | ||
| 
 | ||
| 		for (bit_index = 0; bit_index < 8; ++bit_index) {
 | ||
| 			// set bit number and start read sequence
 | ||
| 			phy_ctl.s.dsk_dbg_bit_sel = bit_seq[bit_index];
 | ||
| 			phy_ctl.s.dsk_dbg_rd_start = 1;
 | ||
| 			lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
 | ||
| 
 | ||
| 			// poll for read sequence to complete
 | ||
| 			do {
 | ||
| 				phy_ctl.u64 =
 | ||
| 					lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
 | ||
| 			} while (phy_ctl.s.dsk_dbg_rd_complete != 1);
 | ||
| 
 | ||
| 			// record the data
 | ||
| 			dskdat->bytes[byte_lane].bits[bit_index] =
 | ||
| 				phy_ctl.s.dsk_dbg_rd_data & 0x3ff;
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void display_deskew_settings(struct ddr_priv *priv, int if_num,
 | ||
| 				    struct deskew_data *dskdat,
 | ||
| 				    int print_enable)
 | ||
| {
 | ||
| 	int byte_lane;
 | ||
| 	int bit_num;
 | ||
| 	u16 flags, deskew;
 | ||
| 	union cvmx_lmcx_config lmc_config;
 | ||
| 	int byte_limit;
 | ||
| 	const char *fc = " ?-=+*#&";
 | ||
| 
 | ||
| 	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
 | ||
| 	byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
 | ||
| 
 | ||
| 	if (print_enable) {
 | ||
| 		debug("N0.LMC%d: Deskew Data:              Bit =>      :",
 | ||
| 		      if_num);
 | ||
| 		for (bit_num = 7; bit_num >= 0; --bit_num)
 | ||
| 			debug(" %3d  ", bit_num);
 | ||
| 		debug("\n");
 | ||
| 	}
 | ||
| 
 | ||
| 	for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
 | ||
| 		if (print_enable)
 | ||
| 			debug("N0.LMC%d: Bit Deskew Byte %d %s               :",
 | ||
| 			      if_num, byte_lane,
 | ||
| 			      (print_enable >= 3) ? "FINAL" : "     ");
 | ||
| 
 | ||
| 		for (bit_num = 7; bit_num >= 0; --bit_num) {
 | ||
| 			flags = dskdat->bytes[byte_lane].bits[bit_num] & 7;
 | ||
| 			deskew = dskdat->bytes[byte_lane].bits[bit_num] >> 3;
 | ||
| 
 | ||
| 			if (print_enable)
 | ||
| 				debug(" %3d %c", deskew, fc[flags ^ 1]);
 | ||
| 
 | ||
| 		}		/* for (bit_num = 7; bit_num >= 0; --bit_num) */
 | ||
| 
 | ||
| 		if (print_enable)
 | ||
| 			debug("\n");
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void override_deskew_settings(struct ddr_priv *priv, int if_num,
 | ||
| 				     struct deskew_data *dskdat)
 | ||
| {
 | ||
| 	union cvmx_lmcx_phy_ctl phy_ctl;
 | ||
| 	union cvmx_lmcx_config lmc_config;
 | ||
| 
 | ||
| 	int bit, byte_lane, byte_limit;
 | ||
| 	u64 csr_data;
 | ||
| 
 | ||
| 	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
 | ||
| 	byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
 | ||
| 
 | ||
| 	phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
 | ||
| 
 | ||
| 	phy_ctl.s.phy_reset = 0;
 | ||
| 	phy_ctl.s.dsk_dbg_num_bits_sel = 1;
 | ||
| 	phy_ctl.s.dsk_dbg_offset = 0;
 | ||
| 	phy_ctl.s.dsk_dbg_clk_scaler = 3;
 | ||
| 
 | ||
| 	phy_ctl.s.dsk_dbg_wr_mode = 1;
 | ||
| 	phy_ctl.s.dsk_dbg_load_dis = 0;
 | ||
| 	phy_ctl.s.dsk_dbg_overwrt_ena = 0;
 | ||
| 
 | ||
| 	phy_ctl.s.phy_dsk_reset = 0;
 | ||
| 
 | ||
| 	lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
 | ||
| 	lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
 | ||
| 
 | ||
| 	for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
 | ||
| 		csr_data = 0;
 | ||
| 		// FIXME: can we ignore DBI?
 | ||
| 		for (bit = 0; bit < 8; ++bit) {
 | ||
| 			// fetch input and adjust
 | ||
| 			u64 bits = (dskdat->bytes[byte_lane].bits[bit] >> 3) &
 | ||
| 				0x7F;
 | ||
| 
 | ||
| 			/*
 | ||
| 			 * lmc_general_purpose0.data[6:0]    // DQ0
 | ||
| 			 * lmc_general_purpose0.data[13:7]   // DQ1
 | ||
| 			 * lmc_general_purpose0.data[20:14]  // DQ2
 | ||
| 			 * lmc_general_purpose0.data[27:21]  // DQ3
 | ||
| 			 * lmc_general_purpose0.data[34:28]  // DQ4
 | ||
| 			 * lmc_general_purpose0.data[41:35]  // DQ5
 | ||
| 			 * lmc_general_purpose0.data[48:42]  // DQ6
 | ||
| 			 * lmc_general_purpose0.data[55:49]  // DQ7
 | ||
| 			 * lmc_general_purpose0.data[62:56]  // DBI
 | ||
| 			 */
 | ||
| 			csr_data |= (bits << (7 * bit));
 | ||
| 
 | ||
| 		} /* for (bit = 0; bit < 8; ++bit) */
 | ||
| 
 | ||
| 		// update GP0 with the bit data for this byte lane
 | ||
| 		lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE0(if_num), csr_data);
 | ||
| 		lmc_rd(priv, CVMX_LMCX_GENERAL_PURPOSE0(if_num));
 | ||
| 
 | ||
| 		// start the deskew load sequence
 | ||
| 		phy_ctl.s.dsk_dbg_byte_sel = byte_lane;
 | ||
| 		phy_ctl.s.dsk_dbg_rd_start = 1;
 | ||
| 		lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
 | ||
| 
 | ||
| 		// poll for read sequence to complete
 | ||
| 		do {
 | ||
| 			udelay(100);
 | ||
| 			phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
 | ||
| 		} while (phy_ctl.s.dsk_dbg_rd_complete != 1);
 | ||
| 	}
 | ||
| 
 | ||
| 	// tell phy to use the new settings
 | ||
| 	phy_ctl.s.dsk_dbg_overwrt_ena = 1;
 | ||
| 	phy_ctl.s.dsk_dbg_rd_start = 0;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
 | ||
| 
 | ||
| 	phy_ctl.s.dsk_dbg_wr_mode = 0;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
 | ||
| }
 | ||
| 
 | ||
| static void process_by_rank_dac(struct ddr_priv *priv, int if_num,
 | ||
| 				int rank_mask, struct dac_data *dacdat)
 | ||
| {
 | ||
| 	union cvmx_lmcx_config lmc_config;
 | ||
| 	int rankx, byte_lane;
 | ||
| 	int byte_limit;
 | ||
| 	int rank_count;
 | ||
| 	struct dac_data dacsum;
 | ||
| 	int lane_probs;
 | ||
| 
 | ||
| 	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
 | ||
| 	byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
 | ||
| 
 | ||
| 	memset((void *)&dacsum, 0, sizeof(dacsum));
 | ||
| 	rank_count = 0;
 | ||
| 	lane_probs = 0;
 | ||
| 
 | ||
| 	for (rankx = 0; rankx < 4; rankx++) {
 | ||
| 		if (!(rank_mask & (1 << rankx)))
 | ||
| 			continue;
 | ||
| 		rank_count++;
 | ||
| 
 | ||
| 		display_dac_dbi_settings(if_num, /*dac */ 1,
 | ||
| 					 lmc_config.s.ecc_ena,
 | ||
| 					 &dacdat[rankx].bytes[0],
 | ||
| 					 "By-Ranks VREF");
 | ||
| 		// sum
 | ||
| 		for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
 | ||
| 			if (rank_count == 2) {
 | ||
| 				int ranks_diff =
 | ||
| 				    abs((dacsum.bytes[byte_lane] -
 | ||
| 					 dacdat[rankx].bytes[byte_lane]));
 | ||
| 
 | ||
| 				// FIXME: is 19 a good number?
 | ||
| 				if (ranks_diff > 19)
 | ||
| 					lane_probs |= (1 << byte_lane);
 | ||
| 			}
 | ||
| 			dacsum.bytes[byte_lane] +=
 | ||
| 			    dacdat[rankx].bytes[byte_lane];
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	// average
 | ||
| 	for (byte_lane = 0; byte_lane < byte_limit; byte_lane++)
 | ||
| 		dacsum.bytes[byte_lane] /= rank_count;	// FIXME: nint?
 | ||
| 
 | ||
| 	display_dac_dbi_settings(if_num, /*dac */ 1, lmc_config.s.ecc_ena,
 | ||
| 				 &dacsum.bytes[0], "All-Rank VREF");
 | ||
| 
 | ||
| 	if (lane_probs) {
 | ||
| 		debug("N0.LMC%d: All-Rank VREF DAC Problem Bytelane(s): 0x%03x\n",
 | ||
| 		      if_num, lane_probs);
 | ||
| 	}
 | ||
| 
 | ||
| 	// finally, write the averaged DAC values
 | ||
| 	for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
 | ||
| 		load_dac_override(priv, if_num, dacsum.bytes[byte_lane],
 | ||
| 				  byte_lane);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void process_by_rank_dsk(struct ddr_priv *priv, int if_num,
 | ||
| 				int rank_mask, struct deskew_data *dskdat)
 | ||
| {
 | ||
| 	union cvmx_lmcx_config lmc_config;
 | ||
| 	int rankx, lane, bit;
 | ||
| 	int byte_limit;
 | ||
| 	struct deskew_data dsksum, dskcnt;
 | ||
| 	u16 deskew;
 | ||
| 
 | ||
| 	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
 | ||
| 	byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
 | ||
| 
 | ||
| 	memset((void *)&dsksum, 0, sizeof(dsksum));
 | ||
| 	memset((void *)&dskcnt, 0, sizeof(dskcnt));
 | ||
| 
 | ||
| 	for (rankx = 0; rankx < 4; rankx++) {
 | ||
| 		if (!(rank_mask & (1 << rankx)))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		// sum ranks
 | ||
| 		for (lane = 0; lane < byte_limit; lane++) {
 | ||
| 			for (bit = 0; bit < 8; ++bit) {
 | ||
| 				deskew = dskdat[rankx].bytes[lane].bits[bit];
 | ||
| 				// if flags indicate sat hi or lo, skip it
 | ||
| 				if (deskew & 6)
 | ||
| 					continue;
 | ||
| 
 | ||
| 				// clear flags
 | ||
| 				dsksum.bytes[lane].bits[bit] +=
 | ||
| 					deskew & ~7;
 | ||
| 				// count entries
 | ||
| 				dskcnt.bytes[lane].bits[bit] += 1;
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	// average ranks
 | ||
| 	for (lane = 0; lane < byte_limit; lane++) {
 | ||
| 		for (bit = 0; bit < 8; ++bit) {
 | ||
| 			int div = dskcnt.bytes[lane].bits[bit];
 | ||
| 
 | ||
| 			if (div > 0) {
 | ||
| 				dsksum.bytes[lane].bits[bit] /= div;
 | ||
| 				// clear flags
 | ||
| 				dsksum.bytes[lane].bits[bit] &= ~7;
 | ||
| 				// set LOCK
 | ||
| 				dsksum.bytes[lane].bits[bit] |= 1;
 | ||
| 			} else {
 | ||
| 				// FIXME? use reset value?
 | ||
| 				dsksum.bytes[lane].bits[bit] =
 | ||
| 					(64 << 3) | 1;
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	// TME for FINAL version
 | ||
| 	display_deskew_settings(priv, if_num, &dsksum, /*VBL_TME */ 3);
 | ||
| 
 | ||
| 	// finally, write the averaged DESKEW values
 | ||
| 	override_deskew_settings(priv, if_num, &dsksum);
 | ||
| }
 | ||
| 
 | ||
| struct deskew_counts {
 | ||
| 	int saturated;		// number saturated
 | ||
| 	int unlocked;		// number unlocked
 | ||
| 	int nibrng_errs;	// nibble range errors
 | ||
| 	int nibunl_errs;	// nibble unlocked errors
 | ||
| 	int bitval_errs;	// bit value errors
 | ||
| };
 | ||
| 
 | ||
| #define MIN_BITVAL  17
 | ||
| #define MAX_BITVAL 110
 | ||
| 
 | ||
| static void validate_deskew_training(struct ddr_priv *priv, int rank_mask,
 | ||
| 				     int if_num, struct deskew_counts *counts,
 | ||
| 				     int print_flags)
 | ||
| {
 | ||
| 	int byte_lane, bit_index, nib_num;
 | ||
| 	int nibrng_errs, nibunl_errs, bitval_errs;
 | ||
| 	union cvmx_lmcx_config lmc_config;
 | ||
| 	s16 nib_min[2], nib_max[2], nib_unl[2];
 | ||
| 	int byte_limit;
 | ||
| 	int print_enable = print_flags & 1;
 | ||
| 	struct deskew_data dskdat;
 | ||
| 	s16 flags, deskew;
 | ||
| 	const char *fc = " ?-=+*#&";
 | ||
| 	int bit_last;
 | ||
| 
 | ||
| 	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
 | ||
| 	byte_limit = ((!lmc_config.s.mode32b) ? 8 : 4) + lmc_config.s.ecc_ena;
 | ||
| 
 | ||
| 	memset(counts, 0, sizeof(struct deskew_counts));
 | ||
| 
 | ||
| 	get_deskew_settings(priv, if_num, &dskdat);
 | ||
| 
 | ||
| 	if (print_enable) {
 | ||
| 		debug("N0.LMC%d: Deskew Settings:          Bit =>      :",
 | ||
| 		      if_num);
 | ||
| 		for (bit_index = 7; bit_index >= 0; --bit_index)
 | ||
| 			debug(" %3d  ", bit_index);
 | ||
| 		debug("\n");
 | ||
| 	}
 | ||
| 
 | ||
| 	for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
 | ||
| 		if (print_enable)
 | ||
| 			debug("N0.LMC%d: Bit Deskew Byte %d %s               :",
 | ||
| 			      if_num, byte_lane,
 | ||
| 			      (print_flags & 2) ? "FINAL" : "     ");
 | ||
| 
 | ||
| 		nib_min[0] = 127;
 | ||
| 		nib_min[1] = 127;
 | ||
| 		nib_max[0] = 0;
 | ||
| 		nib_max[1] = 0;
 | ||
| 		nib_unl[0] = 0;
 | ||
| 		nib_unl[1] = 0;
 | ||
| 
 | ||
| 		if (lmc_config.s.mode32b == 1 && byte_lane == 4) {
 | ||
| 			bit_last = 3;
 | ||
| 			if (print_enable)
 | ||
| 				debug("                        ");
 | ||
| 		} else {
 | ||
| 			bit_last = 7;
 | ||
| 		}
 | ||
| 
 | ||
| 		for (bit_index = bit_last; bit_index >= 0; --bit_index) {
 | ||
| 			nib_num = (bit_index > 3) ? 1 : 0;
 | ||
| 
 | ||
| 			flags = dskdat.bytes[byte_lane].bits[bit_index] & 7;
 | ||
| 			deskew = dskdat.bytes[byte_lane].bits[bit_index] >> 3;
 | ||
| 
 | ||
| 			counts->saturated += !!(flags & 6);
 | ||
| 
 | ||
| 			// Do range calc even when locked; it could happen
 | ||
| 			// that a bit is still unlocked after final retry,
 | ||
| 			// and we want to have an external retry if a RANGE
 | ||
| 			// error is present at exit...
 | ||
| 			nib_min[nib_num] = min(nib_min[nib_num], deskew);
 | ||
| 			nib_max[nib_num] = max(nib_max[nib_num], deskew);
 | ||
| 
 | ||
| 			if (!(flags & 1)) {	// only when not locked
 | ||
| 				counts->unlocked += 1;
 | ||
| 				nib_unl[nib_num] += 1;
 | ||
| 			}
 | ||
| 
 | ||
| 			if (print_enable)
 | ||
| 				debug(" %3d %c", deskew, fc[flags ^ 1]);
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Now look for nibble errors
 | ||
| 		 *
 | ||
| 		 * For bit 55, it looks like a bit deskew problem. When the
 | ||
| 		 * upper nibble of byte 6 needs to go to saturation, bit 7
 | ||
| 		 * of byte 6 locks prematurely at 64. For DIMMs with raw
 | ||
| 		 * card A and B, can we reset the deskew training when we
 | ||
| 		 * encounter this case? The reset criteria should be looking
 | ||
| 		 * at one nibble at a time for raw card A and B; if the
 | ||
| 		 * bit-deskew setting within a nibble is different by > 33,
 | ||
| 		 * we'll issue a reset to the bit deskew training.
 | ||
| 		 *
 | ||
| 		 * LMC0 Bit Deskew Byte(6): 64 0 - 0 - 0 - 26 61 35 64
 | ||
| 		 */
 | ||
| 		// upper nibble range, then lower nibble range
 | ||
| 		nibrng_errs = ((nib_max[1] - nib_min[1]) > 33) ? 1 : 0;
 | ||
| 		nibrng_errs |= ((nib_max[0] - nib_min[0]) > 33) ? 1 : 0;
 | ||
| 
 | ||
| 		// check for nibble all unlocked
 | ||
| 		nibunl_errs = ((nib_unl[0] == 4) || (nib_unl[1] == 4)) ? 1 : 0;
 | ||
| 
 | ||
| 		// check for bit value errors, ie < 17 or > 110
 | ||
| 		// FIXME? assume max always > MIN_BITVAL and min < MAX_BITVAL
 | ||
| 		bitval_errs = ((nib_max[1] > MAX_BITVAL) ||
 | ||
| 			       (nib_max[0] > MAX_BITVAL)) ? 1 : 0;
 | ||
| 		bitval_errs |= ((nib_min[1] < MIN_BITVAL) ||
 | ||
| 				(nib_min[0] < MIN_BITVAL)) ? 1 : 0;
 | ||
| 
 | ||
| 		if ((nibrng_errs != 0 || nibunl_errs != 0 ||
 | ||
| 		     bitval_errs != 0) && print_enable) {
 | ||
| 			debug(" %c%c%c",
 | ||
| 			      (nibrng_errs) ? 'R' : ' ',
 | ||
| 			      (nibunl_errs) ? 'U' : ' ',
 | ||
| 			      (bitval_errs) ? 'V' : ' ');
 | ||
| 		}
 | ||
| 
 | ||
| 		if (print_enable)
 | ||
| 			debug("\n");
 | ||
| 
 | ||
| 		counts->nibrng_errs |= (nibrng_errs << byte_lane);
 | ||
| 		counts->nibunl_errs |= (nibunl_errs << byte_lane);
 | ||
| 		counts->bitval_errs |= (bitval_errs << byte_lane);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static unsigned short load_dac_override(struct ddr_priv *priv, int if_num,
 | ||
| 					int dac_value, int byte)
 | ||
| {
 | ||
| 	union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3;
 | ||
| 	// single bytelanes incr by 1; A is for ALL
 | ||
| 	int bytex = (byte == 0x0A) ? byte : byte + 1;
 | ||
| 
 | ||
| 	ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
 | ||
| 
 | ||
| 	SET_DDR_DLL_CTL3(byte_sel, bytex);
 | ||
| 	SET_DDR_DLL_CTL3(offset, dac_value >> 1);
 | ||
| 
 | ||
| 	ddr_dll_ctl3.cn73xx.bit_select = 0x9;	/* No-op */
 | ||
| 	lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
 | ||
| 
 | ||
| 	ddr_dll_ctl3.cn73xx.bit_select = 0xC;	/* vref bypass setting load */
 | ||
| 	lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
 | ||
| 
 | ||
| 	ddr_dll_ctl3.cn73xx.bit_select = 0xD;	/* vref bypass on. */
 | ||
| 	lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
 | ||
| 
 | ||
| 	ddr_dll_ctl3.cn73xx.bit_select = 0x9;	/* No-op */
 | ||
| 	lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
 | ||
| 
 | ||
| 	lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));	// flush writes
 | ||
| 
 | ||
| 	return (unsigned short)GET_DDR_DLL_CTL3(offset);
 | ||
| }
 | ||
| 
 | ||
| // arg dac_or_dbi is 1 for DAC, 0 for DBI
 | ||
| // returns 9 entries (bytelanes 0 through 8) in settings[]
 | ||
| // returns 0 if OK, -1 if a problem
 | ||
| static int read_dac_dbi_settings(struct ddr_priv *priv, int if_num,
 | ||
| 				 int dac_or_dbi, int *settings)
 | ||
| {
 | ||
| 	union cvmx_lmcx_phy_ctl phy_ctl;
 | ||
| 	int byte_lane, bit_num;
 | ||
| 	int deskew;
 | ||
| 	int dac_value;
 | ||
| 	int new_deskew_layout = 0;
 | ||
| 
 | ||
| 	new_deskew_layout = octeon_is_cpuid(OCTEON_CN73XX) ||
 | ||
| 		octeon_is_cpuid(OCTEON_CNF75XX);
 | ||
| 	new_deskew_layout |= (octeon_is_cpuid(OCTEON_CN78XX) &&
 | ||
| 			      !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X));
 | ||
| 
 | ||
| 	phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
 | ||
| 	phy_ctl.s.dsk_dbg_clk_scaler = 3;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
 | ||
| 
 | ||
| 	bit_num = (dac_or_dbi) ? 4 : 5;
 | ||
| 	// DBI not available
 | ||
| 	if (bit_num == 5 && !new_deskew_layout)
 | ||
| 		return -1;
 | ||
| 
 | ||
| 	// FIXME: always assume ECC is available
 | ||
| 	for (byte_lane = 8; byte_lane >= 0; --byte_lane) {
 | ||
| 		//set byte lane and bit to read
 | ||
| 		phy_ctl.s.dsk_dbg_bit_sel = bit_num;
 | ||
| 		phy_ctl.s.dsk_dbg_byte_sel = byte_lane;
 | ||
| 		lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
 | ||
| 
 | ||
| 		//start read sequence
 | ||
| 		phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
 | ||
| 		phy_ctl.s.dsk_dbg_rd_start = 1;
 | ||
| 		lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
 | ||
| 
 | ||
| 		//poll for read sequence to complete
 | ||
| 		do {
 | ||
| 			phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
 | ||
| 		} while (phy_ctl.s.dsk_dbg_rd_complete != 1);
 | ||
| 
 | ||
| 		// keep the flag bits where they are for DBI
 | ||
| 		deskew = phy_ctl.s.dsk_dbg_rd_data; /* >> 3 */
 | ||
| 		dac_value = phy_ctl.s.dsk_dbg_rd_data & 0xff;
 | ||
| 
 | ||
| 		settings[byte_lane] = (dac_or_dbi) ? dac_value : deskew;
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| // print out the DBI settings array
 | ||
| // arg dac_or_dbi is 1 for DAC, 0 for DBI
 | ||
| static void display_dac_dbi_settings(int lmc, int dac_or_dbi,
 | ||
| 				     int ecc_ena, int *settings, char *title)
 | ||
| {
 | ||
| 	int byte;
 | ||
| 	int flags;
 | ||
| 	int deskew;
 | ||
| 	const char *fc = " ?-=+*#&";
 | ||
| 
 | ||
| 	debug("N0.LMC%d: %s %s Settings %d:0 :",
 | ||
| 	      lmc, title, (dac_or_dbi) ? "DAC" : "DBI", 7 + ecc_ena);
 | ||
| 	// FIXME: what about 32-bit mode?
 | ||
| 	for (byte = (7 + ecc_ena); byte >= 0; --byte) {
 | ||
| 		if (dac_or_dbi) {	// DAC
 | ||
| 			flags = 1;	// say its locked to get blank
 | ||
| 			deskew = settings[byte] & 0xff;
 | ||
| 		} else {	// DBI
 | ||
| 			flags = settings[byte] & 7;
 | ||
| 			deskew = (settings[byte] >> 3) & 0x7f;
 | ||
| 		}
 | ||
| 		debug(" %3d %c", deskew, fc[flags ^ 1]);
 | ||
| 	}
 | ||
| 	debug("\n");
 | ||
| }
 | ||
| 
 | ||
| // Find a HWL majority
 | ||
| static int find_wl_majority(struct wlevel_bitcnt *bc, int *mx, int *mc,
 | ||
| 			    int *xc, int *cc)
 | ||
| {
 | ||
| 	int ix, ic;
 | ||
| 
 | ||
| 	*mx = -1;
 | ||
| 	*mc = 0;
 | ||
| 	*xc = 0;
 | ||
| 	*cc = 0;
 | ||
| 
 | ||
| 	for (ix = 0; ix < 4; ix++) {
 | ||
| 		ic = bc->bitcnt[ix];
 | ||
| 
 | ||
| 		// make a bitmask of the ones with a count
 | ||
| 		if (ic > 0) {
 | ||
| 			*mc |= (1 << ix);
 | ||
| 			*cc += 1;	// count how many had non-zero counts
 | ||
| 		}
 | ||
| 
 | ||
| 		// find the majority
 | ||
| 		if (ic > *xc) {	// new max?
 | ||
| 			*xc = ic;	// yes
 | ||
| 			*mx = ix;	// set its index
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	return (*mx << 1);
 | ||
| }
 | ||
| 
 | ||
| // Evaluate the DAC settings array
 | ||
| static int evaluate_dac_settings(int if_64b, int ecc_ena, int *settings)
 | ||
| {
 | ||
| 	int byte, lane, dac, comp;
 | ||
| 	int last = (if_64b) ? 7 : 3;
 | ||
| 
 | ||
| 	// FIXME: change the check...???
 | ||
| 	// this looks only for sets of DAC values whose max/min differ by a lot
 | ||
| 	// let any EVEN go so long as it is within range...
 | ||
| 	for (byte = (last + ecc_ena); byte >= 0; --byte) {
 | ||
| 		dac = settings[byte] & 0xff;
 | ||
| 
 | ||
| 		for (lane = (last + ecc_ena); lane >= 0; --lane) {
 | ||
| 			comp = settings[lane] & 0xff;
 | ||
| 			if (abs((dac - comp)) > 25)
 | ||
| 				return 1;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static void perform_offset_training(struct ddr_priv *priv, int rank_mask,
 | ||
| 				    int if_num)
 | ||
| {
 | ||
| 	union cvmx_lmcx_phy_ctl lmc_phy_ctl;
 | ||
| 	u64 orig_phy_ctl;
 | ||
| 	const char *s;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 4.8.6 LMC Offset Training
 | ||
| 	 *
 | ||
| 	 * LMC requires input-receiver offset training.
 | ||
| 	 *
 | ||
| 	 * 1. Write LMC(0)_PHY_CTL[DAC_ON] = 1
 | ||
| 	 */
 | ||
| 	lmc_phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
 | ||
| 	orig_phy_ctl = lmc_phy_ctl.u64;
 | ||
| 	lmc_phy_ctl.s.dac_on = 1;
 | ||
| 
 | ||
| 	// allow full CSR override
 | ||
| 	s = lookup_env_ull(priv, "ddr_phy_ctl");
 | ||
| 	if (s)
 | ||
| 		lmc_phy_ctl.u64 = strtoull(s, NULL, 0);
 | ||
| 
 | ||
| 	// do not print or write if CSR does not change...
 | ||
| 	if (lmc_phy_ctl.u64 != orig_phy_ctl) {
 | ||
| 		debug("PHY_CTL                                       : 0x%016llx\n",
 | ||
| 		      lmc_phy_ctl.u64);
 | ||
| 		lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), lmc_phy_ctl.u64);
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0B and
 | ||
| 	 *    LMC(0)_SEQ_CTL[INIT_START] = 1.
 | ||
| 	 *
 | ||
| 	 * 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1.
 | ||
| 	 */
 | ||
| 	/* Start Offset training sequence */
 | ||
| 	oct3_ddr3_seq(priv, rank_mask, if_num, 0x0B);
 | ||
| }
 | ||
| 
 | ||
| static void perform_internal_vref_training(struct ddr_priv *priv,
 | ||
| 					   int rank_mask, int if_num)
 | ||
| {
 | ||
| 	union cvmx_lmcx_ext_config ext_config;
 | ||
| 	union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3;
 | ||
| 
 | ||
| 	// First, make sure all byte-lanes are out of VREF bypass mode
 | ||
| 	ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
 | ||
| 
 | ||
| 	ddr_dll_ctl3.cn78xx.byte_sel = 0x0A;	/* all byte-lanes */
 | ||
| 	ddr_dll_ctl3.cn78xx.bit_select = 0x09;	/* No-op */
 | ||
| 	lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
 | ||
| 
 | ||
| 	ddr_dll_ctl3.cn78xx.bit_select = 0x0E;	/* vref bypass off. */
 | ||
| 	lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
 | ||
| 
 | ||
| 	ddr_dll_ctl3.cn78xx.bit_select = 0x09;	/* No-op */
 | ||
| 	lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 4.8.7 LMC Internal vref Training
 | ||
| 	 *
 | ||
| 	 * LMC requires input-reference-voltage training.
 | ||
| 	 *
 | ||
| 	 * 1. Write LMC(0)_EXT_CONFIG[VREFINT_SEQ_DESKEW] = 0.
 | ||
| 	 */
 | ||
| 	ext_config.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
 | ||
| 	ext_config.s.vrefint_seq_deskew = 0;
 | ||
| 
 | ||
| 	ddr_seq_print("Performing LMC sequence: vrefint_seq_deskew = %d\n",
 | ||
| 		      ext_config.s.vrefint_seq_deskew);
 | ||
| 
 | ||
| 	lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_config.u64);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0a and
 | ||
| 	 *    LMC(0)_SEQ_CTL[INIT_START] = 1.
 | ||
| 	 *
 | ||
| 	 * 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1.
 | ||
| 	 */
 | ||
| 	/* Start LMC Internal vref Training */
 | ||
| 	oct3_ddr3_seq(priv, rank_mask, if_num, 0x0A);
 | ||
| }
 | ||
| 
 | ||
| #define dbg_avg(format, ...)	// debug(format, ##__VA_ARGS__)
 | ||
| 
 | ||
| static int process_samples_average(s16 *bytes, int num_samples,
 | ||
| 				   int lmc, int lane_no)
 | ||
| {
 | ||
| 	int i, sadj, sum = 0, ret, asum, trunc;
 | ||
| 	s16 smin = 32767, smax = -32768;
 | ||
| 	int nmin, nmax;
 | ||
| 	//int rng;
 | ||
| 
 | ||
| 	dbg_avg("DBG_AVG%d.%d: ", lmc, lane_no);
 | ||
| 
 | ||
| 	for (i = 0; i < num_samples; i++) {
 | ||
| 		sum += bytes[i];
 | ||
| 		if (bytes[i] < smin)
 | ||
| 			smin = bytes[i];
 | ||
| 		if (bytes[i] > smax)
 | ||
| 			smax = bytes[i];
 | ||
| 		dbg_avg(" %3d", bytes[i]);
 | ||
| 	}
 | ||
| 
 | ||
| 	nmin = 0;
 | ||
| 	nmax = 0;
 | ||
| 	for (i = 0; i < num_samples; i++) {
 | ||
| 		if (bytes[i] == smin)
 | ||
| 			nmin += 1;
 | ||
| 		if (bytes[i] == smax)
 | ||
| 			nmax += 1;
 | ||
| 	}
 | ||
| 	dbg_avg(" (min=%3d/%d, max=%3d/%d, range=%2d, samples=%2d)",
 | ||
| 		smin, nmin, smax, nmax, rng, num_samples);
 | ||
| 
 | ||
| 	asum = sum - smin - smax;
 | ||
| 
 | ||
| 	sadj = divide_nint(asum * 10, (num_samples - 2));
 | ||
| 
 | ||
| 	trunc = asum / (num_samples - 2);
 | ||
| 
 | ||
| 	dbg_avg(" [%3d.%d, %3d]", sadj / 10, sadj % 10, trunc);
 | ||
| 
 | ||
| 	sadj = divide_nint(sadj, 10);
 | ||
| 	if (trunc & 1)
 | ||
| 		ret = trunc;
 | ||
| 	else if (sadj & 1)
 | ||
| 		ret = sadj;
 | ||
| 	else
 | ||
| 		ret = trunc + 1;
 | ||
| 
 | ||
| 	dbg_avg(" -> %3d\n", ret);
 | ||
| 
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| #define DEFAULT_SAT_RETRY_LIMIT    11	// 1 + 10 retries
 | ||
| 
 | ||
| #define default_lock_retry_limit   20	// 20 retries
 | ||
| #define deskew_validation_delay    10000	// 10 millisecs
 | ||
| 
 | ||
| static int perform_deskew_training(struct ddr_priv *priv, int rank_mask,
 | ||
| 				   int if_num, int spd_rawcard_aorb)
 | ||
| {
 | ||
| 	int unsaturated, locked;
 | ||
| 	int sat_retries, sat_retries_limit;
 | ||
| 	int lock_retries, lock_retries_total, lock_retries_limit;
 | ||
| 	int print_first;
 | ||
| 	int print_them_all;
 | ||
| 	struct deskew_counts dsk_counts;
 | ||
| 	union cvmx_lmcx_phy_ctl phy_ctl;
 | ||
| 	char *s;
 | ||
| 	int has_no_sat = octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) ||
 | ||
| 		octeon_is_cpuid(OCTEON_CNF75XX);
 | ||
| 	int disable_bitval_retries = 1;	// default to disabled
 | ||
| 
 | ||
| 	debug("N0.LMC%d: Performing Deskew Training.\n", if_num);
 | ||
| 
 | ||
| 	sat_retries = 0;
 | ||
| 	sat_retries_limit = (has_no_sat) ? 5 : DEFAULT_SAT_RETRY_LIMIT;
 | ||
| 
 | ||
| 	lock_retries_total = 0;
 | ||
| 	unsaturated = 0;
 | ||
| 	print_first = 1;	// print the first one
 | ||
| 	// set to true for printing all normal deskew attempts
 | ||
| 	print_them_all = 0;
 | ||
| 
 | ||
| 	// provide override for bitval_errs causing internal VREF retries
 | ||
| 	s = env_get("ddr_disable_bitval_retries");
 | ||
| 	if (s)
 | ||
| 		disable_bitval_retries = !!simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	lock_retries_limit = default_lock_retry_limit;
 | ||
| 	if ((octeon_is_cpuid(OCTEON_CN78XX_PASS2_X)) ||
 | ||
| 	    (octeon_is_cpuid(OCTEON_CN73XX)) ||
 | ||
| 	    (octeon_is_cpuid(OCTEON_CNF75XX)))
 | ||
| 		lock_retries_limit *= 2;	// give new chips twice as many
 | ||
| 
 | ||
| 	do {			/* while (sat_retries < sat_retry_limit) */
 | ||
| 		/*
 | ||
| 		 * 4.8.8 LMC Deskew Training
 | ||
| 		 *
 | ||
| 		 * LMC requires input-read-data deskew training.
 | ||
| 		 *
 | ||
| 		 * 1. Write LMC(0)_EXT_CONFIG[VREFINT_SEQ_DESKEW] = 1.
 | ||
| 		 */
 | ||
| 
 | ||
| 		union cvmx_lmcx_ext_config ext_config;
 | ||
| 
 | ||
| 		ext_config.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
 | ||
| 		ext_config.s.vrefint_seq_deskew = 1;
 | ||
| 
 | ||
| 		ddr_seq_print
 | ||
| 		    ("Performing LMC sequence: vrefint_seq_deskew = %d\n",
 | ||
| 		     ext_config.s.vrefint_seq_deskew);
 | ||
| 
 | ||
| 		lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_config.u64);
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0A and
 | ||
| 		 *    LMC(0)_SEQ_CTL[INIT_START] = 1.
 | ||
| 		 *
 | ||
| 		 * 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1.
 | ||
| 		 */
 | ||
| 
 | ||
| 		phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
 | ||
| 		phy_ctl.s.phy_dsk_reset = 1;	/* RESET Deskew sequence */
 | ||
| 		lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
 | ||
| 
 | ||
| 		/* LMC Deskew Training */
 | ||
| 		oct3_ddr3_seq(priv, rank_mask, if_num, 0x0A);
 | ||
| 
 | ||
| 		lock_retries = 0;
 | ||
| 
 | ||
| perform_deskew_training:
 | ||
| 
 | ||
| 		phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
 | ||
| 		phy_ctl.s.phy_dsk_reset = 0;	/* Normal Deskew sequence */
 | ||
| 		lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
 | ||
| 
 | ||
| 		/* LMC Deskew Training */
 | ||
| 		oct3_ddr3_seq(priv, rank_mask, if_num, 0x0A);
 | ||
| 
 | ||
| 		// Moved this from validate_deskew_training
 | ||
| 		/* Allow deskew results to stabilize before evaluating them. */
 | ||
| 		udelay(deskew_validation_delay);
 | ||
| 
 | ||
| 		// Now go look at lock and saturation status...
 | ||
| 		validate_deskew_training(priv, rank_mask, if_num, &dsk_counts,
 | ||
| 					 print_first);
 | ||
| 		// after printing the first and not doing them all, no more
 | ||
| 		if (print_first && !print_them_all)
 | ||
| 			print_first = 0;
 | ||
| 
 | ||
| 		unsaturated = (dsk_counts.saturated == 0);
 | ||
| 		locked = (dsk_counts.unlocked == 0);
 | ||
| 
 | ||
| 		// only do locking retries if unsaturated or rawcard A or B,
 | ||
| 		// otherwise full SAT retry
 | ||
| 		if (unsaturated || (spd_rawcard_aorb && !has_no_sat)) {
 | ||
| 			if (!locked) {	// and not locked
 | ||
| 				lock_retries++;
 | ||
| 				lock_retries_total++;
 | ||
| 				if (lock_retries <= lock_retries_limit) {
 | ||
| 					goto perform_deskew_training;
 | ||
| 				} else {
 | ||
| 					debug("N0.LMC%d: LOCK RETRIES failed after %d retries\n",
 | ||
| 					      if_num, lock_retries_limit);
 | ||
| 				}
 | ||
| 			} else {
 | ||
| 				// only print if we did try
 | ||
| 				if (lock_retries_total > 0)
 | ||
| 					debug("N0.LMC%d: LOCK RETRIES successful after %d retries\n",
 | ||
| 					      if_num, lock_retries);
 | ||
| 			}
 | ||
| 		}		/* if (unsaturated || spd_rawcard_aorb) */
 | ||
| 
 | ||
| 		++sat_retries;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * At this point, check for a DDR4 RDIMM that will not
 | ||
| 		 * benefit from SAT retries; if so, exit
 | ||
| 		 */
 | ||
| 		if (spd_rawcard_aorb && !has_no_sat) {
 | ||
| 			debug("N0.LMC%d: Deskew Training Loop: Exiting for RAWCARD == A or B.\n",
 | ||
| 			      if_num);
 | ||
| 			break;	// no sat or lock retries
 | ||
| 		}
 | ||
| 
 | ||
| 	} while (!unsaturated && (sat_retries < sat_retries_limit));
 | ||
| 
 | ||
| 	debug("N0.LMC%d: Deskew Training %s. %d sat-retries, %d lock-retries\n",
 | ||
| 	      if_num, (sat_retries >= DEFAULT_SAT_RETRY_LIMIT) ?
 | ||
| 	      "Timed Out" : "Completed", sat_retries - 1, lock_retries_total);
 | ||
| 
 | ||
| 	// FIXME? add saturation to reasons for fault return - give it a
 | ||
| 	// chance via Internal VREF
 | ||
| 	// FIXME? add OPTIONAL bit value to reasons for fault return -
 | ||
| 	// give it a chance via Internal VREF
 | ||
| 	if (dsk_counts.nibrng_errs != 0 || dsk_counts.nibunl_errs != 0 ||
 | ||
| 	    (dsk_counts.bitval_errs != 0 && !disable_bitval_retries) ||
 | ||
| 	    !unsaturated) {
 | ||
| 		debug("N0.LMC%d: Nibble or Saturation Error(s) found, returning FAULT\n",
 | ||
| 		      if_num);
 | ||
| 		// FIXME: do we want this output always for errors?
 | ||
| 		validate_deskew_training(priv, rank_mask, if_num,
 | ||
| 					 &dsk_counts, 1);
 | ||
| 		return -1;	// we did retry locally, they did not help
 | ||
| 	}
 | ||
| 
 | ||
| 	// NOTE: we (currently) always print one last training validation
 | ||
| 	// before starting Read Leveling...
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| #define SCALING_FACTOR (1000)
 | ||
| 
 | ||
| // NOTE: this gets called for 1-rank and 2-rank DIMMs in single-slot config
 | ||
| static int compute_vref_1slot_2rank(int rtt_wr, int rtt_park, int dqx_ctl,
 | ||
| 				    int rank_count, int dram_connection)
 | ||
| {
 | ||
| 	u64 reff_s;
 | ||
| 	u64 rser_s = (dram_connection) ? 0 : 15;
 | ||
| 	u64 vdd = 1200;
 | ||
| 	u64 vref;
 | ||
| 	// 99 == HiZ
 | ||
| 	u64 rtt_wr_s = (((rtt_wr == 0) || rtt_wr == 99) ?
 | ||
| 			1 * 1024 * 1024 : rtt_wr);
 | ||
| 	u64 rtt_park_s = (((rtt_park == 0) || ((rank_count == 1) &&
 | ||
| 					       (rtt_wr != 0))) ?
 | ||
| 			  1 * 1024 * 1024 : rtt_park);
 | ||
| 	u64 dqx_ctl_s = (dqx_ctl == 0 ? 1 * 1024 * 1024 : dqx_ctl);
 | ||
| 	int vref_value;
 | ||
| 	u64 rangepc = 6000;	// range1 base
 | ||
| 	u64 vrefpc;
 | ||
| 	int vref_range = 0;
 | ||
| 
 | ||
| 	reff_s = divide_nint((rtt_wr_s * rtt_park_s), (rtt_wr_s + rtt_park_s));
 | ||
| 
 | ||
| 	vref = (((rser_s + dqx_ctl_s) * SCALING_FACTOR) /
 | ||
| 		(rser_s + dqx_ctl_s + reff_s)) + SCALING_FACTOR;
 | ||
| 
 | ||
| 	vref = (vref * vdd) / 2 / SCALING_FACTOR;
 | ||
| 
 | ||
| 	vrefpc = (vref * 100 * 100) / vdd;
 | ||
| 
 | ||
| 	if (vrefpc < rangepc) {	// < range1 base, use range2
 | ||
| 		vref_range = 1 << 6;	// set bit A6 for range2
 | ||
| 		rangepc = 4500;	// range2 base is 45%
 | ||
| 	}
 | ||
| 
 | ||
| 	vref_value = divide_nint(vrefpc - rangepc, 65);
 | ||
| 	if (vref_value < 0)
 | ||
| 		vref_value = vref_range;	// set to base of range
 | ||
| 	else
 | ||
| 		vref_value |= vref_range;
 | ||
| 
 | ||
| 	debug("rtt_wr: %d, rtt_park: %d, dqx_ctl: %d, rank_count: %d\n",
 | ||
| 	      rtt_wr, rtt_park, dqx_ctl, rank_count);
 | ||
| 	debug("rtt_wr_s: %lld, rtt_park_s: %lld, dqx_ctl_s: %lld, vref_value: 0x%x, range: %d\n",
 | ||
| 	      rtt_wr_s, rtt_park_s, dqx_ctl_s, vref_value ^ vref_range,
 | ||
| 	      vref_range ? 2 : 1);
 | ||
| 
 | ||
| 	return vref_value;
 | ||
| }
 | ||
| 
 | ||
| // NOTE: this gets called for 1-rank and 2-rank DIMMs in two-slot configs
 | ||
| static int compute_vref_2slot_2rank(int rtt_wr, int rtt_park_00,
 | ||
| 				    int rtt_park_01,
 | ||
| 				    int dqx_ctl, int rtt_nom,
 | ||
| 				    int dram_connection)
 | ||
| {
 | ||
| 	u64 rser = (dram_connection) ? 0 : 15;
 | ||
| 	u64 vdd = 1200;
 | ||
| 	u64 vl, vlp, vcm;
 | ||
| 	u64 rd0, rd1, rpullup;
 | ||
| 	// 99 == HiZ
 | ||
| 	u64 rtt_wr_s = (((rtt_wr == 0) || rtt_wr == 99) ?
 | ||
| 			1 * 1024 * 1024 : rtt_wr);
 | ||
| 	u64 rtt_park_00_s = (rtt_park_00 == 0 ? 1 * 1024 * 1024 : rtt_park_00);
 | ||
| 	u64 rtt_park_01_s = (rtt_park_01 == 0 ? 1 * 1024 * 1024 : rtt_park_01);
 | ||
| 	u64 dqx_ctl_s = (dqx_ctl == 0 ? 1 * 1024 * 1024 : dqx_ctl);
 | ||
| 	u64 rtt_nom_s = (rtt_nom == 0 ? 1 * 1024 * 1024 : rtt_nom);
 | ||
| 	int vref_value;
 | ||
| 	u64 rangepc = 6000;	// range1 base
 | ||
| 	u64 vrefpc;
 | ||
| 	int vref_range = 0;
 | ||
| 
 | ||
| 	// rd0 = (RTT_NOM (parallel) RTT_WR) +  =
 | ||
| 	// ((RTT_NOM * RTT_WR) / (RTT_NOM + RTT_WR)) + RSER
 | ||
| 	rd0 = divide_nint((rtt_nom_s * rtt_wr_s),
 | ||
| 			  (rtt_nom_s + rtt_wr_s)) + rser;
 | ||
| 
 | ||
| 	// rd1 = (RTT_PARK_00 (parallel) RTT_PARK_01) + RSER =
 | ||
| 	// ((RTT_PARK_00 * RTT_PARK_01) / (RTT_PARK_00 + RTT_PARK_01)) + RSER
 | ||
| 	rd1 = divide_nint((rtt_park_00_s * rtt_park_01_s),
 | ||
| 			  (rtt_park_00_s + rtt_park_01_s)) + rser;
 | ||
| 
 | ||
| 	// rpullup = rd0 (parallel) rd1 = (rd0 * rd1) / (rd0 + rd1)
 | ||
| 	rpullup = divide_nint((rd0 * rd1), (rd0 + rd1));
 | ||
| 
 | ||
| 	// vl = (DQX_CTL / (DQX_CTL + rpullup)) * 1.2
 | ||
| 	vl = divide_nint((dqx_ctl_s * vdd), (dqx_ctl_s + rpullup));
 | ||
| 
 | ||
| 	// vlp = ((RSER / rd0) * (1.2 - vl)) + vl
 | ||
| 	vlp = divide_nint((rser * (vdd - vl)), rd0) + vl;
 | ||
| 
 | ||
| 	// vcm = (vlp + 1.2) / 2
 | ||
| 	vcm = divide_nint((vlp + vdd), 2);
 | ||
| 
 | ||
| 	// vrefpc = (vcm / 1.2) * 100
 | ||
| 	vrefpc = divide_nint((vcm * 100 * 100), vdd);
 | ||
| 
 | ||
| 	if (vrefpc < rangepc) {	// < range1 base, use range2
 | ||
| 		vref_range = 1 << 6;	// set bit A6 for range2
 | ||
| 		rangepc = 4500;	// range2 base is 45%
 | ||
| 	}
 | ||
| 
 | ||
| 	vref_value = divide_nint(vrefpc - rangepc, 65);
 | ||
| 	if (vref_value < 0)
 | ||
| 		vref_value = vref_range;	// set to base of range
 | ||
| 	else
 | ||
| 		vref_value |= vref_range;
 | ||
| 
 | ||
| 	debug("rtt_wr:%d, rtt_park_00:%d, rtt_park_01:%d, dqx_ctl:%d, rtt_nom:%d, vref_value:%d (0x%x)\n",
 | ||
| 	      rtt_wr, rtt_park_00, rtt_park_01, dqx_ctl, rtt_nom, vref_value,
 | ||
| 	      vref_value);
 | ||
| 
 | ||
| 	return vref_value;
 | ||
| }
 | ||
| 
 | ||
| // NOTE: only call this for DIMMs with 1 or 2 ranks, not 4.
 | ||
| static int compute_vref_val(struct ddr_priv *priv, int if_num, int rankx,
 | ||
| 			    int dimm_count, int rank_count,
 | ||
| 			    struct impedence_values *imp_values,
 | ||
| 			    int is_stacked_die, int dram_connection)
 | ||
| {
 | ||
| 	int computed_final_vref_value = 0;
 | ||
| 	int enable_adjust = ENABLE_COMPUTED_VREF_ADJUSTMENT;
 | ||
| 	const char *s;
 | ||
| 	int rtt_wr, dqx_ctl, rtt_nom, index;
 | ||
| 	union cvmx_lmcx_modereg_params1 lmc_modereg_params1;
 | ||
| 	union cvmx_lmcx_modereg_params2 lmc_modereg_params2;
 | ||
| 	union cvmx_lmcx_comp_ctl2 comp_ctl2;
 | ||
| 	int rtt_park;
 | ||
| 	int rtt_park_00;
 | ||
| 	int rtt_park_01;
 | ||
| 
 | ||
| 	debug("N0.LMC%d.R%d: %s(...dram_connection = %d)\n",
 | ||
| 	      if_num, rankx, __func__, dram_connection);
 | ||
| 
 | ||
| 	// allow some overrides...
 | ||
| 	s = env_get("ddr_adjust_computed_vref");
 | ||
| 	if (s) {
 | ||
| 		enable_adjust = !!simple_strtoul(s, NULL, 0);
 | ||
| 		if (!enable_adjust) {
 | ||
| 			debug("N0.LMC%d.R%d: DISABLE adjustment of computed VREF\n",
 | ||
| 			      if_num, rankx);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	s = env_get("ddr_set_computed_vref");
 | ||
| 	if (s) {
 | ||
| 		int new_vref = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 		debug("N0.LMC%d.R%d: OVERRIDE computed VREF to 0x%x (%d)\n",
 | ||
| 		      if_num, rankx, new_vref, new_vref);
 | ||
| 		return new_vref;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Calculate an alternative to the measured vref value
 | ||
| 	 * but only for configurations we know how to...
 | ||
| 	 */
 | ||
| 	// We have code for 2-rank DIMMs in both 1-slot or 2-slot configs,
 | ||
| 	// and can use the 2-rank 1-slot code for 1-rank DIMMs in 1-slot
 | ||
| 	// configs, and can use the 2-rank 2-slot code for 1-rank DIMMs
 | ||
| 	// in 2-slot configs.
 | ||
| 
 | ||
| 	lmc_modereg_params1.u64 =
 | ||
| 	    lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num));
 | ||
| 	lmc_modereg_params2.u64 =
 | ||
| 	    lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS2(if_num));
 | ||
| 	comp_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
 | ||
| 	dqx_ctl = imp_values->dqx_strength[comp_ctl2.s.dqx_ctl];
 | ||
| 
 | ||
| 	// WR always comes from the current rank
 | ||
| 	index = (lmc_modereg_params1.u64 >> (rankx * 12 + 5)) & 0x03;
 | ||
| 	if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X))
 | ||
| 		index |= lmc_modereg_params1.u64 >> (51 + rankx - 2) & 0x04;
 | ||
| 	rtt_wr = imp_values->rtt_wr_ohms[index];
 | ||
| 
 | ||
| 	// separate calculations for 1 vs 2 DIMMs per LMC
 | ||
| 	if (dimm_count == 1) {
 | ||
| 		// PARK comes from this rank if 1-rank, otherwise other rank
 | ||
| 		index =
 | ||
| 		    (lmc_modereg_params2.u64 >>
 | ||
| 		     ((rankx ^ (rank_count - 1)) * 10 + 0)) & 0x07;
 | ||
| 		rtt_park = imp_values->rtt_nom_ohms[index];
 | ||
| 		computed_final_vref_value =
 | ||
| 		    compute_vref_1slot_2rank(rtt_wr, rtt_park, dqx_ctl,
 | ||
| 					     rank_count, dram_connection);
 | ||
| 	} else {
 | ||
| 		// get both PARK values from the other DIMM
 | ||
| 		index =
 | ||
| 		    (lmc_modereg_params2.u64 >> ((rankx ^ 0x02) * 10 + 0)) &
 | ||
| 		    0x07;
 | ||
| 		rtt_park_00 = imp_values->rtt_nom_ohms[index];
 | ||
| 		index =
 | ||
| 		    (lmc_modereg_params2.u64 >> ((rankx ^ 0x03) * 10 + 0)) &
 | ||
| 		    0x07;
 | ||
| 		rtt_park_01 = imp_values->rtt_nom_ohms[index];
 | ||
| 		// NOM comes from this rank if 1-rank, otherwise other rank
 | ||
| 		index =
 | ||
| 		    (lmc_modereg_params1.u64 >>
 | ||
| 		     ((rankx ^ (rank_count - 1)) * 12 + 9)) & 0x07;
 | ||
| 		rtt_nom = imp_values->rtt_nom_ohms[index];
 | ||
| 		computed_final_vref_value =
 | ||
| 		    compute_vref_2slot_2rank(rtt_wr, rtt_park_00, rtt_park_01,
 | ||
| 					     dqx_ctl, rtt_nom, dram_connection);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (enable_adjust) {
 | ||
| 		union cvmx_lmcx_config lmc_config;
 | ||
| 		union cvmx_lmcx_control lmc_control;
 | ||
| 
 | ||
| 		lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
 | ||
| 		lmc_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
 | ||
| 
 | ||
| 		/*
 | ||
| 		 *  New computed vref = existing computed vref – X
 | ||
| 		 *
 | ||
| 		 * The value of X is depending on different conditions.
 | ||
| 		 * Both #122 and #139 are 2Rx4 RDIMM, while #124 is stacked
 | ||
| 		 * die 2Rx4, so I conclude the results into two conditions:
 | ||
| 		 *
 | ||
| 		 * 1. Stacked Die: 2Rx4
 | ||
| 		 * 1-slot: offset = 7. i, e New computed vref = existing
 | ||
| 		 * computed vref – 7
 | ||
| 		 * 2-slot: offset = 6
 | ||
| 		 *
 | ||
| 		 * 2. Regular: 2Rx4
 | ||
| 		 * 1-slot: offset = 3
 | ||
| 		 * 2-slot:  offset = 2
 | ||
| 		 */
 | ||
| 		// we know we never get called unless DDR4, so test just
 | ||
| 		// the other conditions
 | ||
| 		if (lmc_control.s.rdimm_ena == 1 &&
 | ||
| 		    rank_count == 2 && lmc_config.s.mode_x4dev) {
 | ||
| 			// it must first be RDIMM and 2-rank and x4
 | ||
| 			int adj;
 | ||
| 
 | ||
| 			// now do according to stacked die or not...
 | ||
| 			if (is_stacked_die)
 | ||
| 				adj = (dimm_count == 1) ? -7 : -6;
 | ||
| 			else
 | ||
| 				adj = (dimm_count == 1) ? -3 : -2;
 | ||
| 
 | ||
| 			// we must have adjusted it, so print it out if
 | ||
| 			// verbosity is right
 | ||
| 			debug("N0.LMC%d.R%d: adjusting computed vref from %2d (0x%02x) to %2d (0x%02x)\n",
 | ||
| 			      if_num, rankx, computed_final_vref_value,
 | ||
| 			      computed_final_vref_value,
 | ||
| 			      computed_final_vref_value + adj,
 | ||
| 			      computed_final_vref_value + adj);
 | ||
| 			computed_final_vref_value += adj;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	return computed_final_vref_value;
 | ||
| }
 | ||
| 
 | ||
| static void unpack_rlevel_settings(int if_bytemask, int ecc_ena,
 | ||
| 				   struct rlevel_byte_data *rlevel_byte,
 | ||
| 				   union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank)
 | ||
| {
 | ||
| 	if ((if_bytemask & 0xff) == 0xff) {
 | ||
| 		if (ecc_ena) {
 | ||
| 			rlevel_byte[8].delay = lmc_rlevel_rank.s.byte7;
 | ||
| 			rlevel_byte[7].delay = lmc_rlevel_rank.s.byte6;
 | ||
| 			rlevel_byte[6].delay = lmc_rlevel_rank.s.byte5;
 | ||
| 			rlevel_byte[5].delay = lmc_rlevel_rank.s.byte4;
 | ||
| 			/* ECC */
 | ||
| 			rlevel_byte[4].delay = lmc_rlevel_rank.s.byte8;
 | ||
| 		} else {
 | ||
| 			rlevel_byte[7].delay = lmc_rlevel_rank.s.byte7;
 | ||
| 			rlevel_byte[6].delay = lmc_rlevel_rank.s.byte6;
 | ||
| 			rlevel_byte[5].delay = lmc_rlevel_rank.s.byte5;
 | ||
| 			rlevel_byte[4].delay = lmc_rlevel_rank.s.byte4;
 | ||
| 		}
 | ||
| 	} else {
 | ||
| 		rlevel_byte[8].delay = lmc_rlevel_rank.s.byte8;	/* unused */
 | ||
| 		rlevel_byte[7].delay = lmc_rlevel_rank.s.byte7;	/* unused */
 | ||
| 		rlevel_byte[6].delay = lmc_rlevel_rank.s.byte6;	/* unused */
 | ||
| 		rlevel_byte[5].delay = lmc_rlevel_rank.s.byte5;	/* unused */
 | ||
| 		rlevel_byte[4].delay = lmc_rlevel_rank.s.byte4;	/* ECC */
 | ||
| 	}
 | ||
| 
 | ||
| 	rlevel_byte[3].delay = lmc_rlevel_rank.s.byte3;
 | ||
| 	rlevel_byte[2].delay = lmc_rlevel_rank.s.byte2;
 | ||
| 	rlevel_byte[1].delay = lmc_rlevel_rank.s.byte1;
 | ||
| 	rlevel_byte[0].delay = lmc_rlevel_rank.s.byte0;
 | ||
| }
 | ||
| 
 | ||
| static void pack_rlevel_settings(int if_bytemask, int ecc_ena,
 | ||
| 				 struct rlevel_byte_data *rlevel_byte,
 | ||
| 				 union cvmx_lmcx_rlevel_rankx
 | ||
| 				 *final_rlevel_rank)
 | ||
| {
 | ||
| 	union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank = *final_rlevel_rank;
 | ||
| 
 | ||
| 	if ((if_bytemask & 0xff) == 0xff) {
 | ||
| 		if (ecc_ena) {
 | ||
| 			lmc_rlevel_rank.s.byte7 = rlevel_byte[8].delay;
 | ||
| 			lmc_rlevel_rank.s.byte6 = rlevel_byte[7].delay;
 | ||
| 			lmc_rlevel_rank.s.byte5 = rlevel_byte[6].delay;
 | ||
| 			lmc_rlevel_rank.s.byte4 = rlevel_byte[5].delay;
 | ||
| 			/* ECC */
 | ||
| 			lmc_rlevel_rank.s.byte8 = rlevel_byte[4].delay;
 | ||
| 		} else {
 | ||
| 			lmc_rlevel_rank.s.byte7 = rlevel_byte[7].delay;
 | ||
| 			lmc_rlevel_rank.s.byte6 = rlevel_byte[6].delay;
 | ||
| 			lmc_rlevel_rank.s.byte5 = rlevel_byte[5].delay;
 | ||
| 			lmc_rlevel_rank.s.byte4 = rlevel_byte[4].delay;
 | ||
| 		}
 | ||
| 	} else {
 | ||
| 		lmc_rlevel_rank.s.byte8 = rlevel_byte[8].delay;
 | ||
| 		lmc_rlevel_rank.s.byte7 = rlevel_byte[7].delay;
 | ||
| 		lmc_rlevel_rank.s.byte6 = rlevel_byte[6].delay;
 | ||
| 		lmc_rlevel_rank.s.byte5 = rlevel_byte[5].delay;
 | ||
| 		lmc_rlevel_rank.s.byte4 = rlevel_byte[4].delay;
 | ||
| 	}
 | ||
| 
 | ||
| 	lmc_rlevel_rank.s.byte3 = rlevel_byte[3].delay;
 | ||
| 	lmc_rlevel_rank.s.byte2 = rlevel_byte[2].delay;
 | ||
| 	lmc_rlevel_rank.s.byte1 = rlevel_byte[1].delay;
 | ||
| 	lmc_rlevel_rank.s.byte0 = rlevel_byte[0].delay;
 | ||
| 
 | ||
| 	*final_rlevel_rank = lmc_rlevel_rank;
 | ||
| }
 | ||
| 
 | ||
| /////////////////// These are the RLEVEL settings display routines
 | ||
| 
 | ||
| // flags
 | ||
| #define WITH_NOTHING 0
 | ||
| #define WITH_SCORE   1
 | ||
| #define WITH_AVERAGE 2
 | ||
| #define WITH_FINAL   4
 | ||
| #define WITH_COMPUTE 8
 | ||
| 
 | ||
| static void do_display_rl(int if_num,
 | ||
| 			  union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank,
 | ||
| 			  int rank, int flags, int score)
 | ||
| {
 | ||
| 	char score_buf[16];
 | ||
| 	char *msg_buf;
 | ||
| 	char hex_buf[20];
 | ||
| 
 | ||
| 	if (flags & WITH_SCORE) {
 | ||
| 		snprintf(score_buf, sizeof(score_buf), "(%d)", score);
 | ||
| 	} else {
 | ||
| 		score_buf[0] = ' ';
 | ||
| 		score_buf[1] = 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (flags & WITH_AVERAGE) {
 | ||
| 		msg_buf = "  DELAY AVERAGES  ";
 | ||
| 	} else if (flags & WITH_FINAL) {
 | ||
| 		msg_buf = "  FINAL SETTINGS  ";
 | ||
| 	} else if (flags & WITH_COMPUTE) {
 | ||
| 		msg_buf = "  COMPUTED DELAYS ";
 | ||
| 	} else {
 | ||
| 		snprintf(hex_buf, sizeof(hex_buf), "0x%016llX",
 | ||
| 			 (unsigned long long)lmc_rlevel_rank.u64);
 | ||
| 		msg_buf = hex_buf;
 | ||
| 	}
 | ||
| 
 | ||
| 	debug("N0.LMC%d.R%d: Rlevel Rank %#4x, %s  : %5d %5d %5d %5d %5d %5d %5d %5d %5d %s\n",
 | ||
| 	      if_num, rank, lmc_rlevel_rank.s.status, msg_buf,
 | ||
| 	      lmc_rlevel_rank.s.byte8, lmc_rlevel_rank.s.byte7,
 | ||
| 	      lmc_rlevel_rank.s.byte6, lmc_rlevel_rank.s.byte5,
 | ||
| 	      lmc_rlevel_rank.s.byte4, lmc_rlevel_rank.s.byte3,
 | ||
| 	      lmc_rlevel_rank.s.byte2, lmc_rlevel_rank.s.byte1,
 | ||
| 	      lmc_rlevel_rank.s.byte0, score_buf);
 | ||
| }
 | ||
| 
 | ||
| static void display_rl(int if_num,
 | ||
| 		       union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank, int rank)
 | ||
| {
 | ||
| 	do_display_rl(if_num, lmc_rlevel_rank, rank, 0, 0);
 | ||
| }
 | ||
| 
 | ||
| static void display_rl_with_score(int if_num,
 | ||
| 				  union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank,
 | ||
| 				  int rank, int score)
 | ||
| {
 | ||
| 	do_display_rl(if_num, lmc_rlevel_rank, rank, 1, score);
 | ||
| }
 | ||
| 
 | ||
| static void display_rl_with_final(int if_num,
 | ||
| 				  union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank,
 | ||
| 				  int rank)
 | ||
| {
 | ||
| 	do_display_rl(if_num, lmc_rlevel_rank, rank, 4, 0);
 | ||
| }
 | ||
| 
 | ||
| static void display_rl_with_computed(int if_num,
 | ||
| 				     union cvmx_lmcx_rlevel_rankx
 | ||
| 				     lmc_rlevel_rank, int rank, int score)
 | ||
| {
 | ||
| 	do_display_rl(if_num, lmc_rlevel_rank, rank, 9, score);
 | ||
| }
 | ||
| 
 | ||
| // flag values
 | ||
| #define WITH_RODT_BLANK      0
 | ||
| #define WITH_RODT_SKIPPING   1
 | ||
| #define WITH_RODT_BESTROW    2
 | ||
| #define WITH_RODT_BESTSCORE  3
 | ||
| // control
 | ||
| #define SKIP_SKIPPING 1
 | ||
| 
 | ||
| static const char *with_rodt_canned_msgs[4] = {
 | ||
| 	"          ", "SKIPPING  ", "BEST ROW  ", "BEST SCORE"
 | ||
| };
 | ||
| 
 | ||
| static void display_rl_with_rodt(int if_num,
 | ||
| 				 union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank,
 | ||
| 				 int rank, int score,
 | ||
| 				 int nom_ohms, int rodt_ohms, int flag)
 | ||
| {
 | ||
| 	const char *msg_buf;
 | ||
| 	char set_buf[20];
 | ||
| 
 | ||
| #if SKIP_SKIPPING
 | ||
| 	if (flag == WITH_RODT_SKIPPING)
 | ||
| 		return;
 | ||
| #endif
 | ||
| 
 | ||
| 	msg_buf = with_rodt_canned_msgs[flag];
 | ||
| 	if (nom_ohms < 0) {
 | ||
| 		snprintf(set_buf, sizeof(set_buf), "    RODT %3d    ",
 | ||
| 			 rodt_ohms);
 | ||
| 	} else {
 | ||
| 		snprintf(set_buf, sizeof(set_buf), "NOM %3d RODT %3d", nom_ohms,
 | ||
| 			 rodt_ohms);
 | ||
| 	}
 | ||
| 
 | ||
| 	debug("N0.LMC%d.R%d: Rlevel %s   %s  : %5d %5d %5d %5d %5d %5d %5d %5d %5d (%d)\n",
 | ||
| 	      if_num, rank, set_buf, msg_buf, lmc_rlevel_rank.s.byte8,
 | ||
| 	      lmc_rlevel_rank.s.byte7, lmc_rlevel_rank.s.byte6,
 | ||
| 	      lmc_rlevel_rank.s.byte5, lmc_rlevel_rank.s.byte4,
 | ||
| 	      lmc_rlevel_rank.s.byte3, lmc_rlevel_rank.s.byte2,
 | ||
| 	      lmc_rlevel_rank.s.byte1, lmc_rlevel_rank.s.byte0, score);
 | ||
| }
 | ||
| 
 | ||
| static void do_display_wl(int if_num,
 | ||
| 			  union cvmx_lmcx_wlevel_rankx lmc_wlevel_rank,
 | ||
| 			  int rank, int flags)
 | ||
| {
 | ||
| 	char *msg_buf;
 | ||
| 	char hex_buf[20];
 | ||
| 
 | ||
| 	if (flags & WITH_FINAL) {
 | ||
| 		msg_buf = "  FINAL SETTINGS  ";
 | ||
| 	} else {
 | ||
| 		snprintf(hex_buf, sizeof(hex_buf), "0x%016llX",
 | ||
| 			 (unsigned long long)lmc_wlevel_rank.u64);
 | ||
| 		msg_buf = hex_buf;
 | ||
| 	}
 | ||
| 
 | ||
| 	debug("N0.LMC%d.R%d: Wlevel Rank %#4x, %s  : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
 | ||
| 	      if_num, rank, lmc_wlevel_rank.s.status, msg_buf,
 | ||
| 	      lmc_wlevel_rank.s.byte8, lmc_wlevel_rank.s.byte7,
 | ||
| 	      lmc_wlevel_rank.s.byte6, lmc_wlevel_rank.s.byte5,
 | ||
| 	      lmc_wlevel_rank.s.byte4, lmc_wlevel_rank.s.byte3,
 | ||
| 	      lmc_wlevel_rank.s.byte2, lmc_wlevel_rank.s.byte1,
 | ||
| 	      lmc_wlevel_rank.s.byte0);
 | ||
| }
 | ||
| 
 | ||
| static void display_wl(int if_num,
 | ||
| 		       union cvmx_lmcx_wlevel_rankx lmc_wlevel_rank, int rank)
 | ||
| {
 | ||
| 	do_display_wl(if_num, lmc_wlevel_rank, rank, WITH_NOTHING);
 | ||
| }
 | ||
| 
 | ||
| static void display_wl_with_final(int if_num,
 | ||
| 				  union cvmx_lmcx_wlevel_rankx lmc_wlevel_rank,
 | ||
| 				  int rank)
 | ||
| {
 | ||
| 	do_display_wl(if_num, lmc_wlevel_rank, rank, WITH_FINAL);
 | ||
| }
 | ||
| 
 | ||
| // pretty-print bitmask adjuster
 | ||
| static u64 ppbm(u64 bm)
 | ||
| {
 | ||
| 	if (bm != 0ul) {
 | ||
| 		while ((bm & 0x0fful) == 0ul)
 | ||
| 			bm >>= 4;
 | ||
| 	}
 | ||
| 
 | ||
| 	return bm;
 | ||
| }
 | ||
| 
 | ||
| // xlate PACKED index to UNPACKED index to use with rlevel_byte
 | ||
| #define XPU(i, e) (((i) < 4) ? (i) : (((i) < 8) ? (i) + (e) : 4))
 | ||
| // xlate UNPACKED index to PACKED index to use with rlevel_bitmask
 | ||
| #define XUP(i, e) (((i) < 4) ? (i) : (e) ? (((i) > 4) ? (i) - 1 : 8) : (i))
 | ||
| 
 | ||
| // flag values
 | ||
| #define WITH_WL_BITMASKS      0
 | ||
| #define WITH_RL_BITMASKS      1
 | ||
| #define WITH_RL_MASK_SCORES   2
 | ||
| #define WITH_RL_SEQ_SCORES    3
 | ||
| 
 | ||
| static void do_display_bm(int if_num, int rank, void *bm,
 | ||
| 			  int flags, int ecc)
 | ||
| {
 | ||
| 	if (flags == WITH_WL_BITMASKS) {
 | ||
| 		// wlevel_bitmask array in PACKED index order, so just
 | ||
| 		// print them
 | ||
| 		int *bitmasks = (int *)bm;
 | ||
| 
 | ||
| 		debug("N0.LMC%d.R%d: Wlevel Debug Bitmasks                 : %05x %05x %05x %05x %05x %05x %05x %05x %05x\n",
 | ||
| 		      if_num, rank, bitmasks[8], bitmasks[7], bitmasks[6],
 | ||
| 		      bitmasks[5], bitmasks[4], bitmasks[3], bitmasks[2],
 | ||
| 		      bitmasks[1], bitmasks[0]
 | ||
| 			);
 | ||
| 	} else if (flags == WITH_RL_BITMASKS) {
 | ||
| 		// rlevel_bitmask array in PACKED index order, so just
 | ||
| 		// print them
 | ||
| 		struct rlevel_bitmask *rlevel_bitmask =
 | ||
| 			(struct rlevel_bitmask *)bm;
 | ||
| 
 | ||
| 		debug("N0.LMC%d.R%d: Rlevel Debug Bitmasks        8:0      : %05llx %05llx %05llx %05llx %05llx %05llx %05llx %05llx %05llx\n",
 | ||
| 		      if_num, rank, ppbm(rlevel_bitmask[8].bm),
 | ||
| 		      ppbm(rlevel_bitmask[7].bm), ppbm(rlevel_bitmask[6].bm),
 | ||
| 		      ppbm(rlevel_bitmask[5].bm), ppbm(rlevel_bitmask[4].bm),
 | ||
| 		      ppbm(rlevel_bitmask[3].bm), ppbm(rlevel_bitmask[2].bm),
 | ||
| 		      ppbm(rlevel_bitmask[1].bm), ppbm(rlevel_bitmask[0].bm)
 | ||
| 			);
 | ||
| 	} else if (flags == WITH_RL_MASK_SCORES) {
 | ||
| 		// rlevel_bitmask array in PACKED index order, so just
 | ||
| 		// print them
 | ||
| 		struct rlevel_bitmask *rlevel_bitmask =
 | ||
| 			(struct rlevel_bitmask *)bm;
 | ||
| 
 | ||
| 		debug("N0.LMC%d.R%d: Rlevel Debug Bitmask Scores  8:0      : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
 | ||
| 		      if_num, rank, rlevel_bitmask[8].errs,
 | ||
| 		      rlevel_bitmask[7].errs, rlevel_bitmask[6].errs,
 | ||
| 		      rlevel_bitmask[5].errs, rlevel_bitmask[4].errs,
 | ||
| 		      rlevel_bitmask[3].errs, rlevel_bitmask[2].errs,
 | ||
| 		      rlevel_bitmask[1].errs, rlevel_bitmask[0].errs);
 | ||
| 	} else if (flags == WITH_RL_SEQ_SCORES) {
 | ||
| 		// rlevel_byte array in UNPACKED index order, so xlate
 | ||
| 		// and print them
 | ||
| 		struct rlevel_byte_data *rlevel_byte =
 | ||
| 			(struct rlevel_byte_data *)bm;
 | ||
| 
 | ||
| 		debug("N0.LMC%d.R%d: Rlevel Debug Non-seq Scores  8:0      : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
 | ||
| 		      if_num, rank, rlevel_byte[XPU(8, ecc)].sqerrs,
 | ||
| 		      rlevel_byte[XPU(7, ecc)].sqerrs,
 | ||
| 		      rlevel_byte[XPU(6, ecc)].sqerrs,
 | ||
| 		      rlevel_byte[XPU(5, ecc)].sqerrs,
 | ||
| 		      rlevel_byte[XPU(4, ecc)].sqerrs,
 | ||
| 		      rlevel_byte[XPU(3, ecc)].sqerrs,
 | ||
| 		      rlevel_byte[XPU(2, ecc)].sqerrs,
 | ||
| 		      rlevel_byte[XPU(1, ecc)].sqerrs,
 | ||
| 		      rlevel_byte[XPU(0, ecc)].sqerrs);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void display_wl_bm(int if_num, int rank, int *bitmasks)
 | ||
| {
 | ||
| 	do_display_bm(if_num, rank, (void *)bitmasks, WITH_WL_BITMASKS, 0);
 | ||
| }
 | ||
| 
 | ||
| static void display_rl_bm(int if_num, int rank,
 | ||
| 			  struct rlevel_bitmask *bitmasks, int ecc_ena)
 | ||
| {
 | ||
| 	do_display_bm(if_num, rank, (void *)bitmasks, WITH_RL_BITMASKS,
 | ||
| 		      ecc_ena);
 | ||
| }
 | ||
| 
 | ||
| static void display_rl_bm_scores(int if_num, int rank,
 | ||
| 				 struct rlevel_bitmask *bitmasks, int ecc_ena)
 | ||
| {
 | ||
| 	do_display_bm(if_num, rank, (void *)bitmasks, WITH_RL_MASK_SCORES,
 | ||
| 		      ecc_ena);
 | ||
| }
 | ||
| 
 | ||
| static void display_rl_seq_scores(int if_num, int rank,
 | ||
| 				  struct rlevel_byte_data *bytes, int ecc_ena)
 | ||
| {
 | ||
| 	do_display_bm(if_num, rank, (void *)bytes, WITH_RL_SEQ_SCORES, ecc_ena);
 | ||
| }
 | ||
| 
 | ||
| #define RODT_OHMS_COUNT        8
 | ||
| #define RTT_NOM_OHMS_COUNT     8
 | ||
| #define RTT_NOM_TABLE_COUNT    8
 | ||
| #define RTT_WR_OHMS_COUNT      8
 | ||
| #define DIC_OHMS_COUNT         3
 | ||
| #define DRIVE_STRENGTH_COUNT  15
 | ||
| 
 | ||
| static unsigned char ddr4_rodt_ohms[RODT_OHMS_COUNT] = {
 | ||
| 	0, 40, 60, 80, 120, 240, 34, 48 };
 | ||
| static unsigned char ddr4_rtt_nom_ohms[RTT_NOM_OHMS_COUNT] = {
 | ||
| 	0, 60, 120, 40, 240, 48, 80, 34 };
 | ||
| static unsigned char ddr4_rtt_nom_table[RTT_NOM_TABLE_COUNT] = {
 | ||
| 	0, 4, 2, 6, 1, 5, 3, 7 };
 | ||
| // setting HiZ ohms to 99 for computed vref
 | ||
| static unsigned char ddr4_rtt_wr_ohms[RTT_WR_OHMS_COUNT] = {
 | ||
| 	0, 120, 240, 99, 80 };
 | ||
| static unsigned char ddr4_dic_ohms[DIC_OHMS_COUNT] = { 34, 48 };
 | ||
| static short ddr4_drive_strength[DRIVE_STRENGTH_COUNT] = {
 | ||
| 	0, 0, 26, 30, 34, 40, 48, 68, 0, 0, 0, 0, 0, 0, 0 };
 | ||
| static short ddr4_dqx_strength[DRIVE_STRENGTH_COUNT] = {
 | ||
| 	0, 24, 27, 30, 34, 40, 48, 60, 0, 0, 0, 0, 0, 0, 0 };
 | ||
| struct impedence_values ddr4_impedence_val = {
 | ||
| 	.rodt_ohms = ddr4_rodt_ohms,
 | ||
| 	.rtt_nom_ohms = ddr4_rtt_nom_ohms,
 | ||
| 	.rtt_nom_table = ddr4_rtt_nom_table,
 | ||
| 	.rtt_wr_ohms = ddr4_rtt_wr_ohms,
 | ||
| 	.dic_ohms = ddr4_dic_ohms,
 | ||
| 	.drive_strength = ddr4_drive_strength,
 | ||
| 	.dqx_strength = ddr4_dqx_strength,
 | ||
| };
 | ||
| 
 | ||
| static unsigned char ddr3_rodt_ohms[RODT_OHMS_COUNT] = {
 | ||
| 	0, 20, 30, 40, 60, 120, 0, 0 };
 | ||
| static unsigned char ddr3_rtt_nom_ohms[RTT_NOM_OHMS_COUNT] = {
 | ||
| 	0, 60, 120, 40, 20, 30, 0, 0 };
 | ||
| static unsigned char ddr3_rtt_nom_table[RTT_NOM_TABLE_COUNT] = {
 | ||
| 	0, 2, 1, 3, 5, 4, 0, 0 };
 | ||
| static unsigned char ddr3_rtt_wr_ohms[RTT_WR_OHMS_COUNT] = { 0, 60, 120 };
 | ||
| static unsigned char ddr3_dic_ohms[DIC_OHMS_COUNT] = { 40, 34 };
 | ||
| static short ddr3_drive_strength[DRIVE_STRENGTH_COUNT] = {
 | ||
| 	0, 24, 27, 30, 34, 40, 48, 60, 0, 0, 0, 0, 0, 0, 0 };
 | ||
| static struct impedence_values ddr3_impedence_val = {
 | ||
| 	.rodt_ohms = ddr3_rodt_ohms,
 | ||
| 	.rtt_nom_ohms = ddr3_rtt_nom_ohms,
 | ||
| 	.rtt_nom_table = ddr3_rtt_nom_table,
 | ||
| 	.rtt_wr_ohms = ddr3_rtt_wr_ohms,
 | ||
| 	.dic_ohms = ddr3_dic_ohms,
 | ||
| 	.drive_strength = ddr3_drive_strength,
 | ||
| 	.dqx_strength = ddr3_drive_strength,
 | ||
| };
 | ||
| 
 | ||
| static u64 hertz_to_psecs(u64 hertz)
 | ||
| {
 | ||
| 	/* Clock in psecs */
 | ||
| 	return divide_nint((u64)1000 * 1000 * 1000 * 1000, hertz);
 | ||
| }
 | ||
| 
 | ||
| #define DIVIDEND_SCALE 1000	/* Scale to avoid rounding error. */
 | ||
| 
 | ||
| static u64 psecs_to_mts(u64 psecs)
 | ||
| {
 | ||
| 	return divide_nint(divide_nint((u64)(2 * 1000000 * DIVIDEND_SCALE),
 | ||
| 				       psecs), DIVIDEND_SCALE);
 | ||
| }
 | ||
| 
 | ||
| #define WITHIN(v, b, m) (((v) >= ((b) - (m))) && ((v) <= ((b) + (m))))
 | ||
| 
 | ||
| static unsigned long pretty_psecs_to_mts(u64 psecs)
 | ||
| {
 | ||
| 	u64 ret = 0;		// default to error
 | ||
| 
 | ||
| 	if (WITHIN(psecs, 2500, 1))
 | ||
| 		ret = 800;
 | ||
| 	else if (WITHIN(psecs, 1875, 1))
 | ||
| 		ret = 1066;
 | ||
| 	else if (WITHIN(psecs, 1500, 1))
 | ||
| 		ret = 1333;
 | ||
| 	else if (WITHIN(psecs, 1250, 1))
 | ||
| 		ret = 1600;
 | ||
| 	else if (WITHIN(psecs, 1071, 1))
 | ||
| 		ret = 1866;
 | ||
| 	else if (WITHIN(psecs, 937, 1))
 | ||
| 		ret = 2133;
 | ||
| 	else if (WITHIN(psecs, 833, 1))
 | ||
| 		ret = 2400;
 | ||
| 	else if (WITHIN(psecs, 750, 1))
 | ||
| 		ret = 2666;
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| static u64 mts_to_hertz(u64 mts)
 | ||
| {
 | ||
| 	return ((mts * 1000 * 1000) / 2);
 | ||
| }
 | ||
| 
 | ||
| static int compute_rc3x(int64_t tclk_psecs)
 | ||
| {
 | ||
| 	long speed;
 | ||
| 	long tclk_psecs_min, tclk_psecs_max;
 | ||
| 	long data_rate_mhz, data_rate_mhz_min, data_rate_mhz_max;
 | ||
| 	int rc3x;
 | ||
| 
 | ||
| #define ENCODING_BASE 1240
 | ||
| 
 | ||
| 	data_rate_mhz = psecs_to_mts(tclk_psecs);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 2400 MT/s is a special case. Using integer arithmetic it rounds
 | ||
| 	 * from 833 psecs to 2401 MT/s. Force it to 2400 to pick the
 | ||
| 	 * proper setting from the table.
 | ||
| 	 */
 | ||
| 	if (tclk_psecs == 833)
 | ||
| 		data_rate_mhz = 2400;
 | ||
| 
 | ||
| 	for (speed = ENCODING_BASE; speed < 3200; speed += 20) {
 | ||
| 		int error = 0;
 | ||
| 
 | ||
| 		/* Clock in psecs */
 | ||
| 		tclk_psecs_min = hertz_to_psecs(mts_to_hertz(speed + 00));
 | ||
| 		/* Clock in psecs */
 | ||
| 		tclk_psecs_max = hertz_to_psecs(mts_to_hertz(speed + 18));
 | ||
| 
 | ||
| 		data_rate_mhz_min = psecs_to_mts(tclk_psecs_min);
 | ||
| 		data_rate_mhz_max = psecs_to_mts(tclk_psecs_max);
 | ||
| 
 | ||
| 		/* Force alingment to multiple to avound rounding errors. */
 | ||
| 		data_rate_mhz_min = ((data_rate_mhz_min + 18) / 20) * 20;
 | ||
| 		data_rate_mhz_max = ((data_rate_mhz_max + 18) / 20) * 20;
 | ||
| 
 | ||
| 		error += (speed + 00 != data_rate_mhz_min);
 | ||
| 		error += (speed + 20 != data_rate_mhz_max);
 | ||
| 
 | ||
| 		rc3x = (speed - ENCODING_BASE) / 20;
 | ||
| 
 | ||
| 		if (data_rate_mhz <= (speed + 20))
 | ||
| 			break;
 | ||
| 	}
 | ||
| 
 | ||
| 	return rc3x;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * static global variables needed, so that functions (loops) can be
 | ||
|  * restructured from the main huge function. Its not elegant, but the
 | ||
|  * only way to break the original functions like init_octeon3_ddr3_interface()
 | ||
|  * into separate logical smaller functions with less indentation levels.
 | ||
|  */
 | ||
| static int if_num __section(".data");
 | ||
| static u32 if_mask __section(".data");
 | ||
| static int ddr_hertz __section(".data");
 | ||
| 
 | ||
| static struct ddr_conf *ddr_conf __section(".data");
 | ||
| static const struct dimm_odt_config *odt_1rank_config __section(".data");
 | ||
| static const struct dimm_odt_config *odt_2rank_config __section(".data");
 | ||
| static const struct dimm_odt_config *odt_4rank_config __section(".data");
 | ||
| static struct dimm_config *dimm_config_table __section(".data");
 | ||
| static const struct dimm_odt_config *odt_config __section(".data");
 | ||
| static const struct ddr3_custom_config *c_cfg __section(".data");
 | ||
| 
 | ||
| static int odt_idx __section(".data");
 | ||
| 
 | ||
| static ulong tclk_psecs __section(".data");
 | ||
| static ulong eclk_psecs __section(".data");
 | ||
| 
 | ||
| static int row_bits __section(".data");
 | ||
| static int col_bits __section(".data");
 | ||
| static int num_banks __section(".data");
 | ||
| static int num_ranks __section(".data");
 | ||
| static int dram_width __section(".data");
 | ||
| static int dimm_count __section(".data");
 | ||
| /* Accumulate and report all the errors before giving up */
 | ||
| static int fatal_error __section(".data");
 | ||
| /* Flag that indicates safe DDR settings should be used */
 | ||
| static int safe_ddr_flag __section(".data");
 | ||
| /* Octeon II Default: 64bit interface width */
 | ||
| static int if_64b __section(".data");
 | ||
| static int if_bytemask __section(".data");
 | ||
| static u32 mem_size_mbytes __section(".data");
 | ||
| static unsigned int didx __section(".data");
 | ||
| static int bank_bits __section(".data");
 | ||
| static int bunk_enable __section(".data");
 | ||
| static int rank_mask __section(".data");
 | ||
| static int column_bits_start __section(".data");
 | ||
| static int row_lsb __section(".data");
 | ||
| static int pbank_lsb __section(".data");
 | ||
| static int use_ecc __section(".data");
 | ||
| static int mtb_psec __section(".data");
 | ||
| static short ftb_dividend __section(".data");
 | ||
| static short ftb_divisor __section(".data");
 | ||
| static int taamin __section(".data");
 | ||
| static int tckmin __section(".data");
 | ||
| static int cl __section(".data");
 | ||
| static int min_cas_latency __section(".data");
 | ||
| static int max_cas_latency __section(".data");
 | ||
| static int override_cas_latency __section(".data");
 | ||
| static int ddr_rtt_nom_auto __section(".data");
 | ||
| static int ddr_rodt_ctl_auto __section(".data");
 | ||
| 
 | ||
| static int spd_addr __section(".data");
 | ||
| static int spd_org __section(".data");
 | ||
| static int spd_banks __section(".data");
 | ||
| static int spd_rdimm __section(".data");
 | ||
| static int spd_dimm_type __section(".data");
 | ||
| static int spd_ecc __section(".data");
 | ||
| static u32 spd_cas_latency __section(".data");
 | ||
| static int spd_mtb_dividend __section(".data");
 | ||
| static int spd_mtb_divisor __section(".data");
 | ||
| static int spd_tck_min __section(".data");
 | ||
| static int spd_taa_min __section(".data");
 | ||
| static int spd_twr __section(".data");
 | ||
| static int spd_trcd __section(".data");
 | ||
| static int spd_trrd __section(".data");
 | ||
| static int spd_trp __section(".data");
 | ||
| static int spd_tras __section(".data");
 | ||
| static int spd_trc __section(".data");
 | ||
| static int spd_trfc __section(".data");
 | ||
| static int spd_twtr __section(".data");
 | ||
| static int spd_trtp __section(".data");
 | ||
| static int spd_tfaw __section(".data");
 | ||
| static int spd_addr_mirror __section(".data");
 | ||
| static int spd_package __section(".data");
 | ||
| static int spd_rawcard __section(".data");
 | ||
| static int spd_rawcard_aorb __section(".data");
 | ||
| static int spd_rdimm_registers __section(".data");
 | ||
| static int spd_thermal_sensor __section(".data");
 | ||
| 
 | ||
| static int is_stacked_die __section(".data");
 | ||
| static int is_3ds_dimm __section(".data");
 | ||
| // 3DS: logical ranks per package rank
 | ||
| static int lranks_per_prank __section(".data");
 | ||
| // 3DS: logical ranks bits
 | ||
| static int lranks_bits __section(".data");
 | ||
| // in Mbits; only used for 3DS
 | ||
| static int die_capacity __section(".data");
 | ||
| 
 | ||
| static enum ddr_type ddr_type __section(".data");
 | ||
| 
 | ||
| static int twr __section(".data");
 | ||
| static int trcd __section(".data");
 | ||
| static int trrd __section(".data");
 | ||
| static int trp __section(".data");
 | ||
| static int tras __section(".data");
 | ||
| static int trc __section(".data");
 | ||
| static int trfc __section(".data");
 | ||
| static int twtr __section(".data");
 | ||
| static int trtp __section(".data");
 | ||
| static int tfaw __section(".data");
 | ||
| 
 | ||
| static int ddr4_tckavgmin __section(".data");
 | ||
| static int ddr4_tckavgmax __section(".data");
 | ||
| static int ddr4_trdcmin __section(".data");
 | ||
| static int ddr4_trpmin __section(".data");
 | ||
| static int ddr4_trasmin __section(".data");
 | ||
| static int ddr4_trcmin __section(".data");
 | ||
| static int ddr4_trfc1min __section(".data");
 | ||
| static int ddr4_trfc2min __section(".data");
 | ||
| static int ddr4_trfc4min __section(".data");
 | ||
| static int ddr4_tfawmin __section(".data");
 | ||
| static int ddr4_trrd_smin __section(".data");
 | ||
| static int ddr4_trrd_lmin __section(".data");
 | ||
| static int ddr4_tccd_lmin __section(".data");
 | ||
| 
 | ||
| static int wl_mask_err __section(".data");
 | ||
| static int wl_loops __section(".data");
 | ||
| static int default_rtt_nom[4] __section(".data");
 | ||
| static int dyn_rtt_nom_mask __section(".data");
 | ||
| static struct impedence_values *imp_val __section(".data");
 | ||
| static char default_rodt_ctl __section(".data");
 | ||
| // default to disabled (ie, try LMC restart, not chip reset)
 | ||
| static int ddr_disable_chip_reset __section(".data");
 | ||
| static const char *dimm_type_name __section(".data");
 | ||
| static int match_wl_rtt_nom __section(".data");
 | ||
| 
 | ||
| struct hwl_alt_by_rank {
 | ||
| 	u16 hwl_alt_mask;	// mask of bytelanes with alternate
 | ||
| 	u16 hwl_alt_delay[9];	// bytelane alternate avail if mask=1
 | ||
| };
 | ||
| 
 | ||
| static struct hwl_alt_by_rank hwl_alts[4] __section(".data");
 | ||
| 
 | ||
| #define DEFAULT_INTERNAL_VREF_TRAINING_LIMIT 3	// was: 5
 | ||
| static int internal_retries __section(".data");
 | ||
| 
 | ||
| static int deskew_training_errors __section(".data");
 | ||
| static struct deskew_counts deskew_training_results __section(".data");
 | ||
| static int disable_deskew_training __section(".data");
 | ||
| static int restart_if_dsk_incomplete __section(".data");
 | ||
| static int dac_eval_retries __section(".data");
 | ||
| static int dac_settings[9] __section(".data");
 | ||
| static int num_samples __section(".data");
 | ||
| static int sample __section(".data");
 | ||
| static int lane __section(".data");
 | ||
| static int last_lane __section(".data");
 | ||
| static int total_dac_eval_retries __section(".data");
 | ||
| static int dac_eval_exhausted __section(".data");
 | ||
| 
 | ||
| #define DEFAULT_DAC_SAMPLES 7	// originally was 5
 | ||
| #define DAC_RETRIES_LIMIT   2
 | ||
| 
 | ||
| struct bytelane_sample {
 | ||
| 	s16 bytes[DEFAULT_DAC_SAMPLES];
 | ||
| };
 | ||
| 
 | ||
| static struct bytelane_sample lanes[9] __section(".data");
 | ||
| 
 | ||
| static char disable_sequential_delay_check __section(".data");
 | ||
| static int wl_print __section(".data");
 | ||
| 
 | ||
| static int enable_by_rank_init __section(".data");
 | ||
| static int saved_rank_mask __section(".data");
 | ||
| static int by_rank __section(".data");
 | ||
| static struct deskew_data rank_dsk[4] __section(".data");
 | ||
| static struct dac_data rank_dac[4] __section(".data");
 | ||
| 
 | ||
| // todo: perhaps remove node at some time completely?
 | ||
| static int node __section(".data");
 | ||
| static int base_cl __section(".data");
 | ||
| 
 | ||
| /* Parameters from DDR3 Specifications */
 | ||
| #define DDR3_TREFI         7800000	/* 7.8 us */
 | ||
| #define DDR3_ZQCS          80000ull	/* 80 ns */
 | ||
| #define DDR3_ZQCS_INTERNAL 1280000000ull	/* 128ms/100 */
 | ||
| #define DDR3_TCKE          5000	/* 5 ns */
 | ||
| #define DDR3_TMRD          4	/* 4 nCK */
 | ||
| #define DDR3_TDLLK         512	/* 512 nCK */
 | ||
| #define DDR3_TMPRR         1	/* 1 nCK */
 | ||
| #define DDR3_TWLMRD        40	/* 40 nCK */
 | ||
| #define DDR3_TWLDQSEN      25	/* 25 nCK */
 | ||
| 
 | ||
| /* Parameters from DDR4 Specifications */
 | ||
| #define DDR4_TMRD          8	/* 8 nCK */
 | ||
| #define DDR4_TDLLK         768	/* 768 nCK */
 | ||
| 
 | ||
| static void lmc_config(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	union cvmx_lmcx_config cfg;
 | ||
| 	char *s;
 | ||
| 
 | ||
| 	cfg.u64 = 0;
 | ||
| 
 | ||
| 	cfg.cn78xx.ecc_ena = use_ecc;
 | ||
| 	cfg.cn78xx.row_lsb = encode_row_lsb_ddr3(row_lsb);
 | ||
| 	cfg.cn78xx.pbank_lsb = encode_pbank_lsb_ddr3(pbank_lsb);
 | ||
| 
 | ||
| 	cfg.cn78xx.idlepower = 0;	/* Disabled */
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_idlepower");
 | ||
| 	if (s)
 | ||
| 		cfg.cn78xx.idlepower = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	cfg.cn78xx.forcewrite = 0;	/* Disabled */
 | ||
| 	/* Include memory reference address in the ECC */
 | ||
| 	cfg.cn78xx.ecc_adr = 1;
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_ecc_adr");
 | ||
| 	if (s)
 | ||
| 		cfg.cn78xx.ecc_adr = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	cfg.cn78xx.reset = 0;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Program LMC0_CONFIG[24:18], ref_zqcs_int(6:0) to
 | ||
| 	 * RND-DN(tREFI/clkPeriod/512) Program LMC0_CONFIG[36:25],
 | ||
| 	 * ref_zqcs_int(18:7) to
 | ||
| 	 * RND-DN(ZQCS_Interval/clkPeriod/(512*128)). Note that this
 | ||
| 	 * value should always be greater than 32, to account for
 | ||
| 	 * resistor calibration delays.
 | ||
| 	 */
 | ||
| 
 | ||
| 	cfg.cn78xx.ref_zqcs_int = ((DDR3_TREFI / tclk_psecs / 512) & 0x7f);
 | ||
| 	cfg.cn78xx.ref_zqcs_int |=
 | ||
| 		((max(33ull, (DDR3_ZQCS_INTERNAL / (tclk_psecs / 100) /
 | ||
| 			      (512 * 128))) & 0xfff) << 7);
 | ||
| 
 | ||
| 	cfg.cn78xx.early_dqx = 1;	/* Default to enabled */
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_early_dqx");
 | ||
| 	if (!s)
 | ||
| 		s = lookup_env(priv, "ddr%d_early_dqx", if_num);
 | ||
| 
 | ||
| 	if (s)
 | ||
| 		cfg.cn78xx.early_dqx = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	cfg.cn78xx.sref_with_dll = 0;
 | ||
| 
 | ||
| 	cfg.cn78xx.rank_ena = bunk_enable;
 | ||
| 	cfg.cn78xx.rankmask = rank_mask;	/* Set later */
 | ||
| 	cfg.cn78xx.mirrmask = (spd_addr_mirror << 1 | spd_addr_mirror << 3) &
 | ||
| 		rank_mask;
 | ||
| 	/* Set once and don't change it. */
 | ||
| 	cfg.cn78xx.init_status = rank_mask;
 | ||
| 	cfg.cn78xx.early_unload_d0_r0 = 0;
 | ||
| 	cfg.cn78xx.early_unload_d0_r1 = 0;
 | ||
| 	cfg.cn78xx.early_unload_d1_r0 = 0;
 | ||
| 	cfg.cn78xx.early_unload_d1_r1 = 0;
 | ||
| 	cfg.cn78xx.scrz = 0;
 | ||
| 	if (octeon_is_cpuid(OCTEON_CN70XX))
 | ||
| 		cfg.cn78xx.mode32b = 1;	/* Read-only. Always 1. */
 | ||
| 	cfg.cn78xx.mode_x4dev = (dram_width == 4) ? 1 : 0;
 | ||
| 	cfg.cn78xx.bg2_enable = ((ddr_type == DDR4_DRAM) &&
 | ||
| 				 (dram_width == 16)) ? 0 : 1;
 | ||
| 
 | ||
| 	s = lookup_env_ull(priv, "ddr_config");
 | ||
| 	if (s)
 | ||
| 		cfg.u64 = simple_strtoull(s, NULL, 0);
 | ||
| 	debug("LMC_CONFIG                                    : 0x%016llx\n",
 | ||
| 	      cfg.u64);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
 | ||
| }
 | ||
| 
 | ||
| static void lmc_control(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	union cvmx_lmcx_control ctrl;
 | ||
| 	char *s;
 | ||
| 
 | ||
| 	ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
 | ||
| 	ctrl.s.rdimm_ena = spd_rdimm;
 | ||
| 	ctrl.s.bwcnt = 0;	/* Clear counter later */
 | ||
| 	if (spd_rdimm)
 | ||
| 		ctrl.s.ddr2t = (safe_ddr_flag ? 1 : c_cfg->ddr2t_rdimm);
 | ||
| 	else
 | ||
| 		ctrl.s.ddr2t = (safe_ddr_flag ? 1 : c_cfg->ddr2t_udimm);
 | ||
| 	ctrl.s.pocas = 0;
 | ||
| 	ctrl.s.fprch2 = (safe_ddr_flag ? 2 : c_cfg->fprch2);
 | ||
| 	ctrl.s.throttle_rd = safe_ddr_flag ? 1 : 0;
 | ||
| 	ctrl.s.throttle_wr = safe_ddr_flag ? 1 : 0;
 | ||
| 	ctrl.s.inorder_rd = safe_ddr_flag ? 1 : 0;
 | ||
| 	ctrl.s.inorder_wr = safe_ddr_flag ? 1 : 0;
 | ||
| 	ctrl.s.elev_prio_dis = safe_ddr_flag ? 1 : 0;
 | ||
| 	/* discards writes to addresses that don't exist in the DRAM */
 | ||
| 	ctrl.s.nxm_write_en = 0;
 | ||
| 	ctrl.s.max_write_batch = 8;
 | ||
| 	ctrl.s.xor_bank = 1;
 | ||
| 	ctrl.s.auto_dclkdis = 1;
 | ||
| 	ctrl.s.int_zqcs_dis = 0;
 | ||
| 	ctrl.s.ext_zqcs_dis = 0;
 | ||
| 	ctrl.s.bprch = 1;
 | ||
| 	ctrl.s.wodt_bprch = 1;
 | ||
| 	ctrl.s.rodt_bprch = 1;
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_xor_bank");
 | ||
| 	if (s)
 | ||
| 		ctrl.s.xor_bank = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_2t");
 | ||
| 	if (s)
 | ||
| 		ctrl.s.ddr2t = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_fprch2");
 | ||
| 	if (s)
 | ||
| 		ctrl.s.fprch2 = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_bprch");
 | ||
| 	if (s)
 | ||
| 		ctrl.s.bprch = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_wodt_bprch");
 | ||
| 	if (s)
 | ||
| 		ctrl.s.wodt_bprch = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_rodt_bprch");
 | ||
| 	if (s)
 | ||
| 		ctrl.s.rodt_bprch = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_int_zqcs_dis");
 | ||
| 	if (s)
 | ||
| 		ctrl.s.int_zqcs_dis = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_ext_zqcs_dis");
 | ||
| 	if (s)
 | ||
| 		ctrl.s.ext_zqcs_dis = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env_ull(priv, "ddr_control");
 | ||
| 	if (s)
 | ||
| 		ctrl.u64 = simple_strtoull(s, NULL, 0);
 | ||
| 
 | ||
| 	debug("LMC_CONTROL                                   : 0x%016llx\n",
 | ||
| 	      ctrl.u64);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64);
 | ||
| }
 | ||
| 
 | ||
| static void lmc_timing_params0(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	union cvmx_lmcx_timing_params0 tp0;
 | ||
| 	unsigned int trp_value;
 | ||
| 	char *s;
 | ||
| 
 | ||
| 	tp0.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS0(if_num));
 | ||
| 
 | ||
| 	trp_value = divide_roundup(trp, tclk_psecs) - 1;
 | ||
| 	debug("TIMING_PARAMS0[TRP]: NEW 0x%x, OLD 0x%x\n", trp_value,
 | ||
| 	      trp_value +
 | ||
| 	      (unsigned int)(divide_roundup(max(4ull * tclk_psecs, 7500ull),
 | ||
| 					    tclk_psecs)) - 4);
 | ||
| 	s = lookup_env_ull(priv, "ddr_use_old_trp");
 | ||
| 	if (s) {
 | ||
| 		if (!!simple_strtoull(s, NULL, 0)) {
 | ||
| 			trp_value +=
 | ||
| 			    divide_roundup(max(4ull * tclk_psecs, 7500ull),
 | ||
| 					   tclk_psecs) - 4;
 | ||
| 			debug("TIMING_PARAMS0[trp]: USING OLD 0x%x\n",
 | ||
| 			      trp_value);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	tp0.cn78xx.txpr =
 | ||
| 	    divide_roundup(max(5ull * tclk_psecs, trfc + 10000ull),
 | ||
| 			   16 * tclk_psecs);
 | ||
| 	tp0.cn78xx.trp = trp_value & 0x1f;
 | ||
| 	tp0.cn78xx.tcksre =
 | ||
| 	    divide_roundup(max(5ull * tclk_psecs, 10000ull), tclk_psecs) - 1;
 | ||
| 
 | ||
| 	if (ddr_type == DDR4_DRAM) {
 | ||
| 		int tzqinit = 4;	// Default to 4, for all DDR4 speed bins
 | ||
| 
 | ||
| 		s = lookup_env(priv, "ddr_tzqinit");
 | ||
| 		if (s)
 | ||
| 			tzqinit = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 		tp0.cn78xx.tzqinit = tzqinit;
 | ||
| 		/* Always 8. */
 | ||
| 		tp0.cn78xx.tzqcs = divide_roundup(128 * tclk_psecs,
 | ||
| 						  (16 * tclk_psecs));
 | ||
| 		tp0.cn78xx.tcke =
 | ||
| 		    divide_roundup(max(3 * tclk_psecs, (ulong)DDR3_TCKE),
 | ||
| 				   tclk_psecs) - 1;
 | ||
| 		tp0.cn78xx.tmrd =
 | ||
| 		    divide_roundup((DDR4_TMRD * tclk_psecs), tclk_psecs) - 1;
 | ||
| 		tp0.cn78xx.tmod = 25;	/* 25 is the max allowed */
 | ||
| 		tp0.cn78xx.tdllk = divide_roundup(DDR4_TDLLK, 256);
 | ||
| 	} else {
 | ||
| 		tp0.cn78xx.tzqinit =
 | ||
| 		    divide_roundup(max(512ull * tclk_psecs, 640000ull),
 | ||
| 				   (256 * tclk_psecs));
 | ||
| 		tp0.cn78xx.tzqcs =
 | ||
| 		    divide_roundup(max(64ull * tclk_psecs, DDR3_ZQCS),
 | ||
| 				   (16 * tclk_psecs));
 | ||
| 		tp0.cn78xx.tcke = divide_roundup(DDR3_TCKE, tclk_psecs) - 1;
 | ||
| 		tp0.cn78xx.tmrd =
 | ||
| 		    divide_roundup((DDR3_TMRD * tclk_psecs), tclk_psecs) - 1;
 | ||
| 		tp0.cn78xx.tmod =
 | ||
| 		    divide_roundup(max(12ull * tclk_psecs, 15000ull),
 | ||
| 				   tclk_psecs) - 1;
 | ||
| 		tp0.cn78xx.tdllk = divide_roundup(DDR3_TDLLK, 256);
 | ||
| 	}
 | ||
| 
 | ||
| 	s = lookup_env_ull(priv, "ddr_timing_params0");
 | ||
| 	if (s)
 | ||
| 		tp0.u64 = simple_strtoull(s, NULL, 0);
 | ||
| 	debug("TIMING_PARAMS0                                : 0x%016llx\n",
 | ||
| 	      tp0.u64);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS0(if_num), tp0.u64);
 | ||
| }
 | ||
| 
 | ||
| static void lmc_timing_params1(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	union cvmx_lmcx_timing_params1 tp1;
 | ||
| 	unsigned int txp, temp_trcd, trfc_dlr;
 | ||
| 	char *s;
 | ||
| 
 | ||
| 	tp1.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS1(if_num));
 | ||
| 
 | ||
| 	/* .cn70xx. */
 | ||
| 	tp1.s.tmprr = divide_roundup(DDR3_TMPRR * tclk_psecs, tclk_psecs) - 1;
 | ||
| 
 | ||
| 	tp1.cn78xx.tras = divide_roundup(tras, tclk_psecs) - 1;
 | ||
| 
 | ||
| 	temp_trcd = divide_roundup(trcd, tclk_psecs);
 | ||
| 	if (temp_trcd > 15) {
 | ||
| 		debug("TIMING_PARAMS1[trcd]: need extension bit for 0x%x\n",
 | ||
| 		      temp_trcd);
 | ||
| 	}
 | ||
| 	if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && temp_trcd > 15) {
 | ||
| 		/*
 | ||
| 		 * Let .trcd=0 serve as a flag that the field has
 | ||
| 		 * overflowed. Must use Additive Latency mode as a
 | ||
| 		 * workaround.
 | ||
| 		 */
 | ||
| 		temp_trcd = 0;
 | ||
| 	}
 | ||
| 	tp1.cn78xx.trcd = (temp_trcd >> 0) & 0xf;
 | ||
| 	tp1.cn78xx.trcd_ext = (temp_trcd >> 4) & 0x1;
 | ||
| 
 | ||
| 	tp1.cn78xx.twtr = divide_roundup(twtr, tclk_psecs) - 1;
 | ||
| 	tp1.cn78xx.trfc = divide_roundup(trfc, 8 * tclk_psecs);
 | ||
| 
 | ||
| 	if (ddr_type == DDR4_DRAM) {
 | ||
| 		/* Workaround bug 24006. Use Trrd_l. */
 | ||
| 		tp1.cn78xx.trrd =
 | ||
| 		    divide_roundup(ddr4_trrd_lmin, tclk_psecs) - 2;
 | ||
| 	} else {
 | ||
| 		tp1.cn78xx.trrd = divide_roundup(trrd, tclk_psecs) - 2;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * tXP = max( 3nCK, 7.5 ns)     DDR3-800   tCLK = 2500 psec
 | ||
| 	 * tXP = max( 3nCK, 7.5 ns)     DDR3-1066  tCLK = 1875 psec
 | ||
| 	 * tXP = max( 3nCK, 6.0 ns)     DDR3-1333  tCLK = 1500 psec
 | ||
| 	 * tXP = max( 3nCK, 6.0 ns)     DDR3-1600  tCLK = 1250 psec
 | ||
| 	 * tXP = max( 3nCK, 6.0 ns)     DDR3-1866  tCLK = 1071 psec
 | ||
| 	 * tXP = max( 3nCK, 6.0 ns)     DDR3-2133  tCLK =  937 psec
 | ||
| 	 */
 | ||
| 	txp = (tclk_psecs < 1875) ? 6000 : 7500;
 | ||
| 	txp = divide_roundup(max((unsigned int)(3 * tclk_psecs), txp),
 | ||
| 			     tclk_psecs) - 1;
 | ||
| 	if (txp > 7) {
 | ||
| 		debug("TIMING_PARAMS1[txp]: need extension bit for 0x%x\n",
 | ||
| 		      txp);
 | ||
| 	}
 | ||
| 	if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && txp > 7)
 | ||
| 		txp = 7;	// max it out
 | ||
| 	tp1.cn78xx.txp = (txp >> 0) & 7;
 | ||
| 	tp1.cn78xx.txp_ext = (txp >> 3) & 1;
 | ||
| 
 | ||
| 	tp1.cn78xx.twlmrd = divide_roundup(DDR3_TWLMRD * tclk_psecs,
 | ||
| 					   4 * tclk_psecs);
 | ||
| 	tp1.cn78xx.twldqsen = divide_roundup(DDR3_TWLDQSEN * tclk_psecs,
 | ||
| 					     4 * tclk_psecs);
 | ||
| 	tp1.cn78xx.tfaw = divide_roundup(tfaw, 4 * tclk_psecs);
 | ||
| 	tp1.cn78xx.txpdll = divide_roundup(max(10ull * tclk_psecs, 24000ull),
 | ||
| 					   tclk_psecs) - 1;
 | ||
| 
 | ||
| 	if (ddr_type == DDR4_DRAM && is_3ds_dimm) {
 | ||
| 		/*
 | ||
| 		 * 4 Gb: tRFC_DLR = 90 ns
 | ||
| 		 * 8 Gb: tRFC_DLR = 120 ns
 | ||
| 		 * 16 Gb: tRFC_DLR = 190 ns FIXME?
 | ||
| 		 */
 | ||
| 		if (die_capacity == 0x1000)	// 4 Gbit
 | ||
| 			trfc_dlr = 90;
 | ||
| 		else if (die_capacity == 0x2000)	// 8 Gbit
 | ||
| 			trfc_dlr = 120;
 | ||
| 		else if (die_capacity == 0x4000)	// 16 Gbit
 | ||
| 			trfc_dlr = 190;
 | ||
| 		else
 | ||
| 			trfc_dlr = 0;
 | ||
| 
 | ||
| 		if (trfc_dlr == 0) {
 | ||
| 			debug("N%d.LMC%d: ERROR: tRFC_DLR: die_capacity %u Mbit is illegal\n",
 | ||
| 			      node, if_num, die_capacity);
 | ||
| 		} else {
 | ||
| 			tp1.cn78xx.trfc_dlr =
 | ||
| 			    divide_roundup(trfc_dlr * 1000UL, 8 * tclk_psecs);
 | ||
| 			debug("N%d.LMC%d: TIMING_PARAMS1[trfc_dlr] set to %u\n",
 | ||
| 			      node, if_num, tp1.cn78xx.trfc_dlr);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	s = lookup_env_ull(priv, "ddr_timing_params1");
 | ||
| 	if (s)
 | ||
| 		tp1.u64 = simple_strtoull(s, NULL, 0);
 | ||
| 
 | ||
| 	debug("TIMING_PARAMS1                                : 0x%016llx\n",
 | ||
| 	      tp1.u64);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS1(if_num), tp1.u64);
 | ||
| }
 | ||
| 
 | ||
| static void lmc_timing_params2(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	if (ddr_type == DDR4_DRAM) {
 | ||
| 		union cvmx_lmcx_timing_params1 tp1;
 | ||
| 		union cvmx_lmcx_timing_params2 tp2;
 | ||
| 		int temp_trrd_l;
 | ||
| 
 | ||
| 		tp1.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS1(if_num));
 | ||
| 		tp2.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS2(if_num));
 | ||
| 		debug("TIMING_PARAMS2                                : 0x%016llx\n",
 | ||
| 		      tp2.u64);
 | ||
| 
 | ||
| 		temp_trrd_l = divide_roundup(ddr4_trrd_lmin, tclk_psecs) - 2;
 | ||
| 		if (temp_trrd_l > 7)
 | ||
| 			debug("TIMING_PARAMS2[trrd_l]: need extension bit for 0x%x\n",
 | ||
| 			      temp_trrd_l);
 | ||
| 		if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && temp_trrd_l > 7)
 | ||
| 			temp_trrd_l = 7;	// max it out
 | ||
| 		tp2.cn78xx.trrd_l = (temp_trrd_l >> 0) & 7;
 | ||
| 		tp2.cn78xx.trrd_l_ext = (temp_trrd_l >> 3) & 1;
 | ||
| 
 | ||
| 		// correct for 1600-2400
 | ||
| 		tp2.s.twtr_l = divide_nint(max(4ull * tclk_psecs, 7500ull),
 | ||
| 					   tclk_psecs) - 1;
 | ||
| 		tp2.s.t_rw_op_max = 7;
 | ||
| 		tp2.s.trtp = divide_roundup(max(4ull * tclk_psecs, 7500ull),
 | ||
| 					    tclk_psecs) - 1;
 | ||
| 
 | ||
| 		debug("TIMING_PARAMS2                                : 0x%016llx\n",
 | ||
| 		      tp2.u64);
 | ||
| 		lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS2(if_num), tp2.u64);
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Workaround Errata 25823 - LMC: Possible DDR4 tWTR_L not met
 | ||
| 		 * for Write-to-Read operations to the same Bank Group
 | ||
| 		 */
 | ||
| 		if (tp1.cn78xx.twtr < (tp2.s.twtr_l - 4)) {
 | ||
| 			tp1.cn78xx.twtr = tp2.s.twtr_l - 4;
 | ||
| 			debug("ERRATA 25823: NEW: TWTR: %d, TWTR_L: %d\n",
 | ||
| 			      tp1.cn78xx.twtr, tp2.s.twtr_l);
 | ||
| 			debug("TIMING_PARAMS1                                : 0x%016llx\n",
 | ||
| 			      tp1.u64);
 | ||
| 			lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS1(if_num), tp1.u64);
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void lmc_modereg_params0(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	union cvmx_lmcx_modereg_params0 mp0;
 | ||
| 	int param;
 | ||
| 	char *s;
 | ||
| 
 | ||
| 	mp0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
 | ||
| 
 | ||
| 	if (ddr_type == DDR4_DRAM) {
 | ||
| 		mp0.s.cwl = 0;	/* 1600 (1250ps) */
 | ||
| 		if (tclk_psecs < 1250)
 | ||
| 			mp0.s.cwl = 1;	/* 1866 (1072ps) */
 | ||
| 		if (tclk_psecs < 1072)
 | ||
| 			mp0.s.cwl = 2;	/* 2133 (938ps) */
 | ||
| 		if (tclk_psecs < 938)
 | ||
| 			mp0.s.cwl = 3;	/* 2400 (833ps) */
 | ||
| 		if (tclk_psecs < 833)
 | ||
| 			mp0.s.cwl = 4;	/* 2666 (750ps) */
 | ||
| 		if (tclk_psecs < 750)
 | ||
| 			mp0.s.cwl = 5;	/* 3200 (625ps) */
 | ||
| 	} else {
 | ||
| 		/*
 | ||
| 		 ** CSR   CWL         CAS write Latency
 | ||
| 		 ** ===   ===   =================================
 | ||
| 		 **  0      5   (           tCK(avg) >=   2.5 ns)
 | ||
| 		 **  1      6   (2.5 ns   > tCK(avg) >= 1.875 ns)
 | ||
| 		 **  2      7   (1.875 ns > tCK(avg) >= 1.5   ns)
 | ||
| 		 **  3      8   (1.5 ns   > tCK(avg) >= 1.25  ns)
 | ||
| 		 **  4      9   (1.25 ns  > tCK(avg) >= 1.07  ns)
 | ||
| 		 **  5     10   (1.07 ns  > tCK(avg) >= 0.935 ns)
 | ||
| 		 **  6     11   (0.935 ns > tCK(avg) >= 0.833 ns)
 | ||
| 		 **  7     12   (0.833 ns > tCK(avg) >= 0.75  ns)
 | ||
| 		 */
 | ||
| 
 | ||
| 		mp0.s.cwl = 0;
 | ||
| 		if (tclk_psecs < 2500)
 | ||
| 			mp0.s.cwl = 1;
 | ||
| 		if (tclk_psecs < 1875)
 | ||
| 			mp0.s.cwl = 2;
 | ||
| 		if (tclk_psecs < 1500)
 | ||
| 			mp0.s.cwl = 3;
 | ||
| 		if (tclk_psecs < 1250)
 | ||
| 			mp0.s.cwl = 4;
 | ||
| 		if (tclk_psecs < 1070)
 | ||
| 			mp0.s.cwl = 5;
 | ||
| 		if (tclk_psecs < 935)
 | ||
| 			mp0.s.cwl = 6;
 | ||
| 		if (tclk_psecs < 833)
 | ||
| 			mp0.s.cwl = 7;
 | ||
| 	}
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_cwl");
 | ||
| 	if (s)
 | ||
| 		mp0.s.cwl = simple_strtoul(s, NULL, 0) - 5;
 | ||
| 
 | ||
| 	if (ddr_type == DDR4_DRAM) {
 | ||
| 		debug("%-45s : %d, [0x%x]\n", "CAS Write Latency CWL, [CSR]",
 | ||
| 		      mp0.s.cwl + 9
 | ||
| 		      + ((mp0.s.cwl > 2) ? (mp0.s.cwl - 3) * 2 : 0), mp0.s.cwl);
 | ||
| 	} else {
 | ||
| 		debug("%-45s : %d, [0x%x]\n", "CAS Write Latency CWL, [CSR]",
 | ||
| 		      mp0.s.cwl + 5, mp0.s.cwl);
 | ||
| 	}
 | ||
| 
 | ||
| 	mp0.s.mprloc = 0;
 | ||
| 	mp0.s.mpr = 0;
 | ||
| 	mp0.s.dll = (ddr_type == DDR4_DRAM);	/* 0 for DDR3 and 1 for DDR4 */
 | ||
| 	mp0.s.al = 0;
 | ||
| 	mp0.s.wlev = 0;		/* Read Only */
 | ||
| 	if (octeon_is_cpuid(OCTEON_CN70XX) || ddr_type == DDR4_DRAM)
 | ||
| 		mp0.s.tdqs = 0;
 | ||
| 	else
 | ||
| 		mp0.s.tdqs = 1;
 | ||
| 	mp0.s.qoff = 0;
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_cl");
 | ||
| 	if (s) {
 | ||
| 		cl = simple_strtoul(s, NULL, 0);
 | ||
| 		debug("CAS Latency                                   : %6d\n",
 | ||
| 		      cl);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (ddr_type == DDR4_DRAM) {
 | ||
| 		mp0.s.cl = 0x0;
 | ||
| 		if (cl > 9)
 | ||
| 			mp0.s.cl = 0x1;
 | ||
| 		if (cl > 10)
 | ||
| 			mp0.s.cl = 0x2;
 | ||
| 		if (cl > 11)
 | ||
| 			mp0.s.cl = 0x3;
 | ||
| 		if (cl > 12)
 | ||
| 			mp0.s.cl = 0x4;
 | ||
| 		if (cl > 13)
 | ||
| 			mp0.s.cl = 0x5;
 | ||
| 		if (cl > 14)
 | ||
| 			mp0.s.cl = 0x6;
 | ||
| 		if (cl > 15)
 | ||
| 			mp0.s.cl = 0x7;
 | ||
| 		if (cl > 16)
 | ||
| 			mp0.s.cl = 0x8;
 | ||
| 		if (cl > 18)
 | ||
| 			mp0.s.cl = 0x9;
 | ||
| 		if (cl > 20)
 | ||
| 			mp0.s.cl = 0xA;
 | ||
| 		if (cl > 24)
 | ||
| 			mp0.s.cl = 0xB;
 | ||
| 	} else {
 | ||
| 		mp0.s.cl = 0x2;
 | ||
| 		if (cl > 5)
 | ||
| 			mp0.s.cl = 0x4;
 | ||
| 		if (cl > 6)
 | ||
| 			mp0.s.cl = 0x6;
 | ||
| 		if (cl > 7)
 | ||
| 			mp0.s.cl = 0x8;
 | ||
| 		if (cl > 8)
 | ||
| 			mp0.s.cl = 0xA;
 | ||
| 		if (cl > 9)
 | ||
| 			mp0.s.cl = 0xC;
 | ||
| 		if (cl > 10)
 | ||
| 			mp0.s.cl = 0xE;
 | ||
| 		if (cl > 11)
 | ||
| 			mp0.s.cl = 0x1;
 | ||
| 		if (cl > 12)
 | ||
| 			mp0.s.cl = 0x3;
 | ||
| 		if (cl > 13)
 | ||
| 			mp0.s.cl = 0x5;
 | ||
| 		if (cl > 14)
 | ||
| 			mp0.s.cl = 0x7;
 | ||
| 		if (cl > 15)
 | ||
| 			mp0.s.cl = 0x9;
 | ||
| 	}
 | ||
| 
 | ||
| 	mp0.s.rbt = 0;		/* Read Only. */
 | ||
| 	mp0.s.tm = 0;
 | ||
| 	mp0.s.dllr = 0;
 | ||
| 
 | ||
| 	param = divide_roundup(twr, tclk_psecs);
 | ||
| 
 | ||
| 	if (ddr_type == DDR4_DRAM) {	/* DDR4 */
 | ||
| 		mp0.s.wrp = 1;
 | ||
| 		if (param > 12)
 | ||
| 			mp0.s.wrp = 2;
 | ||
| 		if (param > 14)
 | ||
| 			mp0.s.wrp = 3;
 | ||
| 		if (param > 16)
 | ||
| 			mp0.s.wrp = 4;
 | ||
| 		if (param > 18)
 | ||
| 			mp0.s.wrp = 5;
 | ||
| 		if (param > 20)
 | ||
| 			mp0.s.wrp = 6;
 | ||
| 		if (param > 24)	/* RESERVED in DDR4 spec */
 | ||
| 			mp0.s.wrp = 7;
 | ||
| 	} else {		/* DDR3 */
 | ||
| 		mp0.s.wrp = 1;
 | ||
| 		if (param > 5)
 | ||
| 			mp0.s.wrp = 2;
 | ||
| 		if (param > 6)
 | ||
| 			mp0.s.wrp = 3;
 | ||
| 		if (param > 7)
 | ||
| 			mp0.s.wrp = 4;
 | ||
| 		if (param > 8)
 | ||
| 			mp0.s.wrp = 5;
 | ||
| 		if (param > 10)
 | ||
| 			mp0.s.wrp = 6;
 | ||
| 		if (param > 12)
 | ||
| 			mp0.s.wrp = 7;
 | ||
| 	}
 | ||
| 
 | ||
| 	mp0.s.ppd = 0;
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_wrp");
 | ||
| 	if (s)
 | ||
| 		mp0.s.wrp = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	debug("%-45s : %d, [0x%x]\n",
 | ||
| 	      "Write recovery for auto precharge WRP, [CSR]", param, mp0.s.wrp);
 | ||
| 
 | ||
| 	s = lookup_env_ull(priv, "ddr_modereg_params0");
 | ||
| 	if (s)
 | ||
| 		mp0.u64 = simple_strtoull(s, NULL, 0);
 | ||
| 
 | ||
| 	debug("MODEREG_PARAMS0                               : 0x%016llx\n",
 | ||
| 	      mp0.u64);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), mp0.u64);
 | ||
| }
 | ||
| 
 | ||
| static void lmc_modereg_params1(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	union cvmx_lmcx_modereg_params1 mp1;
 | ||
| 	char *s;
 | ||
| 	int i;
 | ||
| 
 | ||
| 	mp1.u64 = odt_config[odt_idx].modereg_params1.u64;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Special request: mismatched DIMM support. Slot 0: 2-Rank,
 | ||
| 	 * Slot 1: 1-Rank
 | ||
| 	 */
 | ||
| 	if (rank_mask == 0x7) {	/* 2-Rank, 1-Rank */
 | ||
| 		mp1.s.rtt_nom_00 = 0;
 | ||
| 		mp1.s.rtt_nom_01 = 3;	/* rttnom_40ohm */
 | ||
| 		mp1.s.rtt_nom_10 = 3;	/* rttnom_40ohm */
 | ||
| 		mp1.s.rtt_nom_11 = 0;
 | ||
| 		dyn_rtt_nom_mask = 0x6;
 | ||
| 	}
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_rtt_nom_mask");
 | ||
| 	if (s)
 | ||
| 		dyn_rtt_nom_mask = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Save the original rtt_nom settings before sweeping through
 | ||
| 	 * settings.
 | ||
| 	 */
 | ||
| 	default_rtt_nom[0] = mp1.s.rtt_nom_00;
 | ||
| 	default_rtt_nom[1] = mp1.s.rtt_nom_01;
 | ||
| 	default_rtt_nom[2] = mp1.s.rtt_nom_10;
 | ||
| 	default_rtt_nom[3] = mp1.s.rtt_nom_11;
 | ||
| 
 | ||
| 	ddr_rtt_nom_auto = c_cfg->ddr_rtt_nom_auto;
 | ||
| 
 | ||
| 	for (i = 0; i < 4; ++i) {
 | ||
| 		u64 value;
 | ||
| 
 | ||
| 		s = lookup_env(priv, "ddr_rtt_nom_%1d%1d", !!(i & 2),
 | ||
| 			       !!(i & 1));
 | ||
| 		if (!s)
 | ||
| 			s = lookup_env(priv, "ddr%d_rtt_nom_%1d%1d", if_num,
 | ||
| 				       !!(i & 2), !!(i & 1));
 | ||
| 		if (s) {
 | ||
| 			value = simple_strtoul(s, NULL, 0);
 | ||
| 			mp1.u64 &= ~((u64)0x7 << (i * 12 + 9));
 | ||
| 			mp1.u64 |= ((value & 0x7) << (i * 12 + 9));
 | ||
| 			default_rtt_nom[i] = value;
 | ||
| 			ddr_rtt_nom_auto = 0;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_rtt_nom");
 | ||
| 	if (!s)
 | ||
| 		s = lookup_env(priv, "ddr%d_rtt_nom", if_num);
 | ||
| 	if (s) {
 | ||
| 		u64 value;
 | ||
| 
 | ||
| 		value = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 		if (dyn_rtt_nom_mask & 1) {
 | ||
| 			default_rtt_nom[0] = value;
 | ||
| 			mp1.s.rtt_nom_00 = value;
 | ||
| 		}
 | ||
| 		if (dyn_rtt_nom_mask & 2) {
 | ||
| 			default_rtt_nom[1] = value;
 | ||
| 			mp1.s.rtt_nom_01 = value;
 | ||
| 		}
 | ||
| 		if (dyn_rtt_nom_mask & 4) {
 | ||
| 			default_rtt_nom[2] = value;
 | ||
| 			mp1.s.rtt_nom_10 = value;
 | ||
| 		}
 | ||
| 		if (dyn_rtt_nom_mask & 8) {
 | ||
| 			default_rtt_nom[3] = value;
 | ||
| 			mp1.s.rtt_nom_11 = value;
 | ||
| 		}
 | ||
| 
 | ||
| 		ddr_rtt_nom_auto = 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	for (i = 0; i < 4; ++i) {
 | ||
| 		u64 value;
 | ||
| 
 | ||
| 		s = lookup_env(priv, "ddr_rtt_wr_%1d%1d", !!(i & 2), !!(i & 1));
 | ||
| 		if (!s)
 | ||
| 			s = lookup_env(priv, "ddr%d_rtt_wr_%1d%1d", if_num,
 | ||
| 				       !!(i & 2), !!(i & 1));
 | ||
| 		if (s) {
 | ||
| 			value = simple_strtoul(s, NULL, 0);
 | ||
| 			insrt_wr(&mp1.u64, i, value);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	// Make sure 78XX pass 1 has valid RTT_WR settings, because
 | ||
| 	// configuration files may be set-up for later chips, and
 | ||
| 	// 78XX pass 1 supports no RTT_WR extension bits
 | ||
| 	if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
 | ||
| 		for (i = 0; i < 4; ++i) {
 | ||
| 			// if 80 or undefined
 | ||
| 			if (extr_wr(mp1.u64, i) > 3) {
 | ||
| 				// FIXME? always insert 120
 | ||
| 				insrt_wr(&mp1.u64, i, 1);
 | ||
| 				debug("RTT_WR_%d%d set to 120 for CN78XX pass 1\n",
 | ||
| 				      !!(i & 2), i & 1);
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_dic");
 | ||
| 	if (s) {
 | ||
| 		u64 value = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 		for (i = 0; i < 4; ++i) {
 | ||
| 			mp1.u64 &= ~((u64)0x3 << (i * 12 + 7));
 | ||
| 			mp1.u64 |= ((value & 0x3) << (i * 12 + 7));
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	for (i = 0; i < 4; ++i) {
 | ||
| 		u64 value;
 | ||
| 
 | ||
| 		s = lookup_env(priv, "ddr_dic_%1d%1d", !!(i & 2), !!(i & 1));
 | ||
| 		if (s) {
 | ||
| 			value = simple_strtoul(s, NULL, 0);
 | ||
| 			mp1.u64 &= ~((u64)0x3 << (i * 12 + 7));
 | ||
| 			mp1.u64 |= ((value & 0x3) << (i * 12 + 7));
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	s = lookup_env_ull(priv, "ddr_modereg_params1");
 | ||
| 	if (s)
 | ||
| 		mp1.u64 = simple_strtoull(s, NULL, 0);
 | ||
| 
 | ||
| 	debug("RTT_NOM     %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
 | ||
| 	      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_11],
 | ||
| 	      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_10],
 | ||
| 	      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_01],
 | ||
| 	      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00],
 | ||
| 	      mp1.s.rtt_nom_11,
 | ||
| 	      mp1.s.rtt_nom_10, mp1.s.rtt_nom_01, mp1.s.rtt_nom_00);
 | ||
| 
 | ||
| 	debug("RTT_WR      %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
 | ||
| 	      imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 3)],
 | ||
| 	      imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 2)],
 | ||
| 	      imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 1)],
 | ||
| 	      imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 0)],
 | ||
| 	      extr_wr(mp1.u64, 3),
 | ||
| 	      extr_wr(mp1.u64, 2), extr_wr(mp1.u64, 1), extr_wr(mp1.u64, 0));
 | ||
| 
 | ||
| 	debug("DIC         %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
 | ||
| 	      imp_val->dic_ohms[mp1.s.dic_11],
 | ||
| 	      imp_val->dic_ohms[mp1.s.dic_10],
 | ||
| 	      imp_val->dic_ohms[mp1.s.dic_01],
 | ||
| 	      imp_val->dic_ohms[mp1.s.dic_00],
 | ||
| 	      mp1.s.dic_11, mp1.s.dic_10, mp1.s.dic_01, mp1.s.dic_00);
 | ||
| 
 | ||
| 	debug("MODEREG_PARAMS1                               : 0x%016llx\n",
 | ||
| 	      mp1.u64);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num), mp1.u64);
 | ||
| }
 | ||
| 
 | ||
| static void lmc_modereg_params2(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	char *s;
 | ||
| 	int i;
 | ||
| 
 | ||
| 	if (ddr_type == DDR4_DRAM) {
 | ||
| 		union cvmx_lmcx_modereg_params2 mp2;
 | ||
| 
 | ||
| 		mp2.u64 = odt_config[odt_idx].modereg_params2.u64;
 | ||
| 
 | ||
| 		s = lookup_env(priv, "ddr_rtt_park");
 | ||
| 		if (s) {
 | ||
| 			u64 value = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 			for (i = 0; i < 4; ++i) {
 | ||
| 				mp2.u64 &= ~((u64)0x7 << (i * 10 + 0));
 | ||
| 				mp2.u64 |= ((value & 0x7) << (i * 10 + 0));
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		for (i = 0; i < 4; ++i) {
 | ||
| 			u64 value;
 | ||
| 
 | ||
| 			s = lookup_env(priv, "ddr_rtt_park_%1d%1d", !!(i & 2),
 | ||
| 				       !!(i & 1));
 | ||
| 			if (s) {
 | ||
| 				value = simple_strtoul(s, NULL, 0);
 | ||
| 				mp2.u64 &= ~((u64)0x7 << (i * 10 + 0));
 | ||
| 				mp2.u64 |= ((value & 0x7) << (i * 10 + 0));
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		s = lookup_env_ull(priv, "ddr_modereg_params2");
 | ||
| 		if (s)
 | ||
| 			mp2.u64 = simple_strtoull(s, NULL, 0);
 | ||
| 
 | ||
| 		debug("RTT_PARK    %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
 | ||
| 		      imp_val->rtt_nom_ohms[mp2.s.rtt_park_11],
 | ||
| 		      imp_val->rtt_nom_ohms[mp2.s.rtt_park_10],
 | ||
| 		      imp_val->rtt_nom_ohms[mp2.s.rtt_park_01],
 | ||
| 		      imp_val->rtt_nom_ohms[mp2.s.rtt_park_00],
 | ||
| 		      mp2.s.rtt_park_11, mp2.s.rtt_park_10, mp2.s.rtt_park_01,
 | ||
| 		      mp2.s.rtt_park_00);
 | ||
| 
 | ||
| 		debug("%-45s :  0x%x,0x%x,0x%x,0x%x\n", "VREF_RANGE",
 | ||
| 		      mp2.s.vref_range_11,
 | ||
| 		      mp2.s.vref_range_10,
 | ||
| 		      mp2.s.vref_range_01, mp2.s.vref_range_00);
 | ||
| 
 | ||
| 		debug("%-45s :  0x%x,0x%x,0x%x,0x%x\n", "VREF_VALUE",
 | ||
| 		      mp2.s.vref_value_11,
 | ||
| 		      mp2.s.vref_value_10,
 | ||
| 		      mp2.s.vref_value_01, mp2.s.vref_value_00);
 | ||
| 
 | ||
| 		debug("MODEREG_PARAMS2                               : 0x%016llx\n",
 | ||
| 		      mp2.u64);
 | ||
| 		lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS2(if_num), mp2.u64);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void lmc_modereg_params3(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	char *s;
 | ||
| 
 | ||
| 	if (ddr_type == DDR4_DRAM) {
 | ||
| 		union cvmx_lmcx_modereg_params3 mp3;
 | ||
| 
 | ||
| 		mp3.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS3(if_num));
 | ||
| 		/* Disable as workaround to Errata 20547 */
 | ||
| 		mp3.s.rd_dbi = 0;
 | ||
| 		mp3.s.tccd_l = max(divide_roundup(ddr4_tccd_lmin, tclk_psecs),
 | ||
| 				   5ull) - 4;
 | ||
| 
 | ||
| 		s = lookup_env(priv, "ddr_rd_preamble");
 | ||
| 		if (s)
 | ||
| 			mp3.s.rd_preamble = !!simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 		if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
 | ||
| 			int delay = 0;
 | ||
| 
 | ||
| 			if (lranks_per_prank == 4 && ddr_hertz >= 1000000000)
 | ||
| 				delay = 1;
 | ||
| 
 | ||
| 			mp3.s.xrank_add_tccd_l = delay;
 | ||
| 			mp3.s.xrank_add_tccd_s = delay;
 | ||
| 		}
 | ||
| 
 | ||
| 		lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS3(if_num), mp3.u64);
 | ||
| 		debug("MODEREG_PARAMS3                               : 0x%016llx\n",
 | ||
| 		      mp3.u64);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void lmc_nxm(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	union cvmx_lmcx_nxm lmc_nxm;
 | ||
| 	int num_bits = row_lsb + row_bits + lranks_bits - 26;
 | ||
| 	char *s;
 | ||
| 
 | ||
| 	lmc_nxm.u64 = lmc_rd(priv, CVMX_LMCX_NXM(if_num));
 | ||
| 
 | ||
| 	/* .cn78xx. */
 | ||
| 	if (rank_mask & 0x1)
 | ||
| 		lmc_nxm.cn78xx.mem_msb_d0_r0 = num_bits;
 | ||
| 	if (rank_mask & 0x2)
 | ||
| 		lmc_nxm.cn78xx.mem_msb_d0_r1 = num_bits;
 | ||
| 	if (rank_mask & 0x4)
 | ||
| 		lmc_nxm.cn78xx.mem_msb_d1_r0 = num_bits;
 | ||
| 	if (rank_mask & 0x8)
 | ||
| 		lmc_nxm.cn78xx.mem_msb_d1_r1 = num_bits;
 | ||
| 
 | ||
| 	/* Set the mask for non-existent ranks. */
 | ||
| 	lmc_nxm.cn78xx.cs_mask = ~rank_mask & 0xff;
 | ||
| 
 | ||
| 	s = lookup_env_ull(priv, "ddr_nxm");
 | ||
| 	if (s)
 | ||
| 		lmc_nxm.u64 = simple_strtoull(s, NULL, 0);
 | ||
| 
 | ||
| 	debug("LMC_NXM                                       : 0x%016llx\n",
 | ||
| 	      lmc_nxm.u64);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_NXM(if_num), lmc_nxm.u64);
 | ||
| }
 | ||
| 
 | ||
| static void lmc_wodt_mask(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	union cvmx_lmcx_wodt_mask wodt_mask;
 | ||
| 	char *s;
 | ||
| 
 | ||
| 	wodt_mask.u64 = odt_config[odt_idx].odt_mask;
 | ||
| 
 | ||
| 	s = lookup_env_ull(priv, "ddr_wodt_mask");
 | ||
| 	if (s)
 | ||
| 		wodt_mask.u64 = simple_strtoull(s, NULL, 0);
 | ||
| 
 | ||
| 	debug("WODT_MASK                                     : 0x%016llx\n",
 | ||
| 	      wodt_mask.u64);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_WODT_MASK(if_num), wodt_mask.u64);
 | ||
| }
 | ||
| 
 | ||
| static void lmc_rodt_mask(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	union cvmx_lmcx_rodt_mask rodt_mask;
 | ||
| 	int rankx;
 | ||
| 	char *s;
 | ||
| 
 | ||
| 	rodt_mask.u64 = odt_config[odt_idx].rodt_ctl;
 | ||
| 
 | ||
| 	s = lookup_env_ull(priv, "ddr_rodt_mask");
 | ||
| 	if (s)
 | ||
| 		rodt_mask.u64 = simple_strtoull(s, NULL, 0);
 | ||
| 
 | ||
| 	debug("%-45s : 0x%016llx\n", "RODT_MASK", rodt_mask.u64);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_RODT_MASK(if_num), rodt_mask.u64);
 | ||
| 
 | ||
| 	dyn_rtt_nom_mask = 0;
 | ||
| 	for (rankx = 0; rankx < dimm_count * 4; rankx++) {
 | ||
| 		if (!(rank_mask & (1 << rankx)))
 | ||
| 			continue;
 | ||
| 		dyn_rtt_nom_mask |= ((rodt_mask.u64 >> (8 * rankx)) & 0xff);
 | ||
| 	}
 | ||
| 	if (num_ranks == 4) {
 | ||
| 		/*
 | ||
| 		 * Normally ODT1 is wired to rank 1. For quad-ranked DIMMs
 | ||
| 		 * ODT1 is wired to the third rank (rank 2).  The mask,
 | ||
| 		 * dyn_rtt_nom_mask, is used to indicate for which ranks
 | ||
| 		 * to sweep RTT_NOM during read-leveling. Shift the bit
 | ||
| 		 * from the ODT1 position over to the "ODT2" position so
 | ||
| 		 * that the read-leveling analysis comes out right.
 | ||
| 		 */
 | ||
| 		int odt1_bit = dyn_rtt_nom_mask & 2;
 | ||
| 
 | ||
| 		dyn_rtt_nom_mask &= ~2;
 | ||
| 		dyn_rtt_nom_mask |= odt1_bit << 1;
 | ||
| 	}
 | ||
| 	debug("%-45s : 0x%02x\n", "DYN_RTT_NOM_MASK", dyn_rtt_nom_mask);
 | ||
| }
 | ||
| 
 | ||
| static void lmc_comp_ctl2(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	union cvmx_lmcx_comp_ctl2 cc2;
 | ||
| 	char *s;
 | ||
| 
 | ||
| 	cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
 | ||
| 
 | ||
| 	cc2.cn78xx.dqx_ctl = odt_config[odt_idx].odt_ena;
 | ||
| 	/* Default 4=34.3 ohm */
 | ||
| 	cc2.cn78xx.ck_ctl = (c_cfg->ck_ctl == 0) ? 4 : c_cfg->ck_ctl;
 | ||
| 	/* Default 4=34.3 ohm */
 | ||
| 	cc2.cn78xx.cmd_ctl = (c_cfg->cmd_ctl == 0) ? 4 : c_cfg->cmd_ctl;
 | ||
| 	/* Default 4=34.3 ohm */
 | ||
| 	cc2.cn78xx.control_ctl = (c_cfg->ctl_ctl == 0) ? 4 : c_cfg->ctl_ctl;
 | ||
| 
 | ||
| 	ddr_rodt_ctl_auto = c_cfg->ddr_rodt_ctl_auto;
 | ||
| 	s = lookup_env(priv, "ddr_rodt_ctl_auto");
 | ||
| 	if (s)
 | ||
| 		ddr_rodt_ctl_auto = !!simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	default_rodt_ctl = odt_config[odt_idx].qs_dic;
 | ||
| 	s = lookup_env(priv, "ddr_rodt_ctl");
 | ||
| 	if (!s)
 | ||
| 		s = lookup_env(priv, "ddr%d_rodt_ctl", if_num);
 | ||
| 	if (s) {
 | ||
| 		default_rodt_ctl = simple_strtoul(s, NULL, 0);
 | ||
| 		ddr_rodt_ctl_auto = 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	cc2.cn70xx.rodt_ctl = default_rodt_ctl;
 | ||
| 
 | ||
| 	// if DDR4, force CK_CTL to 26 ohms if it is currently 34 ohms,
 | ||
| 	// and DCLK speed is 1 GHz or more...
 | ||
| 	if (ddr_type == DDR4_DRAM && cc2.s.ck_ctl == ddr4_driver_34_ohm &&
 | ||
| 	    ddr_hertz >= 1000000000) {
 | ||
| 		// lowest for DDR4 is 26 ohms
 | ||
| 		cc2.s.ck_ctl = ddr4_driver_26_ohm;
 | ||
| 		debug("N%d.LMC%d: Forcing DDR4 COMP_CTL2[CK_CTL] to %d, %d ohms\n",
 | ||
| 		      node, if_num, cc2.s.ck_ctl,
 | ||
| 		      imp_val->drive_strength[cc2.s.ck_ctl]);
 | ||
| 	}
 | ||
| 
 | ||
| 	// if DDR4, 2DPC, UDIMM, force CONTROL_CTL and CMD_CTL to 26 ohms,
 | ||
| 	// if DCLK speed is 1 GHz or more...
 | ||
| 	if (ddr_type == DDR4_DRAM && dimm_count == 2 &&
 | ||
| 	    (spd_dimm_type == 2 || spd_dimm_type == 6) &&
 | ||
| 	    ddr_hertz >= 1000000000) {
 | ||
| 		// lowest for DDR4 is 26 ohms
 | ||
| 		cc2.cn78xx.control_ctl = ddr4_driver_26_ohm;
 | ||
| 		// lowest for DDR4 is 26 ohms
 | ||
| 		cc2.cn78xx.cmd_ctl = ddr4_driver_26_ohm;
 | ||
| 		debug("N%d.LMC%d: Forcing DDR4 COMP_CTL2[CONTROL_CTL,CMD_CTL] to %d, %d ohms\n",
 | ||
| 		      node, if_num, ddr4_driver_26_ohm,
 | ||
| 		      imp_val->drive_strength[ddr4_driver_26_ohm]);
 | ||
| 	}
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_ck_ctl");
 | ||
| 	if (s)
 | ||
| 		cc2.cn78xx.ck_ctl = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_cmd_ctl");
 | ||
| 	if (s)
 | ||
| 		cc2.cn78xx.cmd_ctl = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_control_ctl");
 | ||
| 	if (s)
 | ||
| 		cc2.cn70xx.control_ctl = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_dqx_ctl");
 | ||
| 	if (s)
 | ||
| 		cc2.cn78xx.dqx_ctl = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	debug("%-45s : %d, %d ohms\n", "DQX_CTL           ", cc2.cn78xx.dqx_ctl,
 | ||
| 	      imp_val->drive_strength[cc2.cn78xx.dqx_ctl]);
 | ||
| 	debug("%-45s : %d, %d ohms\n", "CK_CTL            ", cc2.cn78xx.ck_ctl,
 | ||
| 	      imp_val->drive_strength[cc2.cn78xx.ck_ctl]);
 | ||
| 	debug("%-45s : %d, %d ohms\n", "CMD_CTL           ", cc2.cn78xx.cmd_ctl,
 | ||
| 	      imp_val->drive_strength[cc2.cn78xx.cmd_ctl]);
 | ||
| 	debug("%-45s : %d, %d ohms\n", "CONTROL_CTL       ",
 | ||
| 	      cc2.cn78xx.control_ctl,
 | ||
| 	      imp_val->drive_strength[cc2.cn78xx.control_ctl]);
 | ||
| 	debug("Read ODT_CTL                                  : 0x%x (%d ohms)\n",
 | ||
| 	      cc2.cn78xx.rodt_ctl, imp_val->rodt_ohms[cc2.cn78xx.rodt_ctl]);
 | ||
| 
 | ||
| 	debug("%-45s : 0x%016llx\n", "COMP_CTL2", cc2.u64);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
 | ||
| }
 | ||
| 
 | ||
| static void lmc_phy_ctl(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	union cvmx_lmcx_phy_ctl phy_ctl;
 | ||
| 
 | ||
| 	phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
 | ||
| 	phy_ctl.s.ts_stagger = 0;
 | ||
| 	// FIXME: are there others TBD?
 | ||
| 	phy_ctl.s.dsk_dbg_overwrt_ena = 0;
 | ||
| 
 | ||
| 	if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && lranks_per_prank > 1) {
 | ||
| 		// C0 is TEN, C1 is A17
 | ||
| 		phy_ctl.s.c0_sel = 2;
 | ||
| 		phy_ctl.s.c1_sel = 2;
 | ||
| 		debug("N%d.LMC%d: 3DS: setting PHY_CTL[cx_csel] = %d\n",
 | ||
| 		      node, if_num, phy_ctl.s.c1_sel);
 | ||
| 	}
 | ||
| 
 | ||
| 	debug("PHY_CTL                                       : 0x%016llx\n",
 | ||
| 	      phy_ctl.u64);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
 | ||
| }
 | ||
| 
 | ||
| static void lmc_ext_config(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	union cvmx_lmcx_ext_config ext_cfg;
 | ||
| 	char *s;
 | ||
| 
 | ||
| 	ext_cfg.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
 | ||
| 	ext_cfg.s.vrefint_seq_deskew = 0;
 | ||
| 	ext_cfg.s.read_ena_bprch = 1;
 | ||
| 	ext_cfg.s.read_ena_fprch = 1;
 | ||
| 	ext_cfg.s.drive_ena_fprch = 1;
 | ||
| 	ext_cfg.s.drive_ena_bprch = 1;
 | ||
| 	// make sure this is OFF for all current chips
 | ||
| 	ext_cfg.s.invert_data = 0;
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_read_fprch");
 | ||
| 	if (s)
 | ||
| 		ext_cfg.s.read_ena_fprch = strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_read_bprch");
 | ||
| 	if (s)
 | ||
| 		ext_cfg.s.read_ena_bprch = strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_drive_fprch");
 | ||
| 	if (s)
 | ||
| 		ext_cfg.s.drive_ena_fprch = strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_drive_bprch");
 | ||
| 	if (s)
 | ||
| 		ext_cfg.s.drive_ena_bprch = strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && lranks_per_prank > 1) {
 | ||
| 		ext_cfg.s.dimm0_cid = lranks_bits;
 | ||
| 		ext_cfg.s.dimm1_cid = lranks_bits;
 | ||
| 		debug("N%d.LMC%d: 3DS: setting EXT_CONFIG[dimmx_cid] = %d\n",
 | ||
| 		      node, if_num, ext_cfg.s.dimm0_cid);
 | ||
| 	}
 | ||
| 
 | ||
| 	lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_cfg.u64);
 | ||
| 	debug("%-45s : 0x%016llx\n", "EXT_CONFIG", ext_cfg.u64);
 | ||
| }
 | ||
| 
 | ||
| static void lmc_ext_config2(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	char *s;
 | ||
| 
 | ||
| 	// NOTE: all chips have this register, but not necessarily the
 | ||
| 	// fields we modify...
 | ||
| 	if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) &&
 | ||
| 	    !octeon_is_cpuid(OCTEON_CN73XX)) {
 | ||
| 		union cvmx_lmcx_ext_config2 ext_cfg2;
 | ||
| 		int value = 1;	// default to 1
 | ||
| 
 | ||
| 		ext_cfg2.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG2(if_num));
 | ||
| 
 | ||
| 		s = lookup_env(priv, "ddr_ext2_delay_unload");
 | ||
| 		if (s)
 | ||
| 			value = !!simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 		ext_cfg2.s.delay_unload_r0 = value;
 | ||
| 		ext_cfg2.s.delay_unload_r1 = value;
 | ||
| 		ext_cfg2.s.delay_unload_r2 = value;
 | ||
| 		ext_cfg2.s.delay_unload_r3 = value;
 | ||
| 
 | ||
| 		lmc_wr(priv, CVMX_LMCX_EXT_CONFIG2(if_num), ext_cfg2.u64);
 | ||
| 		debug("%-45s : 0x%016llx\n", "EXT_CONFIG2", ext_cfg2.u64);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void lmc_dimm01_params_loop(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	union cvmx_lmcx_dimmx_params dimm_p;
 | ||
| 	int dimmx = didx;
 | ||
| 	char *s;
 | ||
| 	int rc;
 | ||
| 	int i;
 | ||
| 
 | ||
| 	dimm_p.u64 = lmc_rd(priv, CVMX_LMCX_DIMMX_PARAMS(dimmx, if_num));
 | ||
| 
 | ||
| 	if (ddr_type == DDR4_DRAM) {
 | ||
| 		union cvmx_lmcx_dimmx_ddr4_params0 ddr4_p0;
 | ||
| 		union cvmx_lmcx_dimmx_ddr4_params1 ddr4_p1;
 | ||
| 		union cvmx_lmcx_ddr4_dimm_ctl ddr4_ctl;
 | ||
| 
 | ||
| 		dimm_p.s.rc0 = 0;
 | ||
| 		dimm_p.s.rc1 = 0;
 | ||
| 		dimm_p.s.rc2 = 0;
 | ||
| 
 | ||
| 		rc = read_spd(&dimm_config_table[didx], 0,
 | ||
| 			      DDR4_SPD_RDIMM_REGISTER_DRIVE_STRENGTH_CTL);
 | ||
| 		dimm_p.s.rc3 = (rc >> 4) & 0xf;
 | ||
| 		dimm_p.s.rc4 = ((rc >> 0) & 0x3) << 2;
 | ||
| 		dimm_p.s.rc4 |= ((rc >> 2) & 0x3) << 0;
 | ||
| 
 | ||
| 		rc = read_spd(&dimm_config_table[didx], 0,
 | ||
| 			      DDR4_SPD_RDIMM_REGISTER_DRIVE_STRENGTH_CK);
 | ||
| 		dimm_p.s.rc5 = ((rc >> 0) & 0x3) << 2;
 | ||
| 		dimm_p.s.rc5 |= ((rc >> 2) & 0x3) << 0;
 | ||
| 
 | ||
| 		dimm_p.s.rc6 = 0;
 | ||
| 		dimm_p.s.rc7 = 0;
 | ||
| 		dimm_p.s.rc8 = 0;
 | ||
| 		dimm_p.s.rc9 = 0;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * rc10               DDR4 RDIMM Operating Speed
 | ||
| 		 * ===  ===================================================
 | ||
| 		 *  0               tclk_psecs >= 1250 psec DDR4-1600 (1250 ps)
 | ||
| 		 *  1   1250 psec > tclk_psecs >= 1071 psec DDR4-1866 (1071 ps)
 | ||
| 		 *  2   1071 psec > tclk_psecs >=  938 psec DDR4-2133 ( 938 ps)
 | ||
| 		 *  3    938 psec > tclk_psecs >=  833 psec DDR4-2400 ( 833 ps)
 | ||
| 		 *  4    833 psec > tclk_psecs >=  750 psec DDR4-2666 ( 750 ps)
 | ||
| 		 *  5    750 psec > tclk_psecs >=  625 psec DDR4-3200 ( 625 ps)
 | ||
| 		 */
 | ||
| 		dimm_p.s.rc10 = 0;
 | ||
| 		if (tclk_psecs < 1250)
 | ||
| 			dimm_p.s.rc10 = 1;
 | ||
| 		if (tclk_psecs < 1071)
 | ||
| 			dimm_p.s.rc10 = 2;
 | ||
| 		if (tclk_psecs < 938)
 | ||
| 			dimm_p.s.rc10 = 3;
 | ||
| 		if (tclk_psecs < 833)
 | ||
| 			dimm_p.s.rc10 = 4;
 | ||
| 		if (tclk_psecs < 750)
 | ||
| 			dimm_p.s.rc10 = 5;
 | ||
| 
 | ||
| 		dimm_p.s.rc11 = 0;
 | ||
| 		dimm_p.s.rc12 = 0;
 | ||
| 		/* 0=LRDIMM, 1=RDIMM */
 | ||
| 		dimm_p.s.rc13 = (spd_dimm_type == 4) ? 0 : 4;
 | ||
| 		dimm_p.s.rc13 |= (ddr_type == DDR4_DRAM) ?
 | ||
| 			(spd_addr_mirror << 3) : 0;
 | ||
| 		dimm_p.s.rc14 = 0;
 | ||
| 		dimm_p.s.rc15 = 0;	/* 1 nCK latency adder */
 | ||
| 
 | ||
| 		ddr4_p0.u64 = 0;
 | ||
| 
 | ||
| 		ddr4_p0.s.rc8x = 0;
 | ||
| 		ddr4_p0.s.rc7x = 0;
 | ||
| 		ddr4_p0.s.rc6x = 0;
 | ||
| 		ddr4_p0.s.rc5x = 0;
 | ||
| 		ddr4_p0.s.rc4x = 0;
 | ||
| 
 | ||
| 		ddr4_p0.s.rc3x = compute_rc3x(tclk_psecs);
 | ||
| 
 | ||
| 		ddr4_p0.s.rc2x = 0;
 | ||
| 		ddr4_p0.s.rc1x = 0;
 | ||
| 
 | ||
| 		ddr4_p1.u64 = 0;
 | ||
| 
 | ||
| 		ddr4_p1.s.rcbx = 0;
 | ||
| 		ddr4_p1.s.rcax = 0;
 | ||
| 		ddr4_p1.s.rc9x = 0;
 | ||
| 
 | ||
| 		ddr4_ctl.u64 = 0;
 | ||
| 		ddr4_ctl.cn70xx.ddr4_dimm0_wmask = 0x004;
 | ||
| 		ddr4_ctl.cn70xx.ddr4_dimm1_wmask =
 | ||
| 		    (dimm_count > 1) ? 0x004 : 0x0000;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Handle any overrides from envvars here...
 | ||
| 		 */
 | ||
| 		s = lookup_env(priv, "ddr_ddr4_params0");
 | ||
| 		if (s)
 | ||
| 			ddr4_p0.u64 = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 		s = lookup_env(priv, "ddr_ddr4_params1");
 | ||
| 		if (s)
 | ||
| 			ddr4_p1.u64 = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 		s = lookup_env(priv, "ddr_ddr4_dimm_ctl");
 | ||
| 		if (s)
 | ||
| 			ddr4_ctl.u64 = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 		for (i = 0; i < 11; ++i) {
 | ||
| 			u64 value;
 | ||
| 
 | ||
| 			s = lookup_env(priv, "ddr_ddr4_rc%1xx", i + 1);
 | ||
| 			if (s) {
 | ||
| 				value = simple_strtoul(s, NULL, 0);
 | ||
| 				if (i < 8) {
 | ||
| 					ddr4_p0.u64 &= ~((u64)0xff << (i * 8));
 | ||
| 					ddr4_p0.u64 |= (value << (i * 8));
 | ||
| 				} else {
 | ||
| 					ddr4_p1.u64 &=
 | ||
| 					    ~((u64)0xff << ((i - 8) * 8));
 | ||
| 					ddr4_p1.u64 |= (value << ((i - 8) * 8));
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * write the final CSR values
 | ||
| 		 */
 | ||
| 		lmc_wr(priv, CVMX_LMCX_DIMMX_DDR4_PARAMS0(dimmx, if_num),
 | ||
| 		       ddr4_p0.u64);
 | ||
| 
 | ||
| 		lmc_wr(priv, CVMX_LMCX_DDR4_DIMM_CTL(if_num), ddr4_ctl.u64);
 | ||
| 
 | ||
| 		lmc_wr(priv, CVMX_LMCX_DIMMX_DDR4_PARAMS1(dimmx, if_num),
 | ||
| 		       ddr4_p1.u64);
 | ||
| 
 | ||
| 		debug("DIMM%d Register Control Words        RCBx:RC1x : %x %x %x %x %x %x %x %x %x %x %x\n",
 | ||
| 		      dimmx, ddr4_p1.s.rcbx, ddr4_p1.s.rcax,
 | ||
| 		      ddr4_p1.s.rc9x, ddr4_p0.s.rc8x,
 | ||
| 		      ddr4_p0.s.rc7x, ddr4_p0.s.rc6x,
 | ||
| 		      ddr4_p0.s.rc5x, ddr4_p0.s.rc4x,
 | ||
| 		      ddr4_p0.s.rc3x, ddr4_p0.s.rc2x, ddr4_p0.s.rc1x);
 | ||
| 
 | ||
| 	} else {
 | ||
| 		rc = read_spd(&dimm_config_table[didx], 0, 69);
 | ||
| 		dimm_p.s.rc0 = (rc >> 0) & 0xf;
 | ||
| 		dimm_p.s.rc1 = (rc >> 4) & 0xf;
 | ||
| 
 | ||
| 		rc = read_spd(&dimm_config_table[didx], 0, 70);
 | ||
| 		dimm_p.s.rc2 = (rc >> 0) & 0xf;
 | ||
| 		dimm_p.s.rc3 = (rc >> 4) & 0xf;
 | ||
| 
 | ||
| 		rc = read_spd(&dimm_config_table[didx], 0, 71);
 | ||
| 		dimm_p.s.rc4 = (rc >> 0) & 0xf;
 | ||
| 		dimm_p.s.rc5 = (rc >> 4) & 0xf;
 | ||
| 
 | ||
| 		rc = read_spd(&dimm_config_table[didx], 0, 72);
 | ||
| 		dimm_p.s.rc6 = (rc >> 0) & 0xf;
 | ||
| 		dimm_p.s.rc7 = (rc >> 4) & 0xf;
 | ||
| 
 | ||
| 		rc = read_spd(&dimm_config_table[didx], 0, 73);
 | ||
| 		dimm_p.s.rc8 = (rc >> 0) & 0xf;
 | ||
| 		dimm_p.s.rc9 = (rc >> 4) & 0xf;
 | ||
| 
 | ||
| 		rc = read_spd(&dimm_config_table[didx], 0, 74);
 | ||
| 		dimm_p.s.rc10 = (rc >> 0) & 0xf;
 | ||
| 		dimm_p.s.rc11 = (rc >> 4) & 0xf;
 | ||
| 
 | ||
| 		rc = read_spd(&dimm_config_table[didx], 0, 75);
 | ||
| 		dimm_p.s.rc12 = (rc >> 0) & 0xf;
 | ||
| 		dimm_p.s.rc13 = (rc >> 4) & 0xf;
 | ||
| 
 | ||
| 		rc = read_spd(&dimm_config_table[didx], 0, 76);
 | ||
| 		dimm_p.s.rc14 = (rc >> 0) & 0xf;
 | ||
| 		dimm_p.s.rc15 = (rc >> 4) & 0xf;
 | ||
| 
 | ||
| 		s = ddr_getenv_debug(priv, "ddr_clk_drive");
 | ||
| 		if (s) {
 | ||
| 			if (strcmp(s, "light") == 0)
 | ||
| 				dimm_p.s.rc5 = 0x0;	/* Light Drive */
 | ||
| 			if (strcmp(s, "moderate") == 0)
 | ||
| 				dimm_p.s.rc5 = 0x5;	/* Moderate Drive */
 | ||
| 			if (strcmp(s, "strong") == 0)
 | ||
| 				dimm_p.s.rc5 = 0xA;	/* Strong Drive */
 | ||
| 			printf("Parameter found in environment. ddr_clk_drive = %s\n",
 | ||
| 			       s);
 | ||
| 		}
 | ||
| 
 | ||
| 		s = ddr_getenv_debug(priv, "ddr_cmd_drive");
 | ||
| 		if (s) {
 | ||
| 			if (strcmp(s, "light") == 0)
 | ||
| 				dimm_p.s.rc3 = 0x0;	/* Light Drive */
 | ||
| 			if (strcmp(s, "moderate") == 0)
 | ||
| 				dimm_p.s.rc3 = 0x5;	/* Moderate Drive */
 | ||
| 			if (strcmp(s, "strong") == 0)
 | ||
| 				dimm_p.s.rc3 = 0xA;	/* Strong Drive */
 | ||
| 			printf("Parameter found in environment. ddr_cmd_drive = %s\n",
 | ||
| 			       s);
 | ||
| 		}
 | ||
| 
 | ||
| 		s = ddr_getenv_debug(priv, "ddr_ctl_drive");
 | ||
| 		if (s) {
 | ||
| 			if (strcmp(s, "light") == 0)
 | ||
| 				dimm_p.s.rc4 = 0x0;	/* Light Drive */
 | ||
| 			if (strcmp(s, "moderate") == 0)
 | ||
| 				dimm_p.s.rc4 = 0x5;	/* Moderate Drive */
 | ||
| 			printf("Parameter found in environment. ddr_ctl_drive = %s\n",
 | ||
| 			       s);
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * rc10               DDR3 RDIMM Operating Speed
 | ||
| 		 * ==   =====================================================
 | ||
| 		 *  0               tclk_psecs >= 2500 psec DDR3/DDR3L-800 def
 | ||
| 		 *  1   2500 psec > tclk_psecs >= 1875 psec DDR3/DDR3L-1066
 | ||
| 		 *  2   1875 psec > tclk_psecs >= 1500 psec DDR3/DDR3L-1333
 | ||
| 		 *  3   1500 psec > tclk_psecs >= 1250 psec DDR3/DDR3L-1600
 | ||
| 		 *  4   1250 psec > tclk_psecs >= 1071 psec DDR3-1866
 | ||
| 		 */
 | ||
| 		dimm_p.s.rc10 = 0;
 | ||
| 		if (tclk_psecs < 2500)
 | ||
| 			dimm_p.s.rc10 = 1;
 | ||
| 		if (tclk_psecs < 1875)
 | ||
| 			dimm_p.s.rc10 = 2;
 | ||
| 		if (tclk_psecs < 1500)
 | ||
| 			dimm_p.s.rc10 = 3;
 | ||
| 		if (tclk_psecs < 1250)
 | ||
| 			dimm_p.s.rc10 = 4;
 | ||
| 	}
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_dimmx_params", i);
 | ||
| 	if (s)
 | ||
| 		dimm_p.u64 = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	for (i = 0; i < 16; ++i) {
 | ||
| 		u64 value;
 | ||
| 
 | ||
| 		s = lookup_env(priv, "ddr_rc%d", i);
 | ||
| 		if (s) {
 | ||
| 			value = simple_strtoul(s, NULL, 0);
 | ||
| 			dimm_p.u64 &= ~((u64)0xf << (i * 4));
 | ||
| 			dimm_p.u64 |= (value << (i * 4));
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	lmc_wr(priv, CVMX_LMCX_DIMMX_PARAMS(dimmx, if_num), dimm_p.u64);
 | ||
| 
 | ||
| 	debug("DIMM%d Register Control Words         RC15:RC0 : %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",
 | ||
| 	      dimmx, dimm_p.s.rc15, dimm_p.s.rc14, dimm_p.s.rc13,
 | ||
| 	      dimm_p.s.rc12, dimm_p.s.rc11, dimm_p.s.rc10,
 | ||
| 	      dimm_p.s.rc9, dimm_p.s.rc8, dimm_p.s.rc7,
 | ||
| 	      dimm_p.s.rc6, dimm_p.s.rc5, dimm_p.s.rc4,
 | ||
| 	      dimm_p.s.rc3, dimm_p.s.rc2, dimm_p.s.rc1, dimm_p.s.rc0);
 | ||
| 
 | ||
| 	// FIXME: recognize a DDR3 RDIMM with 4 ranks and 2 registers,
 | ||
| 	// and treat it specially
 | ||
| 	if (ddr_type == DDR3_DRAM && num_ranks == 4 &&
 | ||
| 	    spd_rdimm_registers == 2 && dimmx == 0) {
 | ||
| 		debug("DDR3: Copying DIMM0_PARAMS to DIMM1_PARAMS for pseudo-DIMM #1...\n");
 | ||
| 		lmc_wr(priv, CVMX_LMCX_DIMMX_PARAMS(1, if_num), dimm_p.u64);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void lmc_dimm01_params(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	union cvmx_lmcx_dimm_ctl dimm_ctl;
 | ||
| 	char *s;
 | ||
| 
 | ||
| 	if (spd_rdimm) {
 | ||
| 		for (didx = 0; didx < (unsigned int)dimm_count; ++didx)
 | ||
| 			lmc_dimm01_params_loop(priv);
 | ||
| 
 | ||
| 		if (ddr_type == DDR4_DRAM) {
 | ||
| 			/* LMC0_DIMM_CTL */
 | ||
| 			dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num));
 | ||
| 			dimm_ctl.s.dimm0_wmask = 0xdf3f;
 | ||
| 			dimm_ctl.s.dimm1_wmask =
 | ||
| 			    (dimm_count > 1) ? 0xdf3f : 0x0000;
 | ||
| 			dimm_ctl.s.tcws = 0x4e0;
 | ||
| 			dimm_ctl.s.parity = c_cfg->parity;
 | ||
| 
 | ||
| 			s = lookup_env(priv, "ddr_dimm0_wmask");
 | ||
| 			if (s) {
 | ||
| 				dimm_ctl.s.dimm0_wmask =
 | ||
| 				    simple_strtoul(s, NULL, 0);
 | ||
| 			}
 | ||
| 
 | ||
| 			s = lookup_env(priv, "ddr_dimm1_wmask");
 | ||
| 			if (s) {
 | ||
| 				dimm_ctl.s.dimm1_wmask =
 | ||
| 				    simple_strtoul(s, NULL, 0);
 | ||
| 			}
 | ||
| 
 | ||
| 			s = lookup_env(priv, "ddr_dimm_ctl_parity");
 | ||
| 			if (s)
 | ||
| 				dimm_ctl.s.parity = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 			s = lookup_env(priv, "ddr_dimm_ctl_tcws");
 | ||
| 			if (s)
 | ||
| 				dimm_ctl.s.tcws = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 			debug("LMC DIMM_CTL                                  : 0x%016llx\n",
 | ||
| 			      dimm_ctl.u64);
 | ||
| 			lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64);
 | ||
| 
 | ||
| 			/* Init RCW */
 | ||
| 			oct3_ddr3_seq(priv, rank_mask, if_num, 0x7);
 | ||
| 
 | ||
| 			/* Write RC0D last */
 | ||
| 			dimm_ctl.s.dimm0_wmask = 0x2000;
 | ||
| 			dimm_ctl.s.dimm1_wmask = (dimm_count > 1) ?
 | ||
| 				0x2000 : 0x0000;
 | ||
| 			debug("LMC DIMM_CTL                                  : 0x%016llx\n",
 | ||
| 			      dimm_ctl.u64);
 | ||
| 			lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64);
 | ||
| 
 | ||
| 			/*
 | ||
| 			 * Don't write any extended registers the second time
 | ||
| 			 */
 | ||
| 			lmc_wr(priv, CVMX_LMCX_DDR4_DIMM_CTL(if_num), 0);
 | ||
| 
 | ||
| 			/* Init RCW */
 | ||
| 			oct3_ddr3_seq(priv, rank_mask, if_num, 0x7);
 | ||
| 		} else {
 | ||
| 			/* LMC0_DIMM_CTL */
 | ||
| 			dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num));
 | ||
| 			dimm_ctl.s.dimm0_wmask = 0xffff;
 | ||
| 			// FIXME: recognize a DDR3 RDIMM with 4 ranks and 2
 | ||
| 			// registers, and treat it specially
 | ||
| 			if (num_ranks == 4 && spd_rdimm_registers == 2) {
 | ||
| 				debug("DDR3: Activating DIMM_CTL[dimm1_mask] bits...\n");
 | ||
| 				dimm_ctl.s.dimm1_wmask = 0xffff;
 | ||
| 			} else {
 | ||
| 				dimm_ctl.s.dimm1_wmask =
 | ||
| 				    (dimm_count > 1) ? 0xffff : 0x0000;
 | ||
| 			}
 | ||
| 			dimm_ctl.s.tcws = 0x4e0;
 | ||
| 			dimm_ctl.s.parity = c_cfg->parity;
 | ||
| 
 | ||
| 			s = lookup_env(priv, "ddr_dimm0_wmask");
 | ||
| 			if (s) {
 | ||
| 				dimm_ctl.s.dimm0_wmask =
 | ||
| 				    simple_strtoul(s, NULL, 0);
 | ||
| 			}
 | ||
| 
 | ||
| 			s = lookup_env(priv, "ddr_dimm1_wmask");
 | ||
| 			if (s) {
 | ||
| 				dimm_ctl.s.dimm1_wmask =
 | ||
| 				    simple_strtoul(s, NULL, 0);
 | ||
| 			}
 | ||
| 
 | ||
| 			s = lookup_env(priv, "ddr_dimm_ctl_parity");
 | ||
| 			if (s)
 | ||
| 				dimm_ctl.s.parity = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 			s = lookup_env(priv, "ddr_dimm_ctl_tcws");
 | ||
| 			if (s)
 | ||
| 				dimm_ctl.s.tcws = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 			debug("LMC DIMM_CTL                                  : 0x%016llx\n",
 | ||
| 			      dimm_ctl.u64);
 | ||
| 			lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64);
 | ||
| 
 | ||
| 			/* Init RCW */
 | ||
| 			oct3_ddr3_seq(priv, rank_mask, if_num, 0x7);
 | ||
| 		}
 | ||
| 
 | ||
| 	} else {
 | ||
| 		/* Disable register control writes for unbuffered */
 | ||
| 		union cvmx_lmcx_dimm_ctl dimm_ctl;
 | ||
| 
 | ||
| 		dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num));
 | ||
| 		dimm_ctl.s.dimm0_wmask = 0;
 | ||
| 		dimm_ctl.s.dimm1_wmask = 0;
 | ||
| 		lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static int lmc_rank_init(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	char *s;
 | ||
| 
 | ||
| 	if (enable_by_rank_init) {
 | ||
| 		by_rank = 3;
 | ||
| 		saved_rank_mask = rank_mask;
 | ||
| 	}
 | ||
| 
 | ||
| start_by_rank_init:
 | ||
| 
 | ||
| 	if (enable_by_rank_init) {
 | ||
| 		rank_mask = (1 << by_rank);
 | ||
| 		if (!(rank_mask & saved_rank_mask))
 | ||
| 			goto end_by_rank_init;
 | ||
| 		if (by_rank == 0)
 | ||
| 			rank_mask = saved_rank_mask;
 | ||
| 
 | ||
| 		debug("\n>>>>> BY_RANK: starting rank %d with mask 0x%02x\n\n",
 | ||
| 		      by_rank, rank_mask);
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Comments (steps 3 through 5) continue in oct3_ddr3_seq()
 | ||
| 	 */
 | ||
| 	union cvmx_lmcx_modereg_params0 mp0;
 | ||
| 
 | ||
| 	if (ddr_memory_preserved(priv)) {
 | ||
| 		/*
 | ||
| 		 * Contents are being preserved. Take DRAM out of self-refresh
 | ||
| 		 * first. Then init steps can procede normally
 | ||
| 		 */
 | ||
| 		/* self-refresh exit */
 | ||
| 		oct3_ddr3_seq(priv, rank_mask, if_num, 3);
 | ||
| 	}
 | ||
| 
 | ||
| 	mp0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
 | ||
| 	mp0.s.dllr = 1;		/* Set during first init sequence */
 | ||
| 	lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), mp0.u64);
 | ||
| 
 | ||
| 	ddr_init_seq(priv, rank_mask, if_num);
 | ||
| 
 | ||
| 	mp0.s.dllr = 0;		/* Clear for normal operation */
 | ||
| 	lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), mp0.u64);
 | ||
| 
 | ||
| 	if (spd_rdimm && ddr_type == DDR4_DRAM &&
 | ||
| 	    octeon_is_cpuid(OCTEON_CN7XXX)) {
 | ||
| 		debug("Running init sequence 1\n");
 | ||
| 		change_rdimm_mpr_pattern(priv, rank_mask, if_num, dimm_count);
 | ||
| 	}
 | ||
| 
 | ||
| 	memset(lanes, 0, sizeof(lanes));
 | ||
| 	for (lane = 0; lane < last_lane; lane++) {
 | ||
| 		// init all lanes to reset value
 | ||
| 		dac_settings[lane] = 127;
 | ||
| 	}
 | ||
| 
 | ||
| 	// FIXME: disable internal VREF if deskew is disabled?
 | ||
| 	if (disable_deskew_training) {
 | ||
| 		debug("N%d.LMC%d: internal VREF Training disabled, leaving them in RESET.\n",
 | ||
| 		      node, if_num);
 | ||
| 		num_samples = 0;
 | ||
| 	} else if (ddr_type == DDR4_DRAM &&
 | ||
| 		   !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
 | ||
| 		num_samples = DEFAULT_DAC_SAMPLES;
 | ||
| 	} else {
 | ||
| 		// if DDR3 or no ability to write DAC values
 | ||
| 		num_samples = 1;
 | ||
| 	}
 | ||
| 
 | ||
| perform_internal_vref_training:
 | ||
| 
 | ||
| 	total_dac_eval_retries = 0;
 | ||
| 	dac_eval_exhausted = 0;
 | ||
| 
 | ||
| 	for (sample = 0; sample < num_samples; sample++) {
 | ||
| 		dac_eval_retries = 0;
 | ||
| 
 | ||
| 		// make offset and internal vref training repeatable
 | ||
| 		do {
 | ||
| 			/*
 | ||
| 			 * 6.9.8 LMC Offset Training
 | ||
| 			 * LMC requires input-receiver offset training.
 | ||
| 			 */
 | ||
| 			perform_offset_training(priv, rank_mask, if_num);
 | ||
| 
 | ||
| 			/*
 | ||
| 			 * 6.9.9 LMC Internal vref Training
 | ||
| 			 * LMC requires input-reference-voltage training.
 | ||
| 			 */
 | ||
| 			perform_internal_vref_training(priv, rank_mask, if_num);
 | ||
| 
 | ||
| 			// read and maybe display the DAC values for a sample
 | ||
| 			read_dac_dbi_settings(priv, if_num, /*DAC*/ 1,
 | ||
| 					      dac_settings);
 | ||
| 			if (num_samples == 1 || ddr_verbose(priv)) {
 | ||
| 				display_dac_dbi_settings(if_num, /*DAC*/ 1,
 | ||
| 							 use_ecc, dac_settings,
 | ||
| 							 "Internal VREF");
 | ||
| 			}
 | ||
| 
 | ||
| 			// for DDR4, evaluate the DAC settings and retry
 | ||
| 			// if any issues
 | ||
| 			if (ddr_type == DDR4_DRAM) {
 | ||
| 				if (evaluate_dac_settings
 | ||
| 				    (if_64b, use_ecc, dac_settings)) {
 | ||
| 					dac_eval_retries += 1;
 | ||
| 					if (dac_eval_retries >
 | ||
| 					    DAC_RETRIES_LIMIT) {
 | ||
| 						debug("N%d.LMC%d: DDR4 internal VREF DAC settings: retries exhausted; continuing...\n",
 | ||
| 						      node, if_num);
 | ||
| 						dac_eval_exhausted += 1;
 | ||
| 					} else {
 | ||
| 						debug("N%d.LMC%d: DDR4 internal VREF DAC settings inconsistent; retrying....\n",
 | ||
| 						      node, if_num);
 | ||
| 						total_dac_eval_retries += 1;
 | ||
| 						// try another sample
 | ||
| 						continue;
 | ||
| 					}
 | ||
| 				}
 | ||
| 
 | ||
| 				// taking multiple samples, otherwise do nothing
 | ||
| 				if (num_samples > 1) {
 | ||
| 					// good sample or exhausted retries,
 | ||
| 					// record it
 | ||
| 					for (lane = 0; lane < last_lane;
 | ||
| 					     lane++) {
 | ||
| 						lanes[lane].bytes[sample] =
 | ||
| 						    dac_settings[lane];
 | ||
| 					}
 | ||
| 				}
 | ||
| 			}
 | ||
| 			// done if DDR3, or good sample, or exhausted retries
 | ||
| 			break;
 | ||
| 		} while (1);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (ddr_type == DDR4_DRAM && dac_eval_exhausted > 0) {
 | ||
| 		debug("N%d.LMC%d: DDR internal VREF DAC settings: total retries %d, exhausted %d\n",
 | ||
| 		      node, if_num, total_dac_eval_retries, dac_eval_exhausted);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (num_samples > 1) {
 | ||
| 		debug("N%d.LMC%d: DDR4 internal VREF DAC settings: processing multiple samples...\n",
 | ||
| 		      node, if_num);
 | ||
| 
 | ||
| 		for (lane = 0; lane < last_lane; lane++) {
 | ||
| 			dac_settings[lane] =
 | ||
| 			    process_samples_average(&lanes[lane].bytes[0],
 | ||
| 						    num_samples, if_num, lane);
 | ||
| 		}
 | ||
| 		display_dac_dbi_settings(if_num, /*DAC*/ 1, use_ecc,
 | ||
| 					 dac_settings, "Averaged VREF");
 | ||
| 
 | ||
| 		// finally, write the final DAC values
 | ||
| 		for (lane = 0; lane < last_lane; lane++) {
 | ||
| 			load_dac_override(priv, if_num, dac_settings[lane],
 | ||
| 					  lane);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	// allow override of any byte-lane internal VREF
 | ||
| 	int overrode_vref_dac = 0;
 | ||
| 
 | ||
| 	for (lane = 0; lane < last_lane; lane++) {
 | ||
| 		s = lookup_env(priv, "ddr%d_vref_dac_byte%d", if_num, lane);
 | ||
| 		if (s) {
 | ||
| 			dac_settings[lane] = simple_strtoul(s, NULL, 0);
 | ||
| 			overrode_vref_dac = 1;
 | ||
| 			// finally, write the new DAC value
 | ||
| 			load_dac_override(priv, if_num, dac_settings[lane],
 | ||
| 					  lane);
 | ||
| 		}
 | ||
| 	}
 | ||
| 	if (overrode_vref_dac) {
 | ||
| 		display_dac_dbi_settings(if_num, /*DAC*/ 1, use_ecc,
 | ||
| 					 dac_settings, "Override VREF");
 | ||
| 	}
 | ||
| 
 | ||
| 	// as a second step, after internal VREF training, before starting
 | ||
| 	// deskew training:
 | ||
| 	// for DDR3 and OCTEON3 not O78 pass 1.x, override the DAC setting
 | ||
| 	// to 127
 | ||
| 	if (ddr_type == DDR3_DRAM && !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) &&
 | ||
| 	    !disable_deskew_training) {
 | ||
| 		load_dac_override(priv, if_num, 127, /* all */ 0x0A);
 | ||
| 		debug("N%d.LMC%d: Overriding DDR3 internal VREF DAC settings to 127.\n",
 | ||
| 		      node, if_num);
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 4.8.8 LMC Deskew Training
 | ||
| 	 *
 | ||
| 	 * LMC requires input-read-data deskew training.
 | ||
| 	 */
 | ||
| 	if (!disable_deskew_training) {
 | ||
| 		deskew_training_errors =
 | ||
| 		    perform_deskew_training(priv, rank_mask, if_num,
 | ||
| 					    spd_rawcard_aorb);
 | ||
| 
 | ||
| 		// All the Deskew lock and saturation retries (may) have
 | ||
| 		// been done, but we ended up with nibble errors; so,
 | ||
| 		// as a last ditch effort, try the Internal vref
 | ||
| 		// Training again...
 | ||
| 		if (deskew_training_errors) {
 | ||
| 			if (internal_retries <
 | ||
| 			    DEFAULT_INTERNAL_VREF_TRAINING_LIMIT) {
 | ||
| 				internal_retries++;
 | ||
| 				debug("N%d.LMC%d: Deskew training results still unsettled - retrying internal vref training (%d)\n",
 | ||
| 				      node, if_num, internal_retries);
 | ||
| 				goto perform_internal_vref_training;
 | ||
| 			} else {
 | ||
| 				if (restart_if_dsk_incomplete) {
 | ||
| 					debug("N%d.LMC%d: INFO: Deskew training incomplete - %d retries exhausted, Restarting LMC init...\n",
 | ||
| 					      node, if_num, internal_retries);
 | ||
| 					return -EAGAIN;
 | ||
| 				}
 | ||
| 				debug("N%d.LMC%d: Deskew training incomplete - %d retries exhausted, but continuing...\n",
 | ||
| 				      node, if_num, internal_retries);
 | ||
| 			}
 | ||
| 		}		/* if (deskew_training_errors) */
 | ||
| 
 | ||
| 		// FIXME: treat this as the final DSK print from now on,
 | ||
| 		// and print if VBL_NORM or above also, save the results
 | ||
| 		// of the original training in case we want them later
 | ||
| 		validate_deskew_training(priv, rank_mask, if_num,
 | ||
| 					 &deskew_training_results, 1);
 | ||
| 	} else {		/* if (! disable_deskew_training) */
 | ||
| 		debug("N%d.LMC%d: Deskew Training disabled, printing settings before HWL.\n",
 | ||
| 		      node, if_num);
 | ||
| 		validate_deskew_training(priv, rank_mask, if_num,
 | ||
| 					 &deskew_training_results, 1);
 | ||
| 	}			/* if (! disable_deskew_training) */
 | ||
| 
 | ||
| 	if (enable_by_rank_init) {
 | ||
| 		read_dac_dbi_settings(priv, if_num, /*dac */ 1,
 | ||
| 				      &rank_dac[by_rank].bytes[0]);
 | ||
| 		get_deskew_settings(priv, if_num, &rank_dsk[by_rank]);
 | ||
| 		debug("\n>>>>> BY_RANK: ending rank %d\n\n", by_rank);
 | ||
| 	}
 | ||
| 
 | ||
| end_by_rank_init:
 | ||
| 
 | ||
| 	if (enable_by_rank_init) {
 | ||
| 		//debug("\n>>>>> BY_RANK: ending rank %d\n\n", by_rank);
 | ||
| 
 | ||
| 		by_rank--;
 | ||
| 		if (by_rank >= 0)
 | ||
| 			goto start_by_rank_init;
 | ||
| 
 | ||
| 		rank_mask = saved_rank_mask;
 | ||
| 		ddr_init_seq(priv, rank_mask, if_num);
 | ||
| 
 | ||
| 		process_by_rank_dac(priv, if_num, rank_mask, rank_dac);
 | ||
| 		process_by_rank_dsk(priv, if_num, rank_mask, rank_dsk);
 | ||
| 
 | ||
| 		// FIXME: set this to prevent later checking!!!
 | ||
| 		disable_deskew_training = 1;
 | ||
| 
 | ||
| 		debug("\n>>>>> BY_RANK: FINISHED!!\n\n");
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static void lmc_config_2(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	union cvmx_lmcx_config lmc_config;
 | ||
| 	int save_ref_zqcs_int;
 | ||
| 	u64 temp_delay_usecs;
 | ||
| 
 | ||
| 	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Temporarily select the minimum ZQCS interval and wait
 | ||
| 	 * long enough for a few ZQCS calibrations to occur.  This
 | ||
| 	 * should ensure that the calibration circuitry is
 | ||
| 	 * stabilized before read/write leveling occurs.
 | ||
| 	 */
 | ||
| 	if (octeon_is_cpuid(OCTEON_CN7XXX)) {
 | ||
| 		save_ref_zqcs_int = lmc_config.cn78xx.ref_zqcs_int;
 | ||
| 		/* set smallest interval */
 | ||
| 		lmc_config.cn78xx.ref_zqcs_int = 1 | (32 << 7);
 | ||
| 	} else {
 | ||
| 		save_ref_zqcs_int = lmc_config.cn63xx.ref_zqcs_int;
 | ||
| 		/* set smallest interval */
 | ||
| 		lmc_config.cn63xx.ref_zqcs_int = 1 | (32 << 7);
 | ||
| 	}
 | ||
| 	lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
 | ||
| 	lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Compute an appropriate delay based on the current ZQCS
 | ||
| 	 * interval. The delay should be long enough for the
 | ||
| 	 * current ZQCS delay counter to expire plus ten of the
 | ||
| 	 * minimum intarvals to ensure that some calibrations
 | ||
| 	 * occur.
 | ||
| 	 */
 | ||
| 	temp_delay_usecs = (((u64)save_ref_zqcs_int >> 7) * tclk_psecs *
 | ||
| 			    100 * 512 * 128) / (10000 * 10000) + 10 *
 | ||
| 		((u64)32 * tclk_psecs * 100 * 512 * 128) / (10000 * 10000);
 | ||
| 
 | ||
| 	debug("Waiting %lld usecs for ZQCS calibrations to start\n",
 | ||
| 	      temp_delay_usecs);
 | ||
| 	udelay(temp_delay_usecs);
 | ||
| 
 | ||
| 	if (octeon_is_cpuid(OCTEON_CN7XXX)) {
 | ||
| 		/* Restore computed interval */
 | ||
| 		lmc_config.cn78xx.ref_zqcs_int = save_ref_zqcs_int;
 | ||
| 	} else {
 | ||
| 		/* Restore computed interval */
 | ||
| 		lmc_config.cn63xx.ref_zqcs_int = save_ref_zqcs_int;
 | ||
| 	}
 | ||
| 
 | ||
| 	lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
 | ||
| 	lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
 | ||
| }
 | ||
| 
 | ||
| static union cvmx_lmcx_wlevel_ctl wl_ctl __section(".data");
 | ||
| static union cvmx_lmcx_wlevel_rankx wl_rank __section(".data");
 | ||
| static union cvmx_lmcx_modereg_params1 mp1 __section(".data");
 | ||
| 
 | ||
| static int wl_mask[9] __section(".data");
 | ||
| static int byte_idx __section(".data");
 | ||
| static int ecc_ena __section(".data");
 | ||
| static int wl_roundup __section(".data");
 | ||
| static int save_mode32b __section(".data");
 | ||
| static int disable_hwl_validity __section(".data");
 | ||
| static int default_wl_rtt_nom __section(".data");
 | ||
| static int wl_pbm_pump __section(".data");
 | ||
| 
 | ||
| static void lmc_write_leveling_loop(struct ddr_priv *priv, int rankx)
 | ||
| {
 | ||
| 	int wloop = 0;
 | ||
| 	// retries per sample for HW-related issues with bitmasks or values
 | ||
| 	int wloop_retries = 0;
 | ||
| 	int wloop_retries_total = 0;
 | ||
| 	int wloop_retries_exhausted = 0;
 | ||
| #define WLOOP_RETRIES_DEFAULT 5
 | ||
| 	int wl_val_err;
 | ||
| 	int wl_mask_err_rank = 0;
 | ||
| 	int wl_val_err_rank = 0;
 | ||
| 	// array to collect counts of byte-lane values
 | ||
| 	// assume low-order 3 bits and even, so really only 2-bit values
 | ||
| 	struct wlevel_bitcnt wl_bytes[9], wl_bytes_extra[9];
 | ||
| 	int extra_bumps, extra_mask;
 | ||
| 	int rank_nom = 0;
 | ||
| 
 | ||
| 	if (!(rank_mask & (1 << rankx)))
 | ||
| 		return;
 | ||
| 
 | ||
| 	if (match_wl_rtt_nom) {
 | ||
| 		if (rankx == 0)
 | ||
| 			rank_nom = mp1.s.rtt_nom_00;
 | ||
| 		if (rankx == 1)
 | ||
| 			rank_nom = mp1.s.rtt_nom_01;
 | ||
| 		if (rankx == 2)
 | ||
| 			rank_nom = mp1.s.rtt_nom_10;
 | ||
| 		if (rankx == 3)
 | ||
| 			rank_nom = mp1.s.rtt_nom_11;
 | ||
| 
 | ||
| 		debug("N%d.LMC%d.R%d: Setting WLEVEL_CTL[rtt_nom] to %d (%d)\n",
 | ||
| 		      node, if_num, rankx, rank_nom,
 | ||
| 		      imp_val->rtt_nom_ohms[rank_nom]);
 | ||
| 	}
 | ||
| 
 | ||
| 	memset(wl_bytes, 0, sizeof(wl_bytes));
 | ||
| 	memset(wl_bytes_extra, 0, sizeof(wl_bytes_extra));
 | ||
| 
 | ||
| 	// restructure the looping so we can keep trying until we get the
 | ||
| 	// samples we want
 | ||
| 	while (wloop < wl_loops) {
 | ||
| 		wl_ctl.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_CTL(if_num));
 | ||
| 
 | ||
| 		wl_ctl.cn78xx.rtt_nom =
 | ||
| 		    (default_wl_rtt_nom > 0) ? (default_wl_rtt_nom - 1) : 7;
 | ||
| 
 | ||
| 		if (match_wl_rtt_nom) {
 | ||
| 			wl_ctl.cn78xx.rtt_nom =
 | ||
| 			    (rank_nom > 0) ? (rank_nom - 1) : 7;
 | ||
| 		}
 | ||
| 
 | ||
| 		/* Clear write-level delays */
 | ||
| 		lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num), 0);
 | ||
| 
 | ||
| 		wl_mask_err = 0;	/* Reset error counters */
 | ||
| 		wl_val_err = 0;
 | ||
| 
 | ||
| 		for (byte_idx = 0; byte_idx < 9; ++byte_idx)
 | ||
| 			wl_mask[byte_idx] = 0;	/* Reset bitmasks */
 | ||
| 
 | ||
| 		// do all the byte-lanes at the same time
 | ||
| 		wl_ctl.cn78xx.lanemask = 0x1ff;
 | ||
| 
 | ||
| 		lmc_wr(priv, CVMX_LMCX_WLEVEL_CTL(if_num), wl_ctl.u64);
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Read and write values back in order to update the
 | ||
| 		 * status field. This insures that we read the updated
 | ||
| 		 * values after write-leveling has completed.
 | ||
| 		 */
 | ||
| 		lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
 | ||
| 		       lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num)));
 | ||
| 
 | ||
| 		/* write-leveling */
 | ||
| 		oct3_ddr3_seq(priv, 1 << rankx, if_num, 6);
 | ||
| 
 | ||
| 		do {
 | ||
| 			wl_rank.u64 = lmc_rd(priv,
 | ||
| 					     CVMX_LMCX_WLEVEL_RANKX(rankx,
 | ||
| 								    if_num));
 | ||
| 		} while (wl_rank.cn78xx.status != 3);
 | ||
| 
 | ||
| 		wl_rank.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx,
 | ||
| 								  if_num));
 | ||
| 
 | ||
| 		for (byte_idx = 0; byte_idx < (8 + ecc_ena); ++byte_idx) {
 | ||
| 			wl_mask[byte_idx] = lmc_ddr3_wl_dbg_read(priv,
 | ||
| 								 if_num,
 | ||
| 								 byte_idx);
 | ||
| 			if (wl_mask[byte_idx] == 0)
 | ||
| 				++wl_mask_err;
 | ||
| 		}
 | ||
| 
 | ||
| 		// check validity only if no bitmask errors
 | ||
| 		if (wl_mask_err == 0) {
 | ||
| 			if ((spd_dimm_type == 1 || spd_dimm_type == 2) &&
 | ||
| 			    dram_width != 16 && if_64b &&
 | ||
| 			    !disable_hwl_validity) {
 | ||
| 				// bypass if [mini|SO]-[RU]DIMM or x16 or
 | ||
| 				// 32-bit
 | ||
| 				wl_val_err =
 | ||
| 				    validate_hw_wl_settings(if_num,
 | ||
| 							    &wl_rank,
 | ||
| 							    spd_rdimm, ecc_ena);
 | ||
| 				wl_val_err_rank += (wl_val_err != 0);
 | ||
| 			}
 | ||
| 		} else {
 | ||
| 			wl_mask_err_rank++;
 | ||
| 		}
 | ||
| 
 | ||
| 		// before we print, if we had bitmask or validity errors,
 | ||
| 		// do a retry...
 | ||
| 		if (wl_mask_err != 0 || wl_val_err != 0) {
 | ||
| 			if (wloop_retries < WLOOP_RETRIES_DEFAULT) {
 | ||
| 				wloop_retries++;
 | ||
| 				wloop_retries_total++;
 | ||
| 				// this printout is per-retry: only when VBL
 | ||
| 				// is high enough (DEV?)
 | ||
| 				// FIXME: do we want to show the bad bitmaps
 | ||
| 				// or delays here also?
 | ||
| 				debug("N%d.LMC%d.R%d: H/W Write-Leveling had %s errors - retrying...\n",
 | ||
| 				      node, if_num, rankx,
 | ||
| 				      (wl_mask_err) ? "Bitmask" : "Validity");
 | ||
| 				// this takes us back to the top without
 | ||
| 				// counting a sample
 | ||
| 				return;
 | ||
| 			}
 | ||
| 
 | ||
| 			// retries exhausted, do not print at normal VBL
 | ||
| 			debug("N%d.LMC%d.R%d: H/W Write-Leveling issues: %s errors\n",
 | ||
| 			      node, if_num, rankx,
 | ||
| 			      (wl_mask_err) ? "Bitmask" : "Validity");
 | ||
| 			wloop_retries_exhausted++;
 | ||
| 		}
 | ||
| 		// no errors or exhausted retries, use this sample
 | ||
| 		wloop_retries = 0;	//reset for next sample
 | ||
| 
 | ||
| 		// when only 1 sample or forced, print the bitmasks then
 | ||
| 		// current HW WL
 | ||
| 		if (wl_loops == 1 || wl_print) {
 | ||
| 			if (wl_print > 1)
 | ||
| 				display_wl_bm(if_num, rankx, wl_mask);
 | ||
| 			display_wl(if_num, wl_rank, rankx);
 | ||
| 		}
 | ||
| 
 | ||
| 		if (wl_roundup) {	/* Round up odd bitmask delays */
 | ||
| 			for (byte_idx = 0; byte_idx < (8 + ecc_ena);
 | ||
| 			     ++byte_idx) {
 | ||
| 				if (!(if_bytemask & (1 << byte_idx)))
 | ||
| 					return;
 | ||
| 				upd_wl_rank(&wl_rank, byte_idx,
 | ||
| 					    roundup_ddr3_wlevel_bitmask
 | ||
| 					    (wl_mask[byte_idx]));
 | ||
| 			}
 | ||
| 			lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
 | ||
| 			       wl_rank.u64);
 | ||
| 			display_wl(if_num, wl_rank, rankx);
 | ||
| 		}
 | ||
| 
 | ||
| 		// OK, we have a decent sample, no bitmask or validity errors
 | ||
| 		extra_bumps = 0;
 | ||
| 		extra_mask = 0;
 | ||
| 		for (byte_idx = 0; byte_idx < (8 + ecc_ena); ++byte_idx) {
 | ||
| 			int ix;
 | ||
| 
 | ||
| 			if (!(if_bytemask & (1 << byte_idx)))
 | ||
| 				return;
 | ||
| 
 | ||
| 			// increment count of byte-lane value
 | ||
| 			// only 4 values
 | ||
| 			ix = (get_wl_rank(&wl_rank, byte_idx) >> 1) & 3;
 | ||
| 			wl_bytes[byte_idx].bitcnt[ix]++;
 | ||
| 			wl_bytes_extra[byte_idx].bitcnt[ix]++;
 | ||
| 			// if perfect...
 | ||
| 			if (__builtin_popcount(wl_mask[byte_idx]) == 4) {
 | ||
| 				wl_bytes_extra[byte_idx].bitcnt[ix] +=
 | ||
| 				    wl_pbm_pump;
 | ||
| 				extra_bumps++;
 | ||
| 				extra_mask |= 1 << byte_idx;
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		if (extra_bumps) {
 | ||
| 			if (wl_print > 1) {
 | ||
| 				debug("N%d.LMC%d.R%d: HWL sample had %d bumps (0x%02x).\n",
 | ||
| 				      node, if_num, rankx, extra_bumps,
 | ||
| 				      extra_mask);
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		// if we get here, we have taken a decent sample
 | ||
| 		wloop++;
 | ||
| 
 | ||
| 	}			/* while (wloop < wl_loops) */
 | ||
| 
 | ||
| 	// if we did sample more than once, try to pick a majority vote
 | ||
| 	if (wl_loops > 1) {
 | ||
| 		// look for the majority in each byte-lane
 | ||
| 		for (byte_idx = 0; byte_idx < (8 + ecc_ena); ++byte_idx) {
 | ||
| 			int mx, mc, xc, cc;
 | ||
| 			int ix, alts;
 | ||
| 			int maj, xmaj, xmx, xmc, xxc, xcc;
 | ||
| 
 | ||
| 			if (!(if_bytemask & (1 << byte_idx)))
 | ||
| 				return;
 | ||
| 			maj = find_wl_majority(&wl_bytes[byte_idx], &mx,
 | ||
| 					       &mc, &xc, &cc);
 | ||
| 			xmaj = find_wl_majority(&wl_bytes_extra[byte_idx],
 | ||
| 						&xmx, &xmc, &xxc, &xcc);
 | ||
| 			if (maj != xmaj) {
 | ||
| 				if (wl_print) {
 | ||
| 					debug("N%d.LMC%d.R%d: Byte %d: HWL maj %d(%d), USING xmaj %d(%d)\n",
 | ||
| 					      node, if_num, rankx,
 | ||
| 					      byte_idx, maj, xc, xmaj, xxc);
 | ||
| 				}
 | ||
| 				mx = xmx;
 | ||
| 				mc = xmc;
 | ||
| 				xc = xxc;
 | ||
| 				cc = xcc;
 | ||
| 			}
 | ||
| 
 | ||
| 			// see if there was an alternate
 | ||
| 			// take out the majority choice
 | ||
| 			alts = (mc & ~(1 << mx));
 | ||
| 			if (alts != 0) {
 | ||
| 				for (ix = 0; ix < 4; ix++) {
 | ||
| 					// FIXME: could be done multiple times?
 | ||
| 					// bad if so
 | ||
| 					if (alts & (1 << ix)) {
 | ||
| 						// set the mask
 | ||
| 						hwl_alts[rankx].hwl_alt_mask |=
 | ||
| 							(1 << byte_idx);
 | ||
| 						// record the value
 | ||
| 						hwl_alts[rankx].hwl_alt_delay[byte_idx] =
 | ||
| 							ix << 1;
 | ||
| 						if (wl_print > 1) {
 | ||
| 							debug("N%d.LMC%d.R%d: SWL_TRY_HWL_ALT: Byte %d maj %d (%d) alt %d (%d).\n",
 | ||
| 							      node,
 | ||
| 							      if_num,
 | ||
| 							      rankx,
 | ||
| 							      byte_idx,
 | ||
| 							      mx << 1,
 | ||
| 							      xc,
 | ||
| 							      ix << 1,
 | ||
| 							      wl_bytes
 | ||
| 							      [byte_idx].bitcnt
 | ||
| 							      [ix]);
 | ||
| 						}
 | ||
| 					}
 | ||
| 				}
 | ||
| 			}
 | ||
| 
 | ||
| 			if (cc > 2) {	// unlikely, but...
 | ||
| 				// assume: counts for 3 indices are all 1
 | ||
| 				// possiblities are: 0/2/4, 2/4/6, 0/4/6, 0/2/6
 | ||
| 				// and the desired?:   2  ,   4  ,     6, 0
 | ||
| 				// we choose the middle, assuming one of the
 | ||
| 				// outliers is bad
 | ||
| 				// NOTE: this is an ugly hack at the moment;
 | ||
| 				// there must be a better way
 | ||
| 				switch (mc) {
 | ||
| 				case 0x7:
 | ||
| 					mx = 1;
 | ||
| 					break;	// was 0/2/4, choose 2
 | ||
| 				case 0xb:
 | ||
| 					mx = 0;
 | ||
| 					break;	// was 0/2/6, choose 0
 | ||
| 				case 0xd:
 | ||
| 					mx = 3;
 | ||
| 					break;	// was 0/4/6, choose 6
 | ||
| 				case 0xe:
 | ||
| 					mx = 2;
 | ||
| 					break;	// was 2/4/6, choose 4
 | ||
| 				default:
 | ||
| 				case 0xf:
 | ||
| 					mx = 1;
 | ||
| 					break;	// was 0/2/4/6, choose 2?
 | ||
| 				}
 | ||
| 				printf("N%d.LMC%d.R%d: HW WL MAJORITY: bad byte-lane %d (0x%x), using %d.\n",
 | ||
| 				       node, if_num, rankx, byte_idx, mc,
 | ||
| 				       mx << 1);
 | ||
| 			}
 | ||
| 			upd_wl_rank(&wl_rank, byte_idx, mx << 1);
 | ||
| 		}
 | ||
| 
 | ||
| 		lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
 | ||
| 		       wl_rank.u64);
 | ||
| 		display_wl_with_final(if_num, wl_rank, rankx);
 | ||
| 
 | ||
| 		// FIXME: does this help make the output a little easier
 | ||
| 		// to focus?
 | ||
| 		if (wl_print > 0)
 | ||
| 			debug("-----------\n");
 | ||
| 
 | ||
| 	}			/* if (wl_loops > 1) */
 | ||
| 
 | ||
| 	// maybe print an error summary for the rank
 | ||
| 	if (wl_mask_err_rank != 0 || wl_val_err_rank != 0) {
 | ||
| 		debug("N%d.LMC%d.R%d: H/W Write-Leveling errors - %d bitmask, %d validity, %d retries, %d exhausted\n",
 | ||
| 		      node, if_num, rankx, wl_mask_err_rank,
 | ||
| 		      wl_val_err_rank, wloop_retries_total,
 | ||
| 		      wloop_retries_exhausted);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void lmc_write_leveling(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	union cvmx_lmcx_config cfg;
 | ||
| 	int rankx;
 | ||
| 	char *s;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 4.8.9 LMC Write Leveling
 | ||
| 	 *
 | ||
| 	 * LMC supports an automatic write leveling like that described in the
 | ||
| 	 * JEDEC DDR3 specifications separately per byte-lane.
 | ||
| 	 *
 | ||
| 	 * All of DDR PLL, LMC CK, LMC DRESET, and early LMC initializations
 | ||
| 	 * must be completed prior to starting this LMC write-leveling sequence.
 | ||
| 	 *
 | ||
| 	 * There are many possible procedures that will write-level all the
 | ||
| 	 * attached DDR3 DRAM parts. One possibility is for software to simply
 | ||
| 	 * write the desired values into LMC(0)_WLEVEL_RANK(0..3). This section
 | ||
| 	 * describes one possible sequence that uses LMC's autowrite-leveling
 | ||
| 	 * capabilities.
 | ||
| 	 *
 | ||
| 	 * 1. If the DQS/DQ delays on the board may be more than the ADD/CMD
 | ||
| 	 *    delays, then ensure that LMC(0)_CONFIG[EARLY_DQX] is set at this
 | ||
| 	 *    point.
 | ||
| 	 *
 | ||
| 	 * Do the remaining steps 2-7 separately for each rank i with attached
 | ||
| 	 * DRAM.
 | ||
| 	 *
 | ||
| 	 * 2. Write LMC(0)_WLEVEL_RANKi = 0.
 | ||
| 	 *
 | ||
| 	 * 3. For x8 parts:
 | ||
| 	 *
 | ||
| 	 *    Without changing any other fields in LMC(0)_WLEVEL_CTL, write
 | ||
| 	 *    LMC(0)_WLEVEL_CTL[LANEMASK] to select all byte lanes with attached
 | ||
| 	 *    DRAM.
 | ||
| 	 *
 | ||
| 	 *    For x16 parts:
 | ||
| 	 *
 | ||
| 	 *    Without changing any other fields in LMC(0)_WLEVEL_CTL, write
 | ||
| 	 *    LMC(0)_WLEVEL_CTL[LANEMASK] to select all even byte lanes with
 | ||
| 	 *    attached DRAM.
 | ||
| 	 *
 | ||
| 	 * 4. Without changing any other fields in LMC(0)_CONFIG,
 | ||
| 	 *
 | ||
| 	 *    o write LMC(0)_SEQ_CTL[SEQ_SEL] to select write-leveling
 | ||
| 	 *
 | ||
| 	 *    o write LMC(0)_CONFIG[RANKMASK] = (1 << i)
 | ||
| 	 *
 | ||
| 	 *    o write LMC(0)_SEQ_CTL[INIT_START] = 1
 | ||
| 	 *
 | ||
| 	 *    LMC will initiate write-leveling at this point. Assuming
 | ||
| 	 *    LMC(0)_WLEVEL_CTL [SSET] = 0, LMC first enables write-leveling on
 | ||
| 	 *    the selected DRAM rank via a DDR3 MR1 write, then sequences
 | ||
| 	 *    through
 | ||
| 	 *    and accumulates write-leveling results for eight different delay
 | ||
| 	 *    settings twice, starting at a delay of zero in this case since
 | ||
| 	 *    LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] = 0, increasing by 1/8 CK each
 | ||
| 	 *    setting, covering a total distance of one CK, then disables the
 | ||
| 	 *    write-leveling via another DDR3 MR1 write.
 | ||
| 	 *
 | ||
| 	 *    After the sequence through 16 delay settings is complete:
 | ||
| 	 *
 | ||
| 	 *    o LMC sets LMC(0)_WLEVEL_RANKi[STATUS] = 3
 | ||
| 	 *
 | ||
| 	 *    o LMC sets LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] (for all ranks selected
 | ||
| 	 *      by LMC(0)_WLEVEL_CTL[LANEMASK]) to indicate the first write
 | ||
| 	 *      leveling result of 1 that followed result of 0 during the
 | ||
| 	 *      sequence, except that the LMC always writes
 | ||
| 	 *      LMC(0)_WLEVEL_RANKi[BYTE*<0>]=0.
 | ||
| 	 *
 | ||
| 	 *    o Software can read the eight write-leveling results from the
 | ||
| 	 *      first pass through the delay settings by reading
 | ||
| 	 *      LMC(0)_WLEVEL_DBG[BITMASK] (after writing
 | ||
| 	 *      LMC(0)_WLEVEL_DBG[BYTE]). (LMC does not retain the writeleveling
 | ||
| 	 *      results from the second pass through the eight delay
 | ||
| 	 *      settings. They should often be identical to the
 | ||
| 	 *      LMC(0)_WLEVEL_DBG[BITMASK] results, though.)
 | ||
| 	 *
 | ||
| 	 * 5. Wait until LMC(0)_WLEVEL_RANKi[STATUS] != 2.
 | ||
| 	 *
 | ||
| 	 *    LMC will have updated LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] for all byte
 | ||
| 	 *    lanes selected by LMC(0)_WLEVEL_CTL[LANEMASK] at this point.
 | ||
| 	 *    LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] will still be the value that
 | ||
| 	 *    software wrote in substep 2 above, which is 0.
 | ||
| 	 *
 | ||
| 	 * 6. For x16 parts:
 | ||
| 	 *
 | ||
| 	 *    Without changing any other fields in LMC(0)_WLEVEL_CTL, write
 | ||
| 	 *    LMC(0)_WLEVEL_CTL[LANEMASK] to select all odd byte lanes with
 | ||
| 	 *    attached DRAM.
 | ||
| 	 *
 | ||
| 	 *    Repeat substeps 4 and 5 with this new LMC(0)_WLEVEL_CTL[LANEMASK]
 | ||
| 	 *    setting. Skip to substep 7 if this has already been done.
 | ||
| 	 *
 | ||
| 	 *    For x8 parts:
 | ||
| 	 *
 | ||
| 	 *    Skip this substep. Go to substep 7.
 | ||
| 	 *
 | ||
| 	 * 7. Calculate LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] settings for all byte
 | ||
| 	 *    lanes on all ranks with attached DRAM.
 | ||
| 	 *
 | ||
| 	 *    At this point, all byte lanes on rank i with attached DRAM should
 | ||
| 	 *    have been write-leveled, and LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] has
 | ||
| 	 *    the result for each byte lane.
 | ||
| 	 *
 | ||
| 	 *    But note that the DDR3 write-leveling sequence will only determine
 | ||
| 	 *    the delay modulo the CK cycle time, and cannot determine how many
 | ||
| 	 *    additional CK cycles of delay are present. Software must calculate
 | ||
| 	 *    the number of CK cycles, or equivalently, the
 | ||
| 	 *    LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] settings.
 | ||
| 	 *
 | ||
| 	 *    This BYTE*<4:3> calculation is system/board specific.
 | ||
| 	 *
 | ||
| 	 * Many techniques can be used to calculate write-leveling BYTE*<4:3>
 | ||
| 	 * values, including:
 | ||
| 	 *
 | ||
| 	 *    o Known values for some byte lanes.
 | ||
| 	 *
 | ||
| 	 *    o Relative values for some byte lanes relative to others.
 | ||
| 	 *
 | ||
| 	 *    For example, suppose lane X is likely to require a larger
 | ||
| 	 *    write-leveling delay than lane Y. A BYTEX<2:0> value that is much
 | ||
| 	 *    smaller than the BYTEY<2:0> value may then indicate that the
 | ||
| 	 *    required lane X delay wrapped into the next CK, so BYTEX<4:3>
 | ||
| 	 *    should be set to BYTEY<4:3>+1.
 | ||
| 	 *
 | ||
| 	 *    When ECC DRAM is not present (i.e. when DRAM is not attached to
 | ||
| 	 *    the DDR_CBS_0_* and DDR_CB<7:0> chip signals, or the
 | ||
| 	 *    DDR_DQS_<4>_* and DDR_DQ<35:32> chip signals), write
 | ||
| 	 *    LMC(0)_WLEVEL_RANK*[BYTE8] = LMC(0)_WLEVEL_RANK*[BYTE0],
 | ||
| 	 *    using the final calculated BYTE0 value.
 | ||
| 	 *    Write LMC(0)_WLEVEL_RANK*[BYTE4] = LMC(0)_WLEVEL_RANK*[BYTE0],
 | ||
| 	 *    using the final calculated BYTE0 value.
 | ||
| 	 *
 | ||
| 	 * 8. Initialize LMC(0)_WLEVEL_RANK* values for all unused ranks.
 | ||
| 	 *
 | ||
| 	 *    Let rank i be a rank with attached DRAM.
 | ||
| 	 *
 | ||
| 	 *    For all ranks j that do not have attached DRAM, set
 | ||
| 	 *    LMC(0)_WLEVEL_RANKj = LMC(0)_WLEVEL_RANKi.
 | ||
| 	 */
 | ||
| 
 | ||
| 	rankx = 0;
 | ||
| 	wl_roundup = 0;
 | ||
| 	disable_hwl_validity = 0;
 | ||
| 
 | ||
| 	// wl_pbm_pump: weight for write-leveling PBMs...
 | ||
| 	// 0 causes original behavior
 | ||
| 	// 1 allows a minority of 2 pbms to outscore a majority of 3 non-pbms
 | ||
| 	// 4 would allow a minority of 1 pbm to outscore a majority of 4
 | ||
| 	// non-pbms
 | ||
| 	wl_pbm_pump = 4;	// FIXME: is 4 too much?
 | ||
| 
 | ||
| 	if (wl_loops) {
 | ||
| 		debug("N%d.LMC%d: Performing Hardware Write-Leveling\n", node,
 | ||
| 		      if_num);
 | ||
| 	} else {
 | ||
| 		/* Force software write-leveling to run */
 | ||
| 		wl_mask_err = 1;
 | ||
| 		debug("N%d.LMC%d: Forcing software Write-Leveling\n", node,
 | ||
| 		      if_num);
 | ||
| 	}
 | ||
| 
 | ||
| 	default_wl_rtt_nom = (ddr_type == DDR3_DRAM) ?
 | ||
| 		rttnom_20ohm : ddr4_rttnom_40ohm;
 | ||
| 
 | ||
| 	cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
 | ||
| 	ecc_ena = cfg.s.ecc_ena;
 | ||
| 	save_mode32b = cfg.cn78xx.mode32b;
 | ||
| 	cfg.cn78xx.mode32b = (!if_64b);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
 | ||
| 	debug("%-45s : %d\n", "MODE32B", cfg.cn78xx.mode32b);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_wlevel_roundup");
 | ||
| 	if (s)
 | ||
| 		wl_roundup = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_wlevel_printall");
 | ||
| 	if (s)
 | ||
| 		wl_print = strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_wlevel_pbm_bump");
 | ||
| 	if (s)
 | ||
| 		wl_pbm_pump = strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	// default to disable when RL sequential delay check is disabled
 | ||
| 	disable_hwl_validity = disable_sequential_delay_check;
 | ||
| 	s = lookup_env(priv, "ddr_disable_hwl_validity");
 | ||
| 	if (s)
 | ||
| 		disable_hwl_validity = !!strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_wl_rtt_nom");
 | ||
| 	if (s)
 | ||
| 		default_wl_rtt_nom = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_match_wl_rtt_nom");
 | ||
| 	if (s)
 | ||
| 		match_wl_rtt_nom = !!simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	if (match_wl_rtt_nom)
 | ||
| 		mp1.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num));
 | ||
| 
 | ||
| 	// For DDR3, we do not touch WLEVEL_CTL fields OR_DIS or BITMASK
 | ||
| 	// For DDR4, we touch WLEVEL_CTL fields OR_DIS or BITMASK here
 | ||
| 	if (ddr_type == DDR4_DRAM) {
 | ||
| 		int default_or_dis = 1;
 | ||
| 		int default_bitmask = 0xff;
 | ||
| 
 | ||
| 		// when x4, use only the lower nibble
 | ||
| 		if (dram_width == 4) {
 | ||
| 			default_bitmask = 0x0f;
 | ||
| 			if (wl_print) {
 | ||
| 				debug("N%d.LMC%d: WLEVEL_CTL: default bitmask is 0x%02x for DDR4 x4\n",
 | ||
| 				      node, if_num, default_bitmask);
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		wl_ctl.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_CTL(if_num));
 | ||
| 		wl_ctl.s.or_dis = default_or_dis;
 | ||
| 		wl_ctl.s.bitmask = default_bitmask;
 | ||
| 
 | ||
| 		// allow overrides
 | ||
| 		s = lookup_env(priv, "ddr_wlevel_ctl_or_dis");
 | ||
| 		if (s)
 | ||
| 			wl_ctl.s.or_dis = !!strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 		s = lookup_env(priv, "ddr_wlevel_ctl_bitmask");
 | ||
| 		if (s)
 | ||
| 			wl_ctl.s.bitmask = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 		// print only if not defaults
 | ||
| 		if (wl_ctl.s.or_dis != default_or_dis ||
 | ||
| 		    wl_ctl.s.bitmask != default_bitmask) {
 | ||
| 			debug("N%d.LMC%d: WLEVEL_CTL: or_dis=%d, bitmask=0x%02x\n",
 | ||
| 			      node, if_num, wl_ctl.s.or_dis, wl_ctl.s.bitmask);
 | ||
| 		}
 | ||
| 
 | ||
| 		// always write
 | ||
| 		lmc_wr(priv, CVMX_LMCX_WLEVEL_CTL(if_num), wl_ctl.u64);
 | ||
| 	}
 | ||
| 
 | ||
| 	// Start the hardware write-leveling loop per rank
 | ||
| 	for (rankx = 0; rankx < dimm_count * 4; rankx++)
 | ||
| 		lmc_write_leveling_loop(priv, rankx);
 | ||
| 
 | ||
| 	cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
 | ||
| 	cfg.cn78xx.mode32b = save_mode32b;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
 | ||
| 	debug("%-45s : %d\n", "MODE32B", cfg.cn78xx.mode32b);
 | ||
| 
 | ||
| 	// At the end of HW Write Leveling, check on some DESKEW things...
 | ||
| 	if (!disable_deskew_training) {
 | ||
| 		struct deskew_counts dsk_counts;
 | ||
| 		int retry_count = 0;
 | ||
| 
 | ||
| 		debug("N%d.LMC%d: Check Deskew Settings before Read-Leveling.\n",
 | ||
| 		      node, if_num);
 | ||
| 
 | ||
| 		do {
 | ||
| 			validate_deskew_training(priv, rank_mask, if_num,
 | ||
| 						 &dsk_counts, 1);
 | ||
| 
 | ||
| 			// only RAWCARD A or B will not benefit from
 | ||
| 			// retraining if there's only saturation
 | ||
| 			// or any rawcard if there is a nibble error
 | ||
| 			if ((!spd_rawcard_aorb && dsk_counts.saturated > 0) ||
 | ||
| 			    (dsk_counts.nibrng_errs != 0 ||
 | ||
| 			     dsk_counts.nibunl_errs != 0)) {
 | ||
| 				retry_count++;
 | ||
| 				debug("N%d.LMC%d: Deskew Status indicates saturation or nibble errors - retry %d Training.\n",
 | ||
| 				      node, if_num, retry_count);
 | ||
| 				perform_deskew_training(priv, rank_mask, if_num,
 | ||
| 							spd_rawcard_aorb);
 | ||
| 			} else {
 | ||
| 				break;
 | ||
| 			}
 | ||
| 		} while (retry_count < 5);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void lmc_workaround(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	/* Workaround Trcd overflow by using Additive latency. */
 | ||
| 	if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
 | ||
| 		union cvmx_lmcx_modereg_params0 mp0;
 | ||
| 		union cvmx_lmcx_timing_params1 tp1;
 | ||
| 		union cvmx_lmcx_control ctrl;
 | ||
| 		int rankx;
 | ||
| 
 | ||
| 		tp1.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS1(if_num));
 | ||
| 		mp0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
 | ||
| 		ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
 | ||
| 
 | ||
| 		if (tp1.cn78xx.trcd == 0) {
 | ||
| 			debug("Workaround Trcd overflow by using Additive latency.\n");
 | ||
| 			/* Hard code this to 12 and enable additive latency */
 | ||
| 			tp1.cn78xx.trcd = 12;
 | ||
| 			mp0.s.al = 2;	/* CL-2 */
 | ||
| 			ctrl.s.pocas = 1;
 | ||
| 
 | ||
| 			debug("MODEREG_PARAMS0                               : 0x%016llx\n",
 | ||
| 			      mp0.u64);
 | ||
| 			lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num),
 | ||
| 			       mp0.u64);
 | ||
| 			debug("TIMING_PARAMS1                                : 0x%016llx\n",
 | ||
| 			      tp1.u64);
 | ||
| 			lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS1(if_num), tp1.u64);
 | ||
| 
 | ||
| 			debug("LMC_CONTROL                                   : 0x%016llx\n",
 | ||
| 			      ctrl.u64);
 | ||
| 			lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64);
 | ||
| 
 | ||
| 			for (rankx = 0; rankx < dimm_count * 4; rankx++) {
 | ||
| 				if (!(rank_mask & (1 << rankx)))
 | ||
| 					continue;
 | ||
| 
 | ||
| 				/* MR1 */
 | ||
| 				ddr4_mrw(priv, if_num, rankx, -1, 1, 0);
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	// this is here just for output, to allow check of the Deskew
 | ||
| 	// settings one last time...
 | ||
| 	if (!disable_deskew_training) {
 | ||
| 		struct deskew_counts dsk_counts;
 | ||
| 
 | ||
| 		debug("N%d.LMC%d: Check Deskew Settings before software Write-Leveling.\n",
 | ||
| 		      node, if_num);
 | ||
| 		validate_deskew_training(priv, rank_mask, if_num, &dsk_counts,
 | ||
| 					 3);
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Workaround Errata 26304 (T88@2.0, O75@1.x, O78@2.x)
 | ||
| 	 *
 | ||
| 	 * When the CSRs LMCX_DLL_CTL3[WR_DESKEW_ENA] = 1 AND
 | ||
| 	 * LMCX_PHY_CTL2[DQS[0..8]_DSK_ADJ] > 4, set
 | ||
| 	 * LMCX_EXT_CONFIG[DRIVE_ENA_BPRCH] = 1.
 | ||
| 	 */
 | ||
| 	if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) ||
 | ||
| 	    octeon_is_cpuid(OCTEON_CNF75XX_PASS1_X)) {
 | ||
| 		union cvmx_lmcx_dll_ctl3 dll_ctl3;
 | ||
| 		union cvmx_lmcx_phy_ctl2 phy_ctl2;
 | ||
| 		union cvmx_lmcx_ext_config ext_cfg;
 | ||
| 		int increased_dsk_adj = 0;
 | ||
| 		int byte;
 | ||
| 
 | ||
| 		phy_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL2(if_num));
 | ||
| 		ext_cfg.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
 | ||
| 		dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
 | ||
| 
 | ||
| 		for (byte = 0; byte < 8; ++byte) {
 | ||
| 			if (!(if_bytemask & (1 << byte)))
 | ||
| 				continue;
 | ||
| 			increased_dsk_adj |=
 | ||
| 			    (((phy_ctl2.u64 >> (byte * 3)) & 0x7) > 4);
 | ||
| 		}
 | ||
| 
 | ||
| 		if (dll_ctl3.s.wr_deskew_ena == 1 && increased_dsk_adj) {
 | ||
| 			ext_cfg.s.drive_ena_bprch = 1;
 | ||
| 			lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_cfg.u64);
 | ||
| 			debug("LMC%d: Forcing DRIVE_ENA_BPRCH for Workaround Errata 26304.\n",
 | ||
| 			      if_num);
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // Software Write-Leveling block
 | ||
| 
 | ||
| #define VREF_RANGE1_LIMIT 0x33	// range1 is valid for 0x00 - 0x32
 | ||
| #define VREF_RANGE2_LIMIT 0x18	// range2 is valid for 0x00 - 0x17
 | ||
| // full window is valid for 0x00 to 0x4A
 | ||
| // let 0x00 - 0x17 be range2, 0x18 - 0x4a be range 1
 | ||
| #define VREF_LIMIT        (VREF_RANGE1_LIMIT + VREF_RANGE2_LIMIT)
 | ||
| #define VREF_FINAL        (VREF_LIMIT - 1)
 | ||
| 
 | ||
| enum sw_wl_status {
 | ||
| 	WL_ESTIMATED = 0, /* HW/SW wleveling failed. Reslt estimated */
 | ||
| 	WL_HARDWARE = 1,	/* H/W wleveling succeeded */
 | ||
| 	WL_SOFTWARE = 2, /* S/W wleveling passed 2 contiguous setting */
 | ||
| 	WL_SOFTWARE1 = 3, /* S/W wleveling passed 1 marginal setting */
 | ||
| };
 | ||
| 
 | ||
| static u64 rank_addr __section(".data");
 | ||
| static int vref_val __section(".data");
 | ||
| static int final_vref_val __section(".data");
 | ||
| static int final_vref_range __section(".data");
 | ||
| static int start_vref_val __section(".data");
 | ||
| static int computed_final_vref_val __section(".data");
 | ||
| static char best_vref_val_count __section(".data");
 | ||
| static char vref_val_count __section(".data");
 | ||
| static char best_vref_val_start __section(".data");
 | ||
| static char vref_val_start __section(".data");
 | ||
| static int bytes_failed __section(".data");
 | ||
| static enum sw_wl_status byte_test_status[9] __section(".data");
 | ||
| static enum sw_wl_status sw_wl_rank_status __section(".data");
 | ||
| static int sw_wl_failed __section(".data");
 | ||
| static int sw_wl_hw __section(".data");
 | ||
| static int measured_vref_flag __section(".data");
 | ||
| 
 | ||
| static void ddr4_vref_loop(struct ddr_priv *priv, int rankx)
 | ||
| {
 | ||
| 	char *s;
 | ||
| 
 | ||
| 	if (vref_val < VREF_FINAL) {
 | ||
| 		int vrange, vvalue;
 | ||
| 
 | ||
| 		if (vref_val < VREF_RANGE2_LIMIT) {
 | ||
| 			vrange = 1;
 | ||
| 			vvalue = vref_val;
 | ||
| 		} else {
 | ||
| 			vrange = 0;
 | ||
| 			vvalue = vref_val - VREF_RANGE2_LIMIT;
 | ||
| 		}
 | ||
| 
 | ||
| 		set_vref(priv, if_num, rankx, vrange, vvalue);
 | ||
| 	} else {		/* if (vref_val < VREF_FINAL) */
 | ||
| 		/* Print the final vref value first. */
 | ||
| 
 | ||
| 		/* Always print the computed first if its valid */
 | ||
| 		if (computed_final_vref_val >= 0) {
 | ||
| 			debug("N%d.LMC%d.R%d: vref Computed Summary                 :              %2d (0x%02x)\n",
 | ||
| 			      node, if_num, rankx,
 | ||
| 			      computed_final_vref_val, computed_final_vref_val);
 | ||
| 		}
 | ||
| 
 | ||
| 		if (!measured_vref_flag) {	// setup to use the computed
 | ||
| 			best_vref_val_count = 1;
 | ||
| 			final_vref_val = computed_final_vref_val;
 | ||
| 		} else {	// setup to use the measured
 | ||
| 			if (best_vref_val_count > 0) {
 | ||
| 				best_vref_val_count =
 | ||
| 				    max(best_vref_val_count, (char)2);
 | ||
| 				final_vref_val = best_vref_val_start +
 | ||
| 					divide_nint(best_vref_val_count - 1, 2);
 | ||
| 
 | ||
| 				if (final_vref_val < VREF_RANGE2_LIMIT) {
 | ||
| 					final_vref_range = 1;
 | ||
| 				} else {
 | ||
| 					final_vref_range = 0;
 | ||
| 					final_vref_val -= VREF_RANGE2_LIMIT;
 | ||
| 				}
 | ||
| 
 | ||
| 				int vvlo = best_vref_val_start;
 | ||
| 				int vrlo;
 | ||
| 				int vvhi = best_vref_val_start +
 | ||
| 					best_vref_val_count - 1;
 | ||
| 				int vrhi;
 | ||
| 
 | ||
| 				if (vvlo < VREF_RANGE2_LIMIT) {
 | ||
| 					vrlo = 2;
 | ||
| 				} else {
 | ||
| 					vrlo = 1;
 | ||
| 					vvlo -= VREF_RANGE2_LIMIT;
 | ||
| 				}
 | ||
| 
 | ||
| 				if (vvhi < VREF_RANGE2_LIMIT) {
 | ||
| 					vrhi = 2;
 | ||
| 				} else {
 | ||
| 					vrhi = 1;
 | ||
| 					vvhi -= VREF_RANGE2_LIMIT;
 | ||
| 				}
 | ||
| 				debug("N%d.LMC%d.R%d: vref Training Summary                 :  0x%02x/%1d <----- 0x%02x/%1d -----> 0x%02x/%1d, range: %2d\n",
 | ||
| 				      node, if_num, rankx, vvlo, vrlo,
 | ||
| 				      final_vref_val,
 | ||
| 				      final_vref_range + 1, vvhi, vrhi,
 | ||
| 				      best_vref_val_count - 1);
 | ||
| 
 | ||
| 			} else {
 | ||
| 				/*
 | ||
| 				 * If nothing passed use the default vref
 | ||
| 				 * value for this rank
 | ||
| 				 */
 | ||
| 				union cvmx_lmcx_modereg_params2 mp2;
 | ||
| 
 | ||
| 				mp2.u64 =
 | ||
| 					lmc_rd(priv,
 | ||
| 					       CVMX_LMCX_MODEREG_PARAMS2(if_num));
 | ||
| 				final_vref_val = (mp2.u64 >>
 | ||
| 						  (rankx * 10 + 3)) & 0x3f;
 | ||
| 				final_vref_range = (mp2.u64 >>
 | ||
| 						    (rankx * 10 + 9)) & 0x01;
 | ||
| 
 | ||
| 				debug("N%d.LMC%d.R%d: vref Using Default                    :    %2d <----- %2d (0x%02x) -----> %2d, range%1d\n",
 | ||
| 				      node, if_num, rankx, final_vref_val,
 | ||
| 				      final_vref_val, final_vref_val,
 | ||
| 				      final_vref_val, final_vref_range + 1);
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		// allow override
 | ||
| 		s = lookup_env(priv, "ddr%d_vref_val_%1d%1d",
 | ||
| 			       if_num, !!(rankx & 2), !!(rankx & 1));
 | ||
| 		if (s)
 | ||
| 			final_vref_val = strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 		set_vref(priv, if_num, rankx, final_vref_range, final_vref_val);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| #define WL_MIN_NO_ERRORS_COUNT 3	// FIXME? three passes without errors
 | ||
| 
 | ||
| static int errors __section(".data");
 | ||
| static int byte_delay[9] __section(".data");
 | ||
| static u64 bytemask __section(".data");
 | ||
| static int bytes_todo __section(".data");
 | ||
| static int no_errors_count __section(".data");
 | ||
| static u64 bad_bits[2] __section(".data");
 | ||
| static u64 sum_dram_dclk __section(".data");
 | ||
| static u64 sum_dram_ops __section(".data");
 | ||
| static u64 start_dram_dclk __section(".data");
 | ||
| static u64 stop_dram_dclk __section(".data");
 | ||
| static u64 start_dram_ops __section(".data");
 | ||
| static u64 stop_dram_ops __section(".data");
 | ||
| 
 | ||
| static void lmc_sw_write_leveling_loop(struct ddr_priv *priv, int rankx)
 | ||
| {
 | ||
| 	int delay;
 | ||
| 	int b;
 | ||
| 
 | ||
| 	// write the current set of WL delays
 | ||
| 	lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num), wl_rank.u64);
 | ||
| 	wl_rank.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num));
 | ||
| 
 | ||
| 	// do the test
 | ||
| 	if (sw_wl_hw) {
 | ||
| 		errors = run_best_hw_patterns(priv, if_num, rank_addr,
 | ||
| 					      DBTRAIN_TEST, bad_bits);
 | ||
| 		errors &= bytes_todo;	// keep only the ones we are still doing
 | ||
| 	} else {
 | ||
| 		start_dram_dclk = lmc_rd(priv, CVMX_LMCX_DCLK_CNT(if_num));
 | ||
| 		start_dram_ops = lmc_rd(priv, CVMX_LMCX_OPS_CNT(if_num));
 | ||
| 		errors = test_dram_byte64(priv, if_num, rank_addr, bytemask,
 | ||
| 					  bad_bits);
 | ||
| 
 | ||
| 		stop_dram_dclk = lmc_rd(priv, CVMX_LMCX_DCLK_CNT(if_num));
 | ||
| 		stop_dram_ops = lmc_rd(priv, CVMX_LMCX_OPS_CNT(if_num));
 | ||
| 		sum_dram_dclk += stop_dram_dclk - start_dram_dclk;
 | ||
| 		sum_dram_ops += stop_dram_ops - start_dram_ops;
 | ||
| 	}
 | ||
| 
 | ||
| 	debug("WL pass1: test_dram_byte returned 0x%x\n", errors);
 | ||
| 
 | ||
| 	// remember, errors will not be returned for byte-lanes that have
 | ||
| 	// maxxed out...
 | ||
| 	if (errors == 0) {
 | ||
| 		no_errors_count++;	// bump
 | ||
| 		// bypass check/update completely
 | ||
| 		if (no_errors_count > 1)
 | ||
| 			return;	// to end of do-while
 | ||
| 	} else {
 | ||
| 		no_errors_count = 0;	// reset
 | ||
| 	}
 | ||
| 
 | ||
| 	// check errors by byte
 | ||
| 	for (b = 0; b < 9; ++b) {
 | ||
| 		if (!(bytes_todo & (1 << b)))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		delay = byte_delay[b];
 | ||
| 		// yes, an error in this byte lane
 | ||
| 		if (errors & (1 << b)) {
 | ||
| 			debug("        byte %d delay %2d Errors\n", b, delay);
 | ||
| 			// since this byte had an error, we move to the next
 | ||
| 			// delay value, unless done with it
 | ||
| 			delay += 8;	// incr by 8 to do delay high-order bits
 | ||
| 			if (delay < 32) {
 | ||
| 				upd_wl_rank(&wl_rank, b, delay);
 | ||
| 				debug("        byte %d delay %2d New\n",
 | ||
| 				      b, delay);
 | ||
| 				byte_delay[b] = delay;
 | ||
| 			} else {
 | ||
| 				// reached max delay, maybe really done with
 | ||
| 				// this byte
 | ||
| 				// consider an alt only for computed VREF and
 | ||
| 				if (!measured_vref_flag &&
 | ||
| 				    (hwl_alts[rankx].hwl_alt_mask & (1 << b))) {
 | ||
| 					// if an alt exists...
 | ||
| 					// just orig low-3 bits
 | ||
| 					int bad_delay = delay & 0x6;
 | ||
| 
 | ||
| 					// yes, use it
 | ||
| 					delay =	hwl_alts[rankx].hwl_alt_delay[b];
 | ||
| 					// clear that flag
 | ||
| 					hwl_alts[rankx].hwl_alt_mask &=
 | ||
| 						~(1 << b);
 | ||
| 					upd_wl_rank(&wl_rank, b, delay);
 | ||
| 					byte_delay[b] = delay;
 | ||
| 					debug("        byte %d delay %2d ALTERNATE\n",
 | ||
| 					      b, delay);
 | ||
| 					debug("N%d.LMC%d.R%d: SWL: Byte %d: %d FAIL, trying ALTERNATE %d\n",
 | ||
| 					      node, if_num,
 | ||
| 					      rankx, b, bad_delay, delay);
 | ||
| 
 | ||
| 				} else {
 | ||
| 					unsigned int bits_bad;
 | ||
| 
 | ||
| 					if (b < 8) {
 | ||
| 						// test no longer, remove from
 | ||
| 						// byte mask
 | ||
| 						bytemask &=
 | ||
| 							~(0xffULL << (8 * b));
 | ||
| 						bits_bad = (unsigned int)
 | ||
| 							((bad_bits[0] >>
 | ||
| 							  (8 * b)) & 0xffUL);
 | ||
| 					} else {
 | ||
| 						bits_bad = (unsigned int)
 | ||
| 						    (bad_bits[1] & 0xffUL);
 | ||
| 					}
 | ||
| 
 | ||
| 					// remove from bytes to do
 | ||
| 					bytes_todo &= ~(1 << b);
 | ||
| 					// make sure this is set for this case
 | ||
| 					byte_test_status[b] = WL_ESTIMATED;
 | ||
| 					debug("        byte %d delay %2d Exhausted\n",
 | ||
| 					      b, delay);
 | ||
| 					if (!measured_vref_flag) {
 | ||
| 						// this is too noisy when doing
 | ||
| 						// measured VREF
 | ||
| 						debug("N%d.LMC%d.R%d: SWL: Byte %d (0x%02x): delay %d EXHAUSTED\n",
 | ||
| 						      node, if_num, rankx,
 | ||
| 						      b, bits_bad, delay);
 | ||
| 					}
 | ||
| 				}
 | ||
| 			}
 | ||
| 		} else {
 | ||
| 			// no error, stay with current delay, but keep testing
 | ||
| 			// it...
 | ||
| 			debug("        byte %d delay %2d Passed\n", b, delay);
 | ||
| 			byte_test_status[b] = WL_HARDWARE;	// change status
 | ||
| 		}
 | ||
| 	}			/* for (b = 0; b < 9; ++b) */
 | ||
| }
 | ||
| 
 | ||
| static void sw_write_lvl_use_ecc(struct ddr_priv *priv, int rankx)
 | ||
| {
 | ||
| 	int save_byte8 = wl_rank.s.byte8;
 | ||
| 
 | ||
| 	byte_test_status[8] = WL_HARDWARE;	/* H/W delay value */
 | ||
| 
 | ||
| 	if (save_byte8 != wl_rank.s.byte3 &&
 | ||
| 	    save_byte8 != wl_rank.s.byte4) {
 | ||
| 		int test_byte8 = save_byte8;
 | ||
| 		int test_byte8_error;
 | ||
| 		int byte8_error = 0x1f;
 | ||
| 		int adder;
 | ||
| 		int avg_bytes = divide_nint(wl_rank.s.byte3 + wl_rank.s.byte4,
 | ||
| 					    2);
 | ||
| 
 | ||
| 		for (adder = 0; adder <= 32; adder += 8) {
 | ||
| 			test_byte8_error = abs((adder + save_byte8) -
 | ||
| 					       avg_bytes);
 | ||
| 			if (test_byte8_error < byte8_error) {
 | ||
| 				byte8_error = test_byte8_error;
 | ||
| 				test_byte8 = save_byte8 + adder;
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		// only do the check if we are not using measured VREF
 | ||
| 		if (!measured_vref_flag) {
 | ||
| 			/* Use only even settings, rounding down... */
 | ||
| 			test_byte8 &= ~1;
 | ||
| 
 | ||
| 			// do validity check on the calculated ECC delay value
 | ||
| 			// this depends on the DIMM type
 | ||
| 			if (spd_rdimm) {	// RDIMM
 | ||
| 				// but not mini-RDIMM
 | ||
| 				if (spd_dimm_type != 5) {
 | ||
| 					// it can be > byte4, but should never
 | ||
| 					// be > byte3
 | ||
| 					if (test_byte8 > wl_rank.s.byte3) {
 | ||
| 						/* say it is still estimated */
 | ||
| 						byte_test_status[8] =
 | ||
| 							WL_ESTIMATED;
 | ||
| 					}
 | ||
| 				}
 | ||
| 			} else {	// UDIMM
 | ||
| 				if (test_byte8 < wl_rank.s.byte3 ||
 | ||
| 				    test_byte8 > wl_rank.s.byte4) {
 | ||
| 					// should never be outside the
 | ||
| 					// byte 3-4 range
 | ||
| 					/* say it is still estimated */
 | ||
| 					byte_test_status[8] = WL_ESTIMATED;
 | ||
| 				}
 | ||
| 			}
 | ||
| 			/*
 | ||
| 			 * Report whenever the calculation appears bad.
 | ||
| 			 * This happens if some of the original values were off,
 | ||
| 			 * or unexpected geometry from DIMM type, or custom
 | ||
| 			 * circuitry (NIC225E, I am looking at you!).
 | ||
| 			 * We will trust the calculated value, and depend on
 | ||
| 			 * later testing to catch any instances when that
 | ||
| 			 * value is truly bad.
 | ||
| 			 */
 | ||
| 			// ESTIMATED means there may be an issue
 | ||
| 			if (byte_test_status[8] == WL_ESTIMATED) {
 | ||
| 				debug("N%d.LMC%d.R%d: SWL: (%cDIMM): calculated ECC delay unexpected (%d/%d/%d)\n",
 | ||
| 				      node, if_num, rankx,
 | ||
| 				      (spd_rdimm ? 'R' : 'U'), wl_rank.s.byte4,
 | ||
| 				      test_byte8, wl_rank.s.byte3);
 | ||
| 				byte_test_status[8] = WL_HARDWARE;
 | ||
| 			}
 | ||
| 		}
 | ||
| 		/* Use only even settings */
 | ||
| 		wl_rank.s.byte8 = test_byte8 & ~1;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (wl_rank.s.byte8 != save_byte8) {
 | ||
| 		/* Change the status if s/w adjusted the delay */
 | ||
| 		byte_test_status[8] = WL_SOFTWARE;	/* Estimated delay */
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static __maybe_unused void parallel_wl_block_delay(struct ddr_priv *priv,
 | ||
| 						   int rankx)
 | ||
| {
 | ||
| 	int errors;
 | ||
| 	int byte_delay[8];
 | ||
| 	int byte_passed[8];
 | ||
| 	u64 bytemask;
 | ||
| 	u64 bitmask;
 | ||
| 	int wl_offset;
 | ||
| 	int bytes_todo;
 | ||
| 	int sw_wl_offset = 1;
 | ||
| 	int delay;
 | ||
| 	int b;
 | ||
| 
 | ||
| 	for (b = 0; b < 8; ++b)
 | ||
| 		byte_passed[b] = 0;
 | ||
| 
 | ||
| 	bytes_todo = if_bytemask;
 | ||
| 
 | ||
| 	for (wl_offset = sw_wl_offset; wl_offset >= 0; --wl_offset) {
 | ||
| 		debug("Starting wl_offset for-loop: %d\n", wl_offset);
 | ||
| 
 | ||
| 		bytemask = 0;
 | ||
| 
 | ||
| 		for (b = 0; b < 8; ++b) {
 | ||
| 			byte_delay[b] = 0;
 | ||
| 			// this does not contain fully passed bytes
 | ||
| 			if (!(bytes_todo & (1 << b)))
 | ||
| 				continue;
 | ||
| 
 | ||
| 			// reset across passes if not fully passed
 | ||
| 			byte_passed[b] = 0;
 | ||
| 			upd_wl_rank(&wl_rank, b, 0);	// all delays start at 0
 | ||
| 			bitmask = ((!if_64b) && (b == 4)) ? 0x0f : 0xff;
 | ||
| 			// set the bytes bits in the bytemask
 | ||
| 			bytemask |= bitmask << (8 * b);
 | ||
| 		}		/* for (b = 0; b < 8; ++b) */
 | ||
| 
 | ||
| 		// start a pass if there is any byte lane to test
 | ||
| 		while (bytemask != 0) {
 | ||
| 			debug("Starting bytemask while-loop: 0x%llx\n",
 | ||
| 			      bytemask);
 | ||
| 
 | ||
| 			// write this set of WL delays
 | ||
| 			lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
 | ||
| 			       wl_rank.u64);
 | ||
| 			wl_rank.u64 = lmc_rd(priv,
 | ||
| 					     CVMX_LMCX_WLEVEL_RANKX(rankx,
 | ||
| 								    if_num));
 | ||
| 
 | ||
| 			// do the test
 | ||
| 			if (sw_wl_hw) {
 | ||
| 				errors = run_best_hw_patterns(priv, if_num,
 | ||
| 							      rank_addr,
 | ||
| 							      DBTRAIN_TEST,
 | ||
| 							      NULL) & 0xff;
 | ||
| 			} else {
 | ||
| 				errors = test_dram_byte64(priv, if_num,
 | ||
| 							  rank_addr, bytemask,
 | ||
| 							  NULL);
 | ||
| 			}
 | ||
| 
 | ||
| 			debug("test_dram_byte returned 0x%x\n", errors);
 | ||
| 
 | ||
| 			// check errors by byte
 | ||
| 			for (b = 0; b < 8; ++b) {
 | ||
| 				if (!(bytes_todo & (1 << b)))
 | ||
| 					continue;
 | ||
| 
 | ||
| 				delay = byte_delay[b];
 | ||
| 				if (errors & (1 << b)) {	// yes, an error
 | ||
| 					debug("        byte %d delay %2d Errors\n",
 | ||
| 					      b, delay);
 | ||
| 					byte_passed[b] = 0;
 | ||
| 				} else {	// no error
 | ||
| 					byte_passed[b] += 1;
 | ||
| 					// Look for consecutive working settings
 | ||
| 					if (byte_passed[b] == (1 + wl_offset)) {
 | ||
| 						debug("        byte %d delay %2d FULLY Passed\n",
 | ||
| 						      b, delay);
 | ||
| 						if (wl_offset == 1) {
 | ||
| 							byte_test_status[b] =
 | ||
| 								WL_SOFTWARE;
 | ||
| 						} else if (wl_offset == 0) {
 | ||
| 							byte_test_status[b] =
 | ||
| 								WL_SOFTWARE1;
 | ||
| 						}
 | ||
| 
 | ||
| 						// test no longer, remove
 | ||
| 						// from byte mask this pass
 | ||
| 						bytemask &= ~(0xffULL <<
 | ||
| 							      (8 * b));
 | ||
| 						// remove completely from
 | ||
| 						// concern
 | ||
| 						bytes_todo &= ~(1 << b);
 | ||
| 						// on to the next byte, bypass
 | ||
| 						// delay updating!!
 | ||
| 						continue;
 | ||
| 					} else {
 | ||
| 						debug("        byte %d delay %2d Passed\n",
 | ||
| 						      b, delay);
 | ||
| 					}
 | ||
| 				}
 | ||
| 
 | ||
| 				// error or no, here we move to the next delay
 | ||
| 				// value for this byte, unless done all delays
 | ||
| 				// only a byte that has "fully passed" will
 | ||
| 				// bypass around this,
 | ||
| 				delay += 2;
 | ||
| 				if (delay < 32) {
 | ||
| 					upd_wl_rank(&wl_rank, b, delay);
 | ||
| 					debug("        byte %d delay %2d New\n",
 | ||
| 					      b, delay);
 | ||
| 					byte_delay[b] = delay;
 | ||
| 				} else {
 | ||
| 					// reached max delay, done with this
 | ||
| 					// byte
 | ||
| 					debug("        byte %d delay %2d Exhausted\n",
 | ||
| 					      b, delay);
 | ||
| 					// test no longer, remove from byte
 | ||
| 					// mask this pass
 | ||
| 					bytemask &= ~(0xffULL << (8 * b));
 | ||
| 				}
 | ||
| 			}	/* for (b = 0; b < 8; ++b) */
 | ||
| 			debug("End of for-loop: bytemask 0x%llx\n", bytemask);
 | ||
| 		}		/* while (bytemask != 0) */
 | ||
| 	}
 | ||
| 
 | ||
| 	for (b = 0; b < 8; ++b) {
 | ||
| 		// any bytes left in bytes_todo did not pass
 | ||
| 		if (bytes_todo & (1 << b)) {
 | ||
| 			union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank;
 | ||
| 
 | ||
| 			/*
 | ||
| 			 * Last resort. Use Rlevel settings to estimate
 | ||
| 			 * Wlevel if software write-leveling fails
 | ||
| 			 */
 | ||
| 			debug("Using RLEVEL as WLEVEL estimate for byte %d\n",
 | ||
| 			      b);
 | ||
| 			lmc_rlevel_rank.u64 =
 | ||
| 				lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx,
 | ||
| 								    if_num));
 | ||
| 			rlevel_to_wlevel(&lmc_rlevel_rank, &wl_rank, b);
 | ||
| 		}
 | ||
| 	}			/* for (b = 0; b < 8; ++b) */
 | ||
| }
 | ||
| 
 | ||
| static int lmc_sw_write_leveling(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	/* Try to determine/optimize write-level delays experimentally. */
 | ||
| 	union cvmx_lmcx_wlevel_rankx wl_rank_hw_res;
 | ||
| 	union cvmx_lmcx_config cfg;
 | ||
| 	int rankx;
 | ||
| 	int byte;
 | ||
| 	char *s;
 | ||
| 	int i;
 | ||
| 
 | ||
| 	int active_rank;
 | ||
| 	int sw_wl_enable = 1;	/* FIX... Should be customizable. */
 | ||
| 	int interfaces;
 | ||
| 
 | ||
| 	static const char * const wl_status_strings[] = {
 | ||
| 		"(e)",
 | ||
| 		"   ",
 | ||
| 		"   ",
 | ||
| 		"(1)"
 | ||
| 	};
 | ||
| 
 | ||
| 	// FIXME: make HW-assist the default now?
 | ||
| 	int sw_wl_hw_default = SW_WLEVEL_HW_DEFAULT;
 | ||
| 	int dram_connection = c_cfg->dram_connection;
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_sw_wlevel_hw");
 | ||
| 	if (s)
 | ||
| 		sw_wl_hw_default = !!strtoul(s, NULL, 0);
 | ||
| 	if (!if_64b)		// must use SW algo if 32-bit mode
 | ||
| 		sw_wl_hw_default = 0;
 | ||
| 
 | ||
| 	// can never use hw-assist
 | ||
| 	if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X))
 | ||
| 		sw_wl_hw_default = 0;
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_software_wlevel");
 | ||
| 	if (s)
 | ||
| 		sw_wl_enable = strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr%d_dram_connection", if_num);
 | ||
| 	if (s)
 | ||
| 		dram_connection = !!strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	cvmx_rng_enable();
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Get the measured_vref setting from the config, check for an
 | ||
| 	 * override...
 | ||
| 	 */
 | ||
| 	/* NOTE: measured_vref=1 (ON) means force use of MEASURED vref... */
 | ||
| 	// NOTE: measured VREF can only be done for DDR4
 | ||
| 	if (ddr_type == DDR4_DRAM) {
 | ||
| 		measured_vref_flag = c_cfg->measured_vref;
 | ||
| 		s = lookup_env(priv, "ddr_measured_vref");
 | ||
| 		if (s)
 | ||
| 			measured_vref_flag = !!strtoul(s, NULL, 0);
 | ||
| 	} else {
 | ||
| 		measured_vref_flag = 0;	// OFF for DDR3
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Ensure disabled ECC for DRAM tests using the SW algo, else leave
 | ||
| 	 * it untouched
 | ||
| 	 */
 | ||
| 	if (!sw_wl_hw_default) {
 | ||
| 		cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
 | ||
| 		cfg.cn78xx.ecc_ena = 0;
 | ||
| 		lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * We need to track absolute rank number, as well as how many
 | ||
| 	 * active ranks we have.  Two single rank DIMMs show up as
 | ||
| 	 * ranks 0 and 2, but only 2 ranks are active.
 | ||
| 	 */
 | ||
| 	active_rank = 0;
 | ||
| 
 | ||
| 	interfaces = __builtin_popcount(if_mask);
 | ||
| 
 | ||
| 	for (rankx = 0; rankx < dimm_count * 4; rankx++) {
 | ||
| 		final_vref_range = 0;
 | ||
| 		start_vref_val = 0;
 | ||
| 		computed_final_vref_val = -1;
 | ||
| 		sw_wl_rank_status = WL_HARDWARE;
 | ||
| 		sw_wl_failed = 0;
 | ||
| 		sw_wl_hw = sw_wl_hw_default;
 | ||
| 
 | ||
| 		if (!sw_wl_enable)
 | ||
| 			break;
 | ||
| 
 | ||
| 		if (!(rank_mask & (1 << rankx)))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		debug("N%d.LMC%d.R%d: Performing Software Write-Leveling %s\n",
 | ||
| 		      node, if_num, rankx,
 | ||
| 		      (sw_wl_hw) ? "with H/W assist" :
 | ||
| 		      "with S/W algorithm");
 | ||
| 
 | ||
| 		if (ddr_type == DDR4_DRAM && num_ranks != 4) {
 | ||
| 			// always compute when we can...
 | ||
| 			computed_final_vref_val =
 | ||
| 			    compute_vref_val(priv, if_num, rankx, dimm_count,
 | ||
| 					     num_ranks, imp_val,
 | ||
| 					     is_stacked_die, dram_connection);
 | ||
| 
 | ||
| 			// but only use it if allowed
 | ||
| 			if (!measured_vref_flag) {
 | ||
| 				// skip all the measured vref processing,
 | ||
| 				// just the final setting
 | ||
| 				start_vref_val = VREF_FINAL;
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		/* Save off the h/w wl results */
 | ||
| 		wl_rank_hw_res.u64 = lmc_rd(priv,
 | ||
| 					    CVMX_LMCX_WLEVEL_RANKX(rankx,
 | ||
| 								   if_num));
 | ||
| 
 | ||
| 		vref_val_count = 0;
 | ||
| 		vref_val_start = 0;
 | ||
| 		best_vref_val_count = 0;
 | ||
| 		best_vref_val_start = 0;
 | ||
| 
 | ||
| 		/* Loop one extra time using the Final vref value. */
 | ||
| 		for (vref_val = start_vref_val; vref_val < VREF_LIMIT;
 | ||
| 		     ++vref_val) {
 | ||
| 			if (ddr_type == DDR4_DRAM)
 | ||
| 				ddr4_vref_loop(priv, rankx);
 | ||
| 
 | ||
| 			/* Restore the saved value */
 | ||
| 			wl_rank.u64 = wl_rank_hw_res.u64;
 | ||
| 
 | ||
| 			for (byte = 0; byte < 9; ++byte)
 | ||
| 				byte_test_status[byte] = WL_ESTIMATED;
 | ||
| 
 | ||
| 			if (wl_mask_err == 0) {
 | ||
| 				/*
 | ||
| 				 * Determine address of DRAM to test for
 | ||
| 				 * pass 1 of software write leveling.
 | ||
| 				 */
 | ||
| 				rank_addr = active_rank *
 | ||
| 					(1ull << (pbank_lsb - bunk_enable +
 | ||
| 						  (interfaces / 2)));
 | ||
| 
 | ||
| 				/*
 | ||
| 				 * Adjust address for boot bus hole in memory
 | ||
| 				 * map.
 | ||
| 				 */
 | ||
| 				if (rank_addr > 0x10000000)
 | ||
| 					rank_addr += 0x10000000;
 | ||
| 
 | ||
| 				debug("N%d.LMC%d.R%d: Active Rank %d Address: 0x%llx\n",
 | ||
| 				      node, if_num, rankx, active_rank,
 | ||
| 				      rank_addr);
 | ||
| 
 | ||
| 				// start parallel write-leveling block for
 | ||
| 				// delay high-order bits
 | ||
| 				errors = 0;
 | ||
| 				no_errors_count = 0;
 | ||
| 				sum_dram_dclk = 0;
 | ||
| 				sum_dram_ops = 0;
 | ||
| 
 | ||
| 				if (if_64b) {
 | ||
| 					bytes_todo = (sw_wl_hw) ?
 | ||
| 						if_bytemask : 0xFF;
 | ||
| 					bytemask = ~0ULL;
 | ||
| 				} else {
 | ||
| 					// 32-bit, must be using SW algo,
 | ||
| 					// only data bytes
 | ||
| 					bytes_todo = 0x0f;
 | ||
| 					bytemask = 0x00000000ffffffffULL;
 | ||
| 				}
 | ||
| 
 | ||
| 				for (byte = 0; byte < 9; ++byte) {
 | ||
| 					if (!(bytes_todo & (1 << byte))) {
 | ||
| 						byte_delay[byte] = 0;
 | ||
| 					} else {
 | ||
| 						byte_delay[byte] =
 | ||
| 						    get_wl_rank(&wl_rank, byte);
 | ||
| 					}
 | ||
| 				}	/* for (byte = 0; byte < 9; ++byte) */
 | ||
| 
 | ||
| 				do {
 | ||
| 					lmc_sw_write_leveling_loop(priv, rankx);
 | ||
| 				} while (no_errors_count <
 | ||
| 					 WL_MIN_NO_ERRORS_COUNT);
 | ||
| 
 | ||
| 				if (!sw_wl_hw) {
 | ||
| 					u64 percent_x10;
 | ||
| 
 | ||
| 					if (sum_dram_dclk == 0)
 | ||
| 						sum_dram_dclk = 1;
 | ||
| 					percent_x10 = sum_dram_ops * 1000 /
 | ||
| 						sum_dram_dclk;
 | ||
| 					debug("N%d.LMC%d.R%d: ops %llu, cycles %llu, used %llu.%llu%%\n",
 | ||
| 					      node, if_num, rankx, sum_dram_ops,
 | ||
| 					      sum_dram_dclk, percent_x10 / 10,
 | ||
| 					      percent_x10 % 10);
 | ||
| 				}
 | ||
| 				if (errors) {
 | ||
| 					debug("End WLEV_64 while loop: vref_val %d(0x%x), errors 0x%02x\n",
 | ||
| 					      vref_val, vref_val, errors);
 | ||
| 				}
 | ||
| 				// end parallel write-leveling block for
 | ||
| 				// delay high-order bits
 | ||
| 
 | ||
| 				// if we used HW-assist, we did the ECC byte
 | ||
| 				// when approp.
 | ||
| 				if (sw_wl_hw) {
 | ||
| 					if (wl_print) {
 | ||
| 						debug("N%d.LMC%d.R%d: HW-assisted SWL - ECC estimate not needed.\n",
 | ||
| 						      node, if_num, rankx);
 | ||
| 					}
 | ||
| 					goto no_ecc_estimate;
 | ||
| 				}
 | ||
| 
 | ||
| 				if ((if_bytemask & 0xff) == 0xff) {
 | ||
| 					if (use_ecc) {
 | ||
| 						sw_write_lvl_use_ecc(priv,
 | ||
| 								     rankx);
 | ||
| 					} else {
 | ||
| 						/* H/W delay value */
 | ||
| 						byte_test_status[8] =
 | ||
| 							WL_HARDWARE;
 | ||
| 						/* ECC is not used */
 | ||
| 						wl_rank.s.byte8 =
 | ||
| 							wl_rank.s.byte0;
 | ||
| 					}
 | ||
| 				} else {
 | ||
| 					if (use_ecc) {
 | ||
| 						/* Estimate the ECC byte dly */
 | ||
| 						// add hi-order to b4
 | ||
| 						wl_rank.s.byte4 |=
 | ||
| 							(wl_rank.s.byte3 &
 | ||
| 							 0x38);
 | ||
| 						if ((wl_rank.s.byte4 & 0x06) <
 | ||
| 						    (wl_rank.s.byte3 & 0x06)) {
 | ||
| 							// must be next clock
 | ||
| 							wl_rank.s.byte4 += 8;
 | ||
| 						}
 | ||
| 					} else {
 | ||
| 						/* ECC is not used */
 | ||
| 						wl_rank.s.byte4 =
 | ||
| 							wl_rank.s.byte0;
 | ||
| 					}
 | ||
| 
 | ||
| 					/*
 | ||
| 					 * Change the status if s/w adjusted
 | ||
| 					 * the delay
 | ||
| 					 */
 | ||
| 					/* Estimated delay */
 | ||
| 					byte_test_status[4] = WL_SOFTWARE;
 | ||
| 				}	/* if ((if_bytemask & 0xff) == 0xff) */
 | ||
| 			}	/* if (wl_mask_err == 0) */
 | ||
| 
 | ||
| no_ecc_estimate:
 | ||
| 
 | ||
| 			bytes_failed = 0;
 | ||
| 			for (byte = 0; byte < 9; ++byte) {
 | ||
| 				/* Don't accumulate errors for untested bytes */
 | ||
| 				if (!(if_bytemask & (1 << byte)))
 | ||
| 					continue;
 | ||
| 				bytes_failed +=
 | ||
| 				    (byte_test_status[byte] == WL_ESTIMATED);
 | ||
| 			}
 | ||
| 
 | ||
| 			/* vref training loop is only used for DDR4  */
 | ||
| 			if (ddr_type != DDR4_DRAM)
 | ||
| 				break;
 | ||
| 
 | ||
| 			if (bytes_failed == 0) {
 | ||
| 				if (vref_val_count == 0)
 | ||
| 					vref_val_start = vref_val;
 | ||
| 
 | ||
| 				++vref_val_count;
 | ||
| 				if (vref_val_count > best_vref_val_count) {
 | ||
| 					best_vref_val_count = vref_val_count;
 | ||
| 					best_vref_val_start = vref_val_start;
 | ||
| 					debug("N%d.LMC%d.R%d: vref Training                    (%2d) :    0x%02x <----- ???? -----> 0x%02x\n",
 | ||
| 					      node, if_num, rankx, vref_val,
 | ||
| 					      best_vref_val_start,
 | ||
| 					      best_vref_val_start +
 | ||
| 					      best_vref_val_count - 1);
 | ||
| 				}
 | ||
| 			} else {
 | ||
| 				vref_val_count = 0;
 | ||
| 				debug("N%d.LMC%d.R%d: vref Training                    (%2d) :    failed\n",
 | ||
| 				      node, if_num, rankx, vref_val);
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Determine address of DRAM to test for software write
 | ||
| 		 * leveling.
 | ||
| 		 */
 | ||
| 		rank_addr = active_rank * (1ull << (pbank_lsb - bunk_enable +
 | ||
| 						    (interfaces / 2)));
 | ||
| 		/* Adjust address for boot bus hole in memory map. */
 | ||
| 		if (rank_addr > 0x10000000)
 | ||
| 			rank_addr += 0x10000000;
 | ||
| 
 | ||
| 		debug("Rank Address: 0x%llx\n", rank_addr);
 | ||
| 
 | ||
| 		if (bytes_failed) {
 | ||
| 			// FIXME? the big hammer, did not even try SW WL pass2,
 | ||
| 			// assume only chip reset will help
 | ||
| 			debug("N%d.LMC%d.R%d: S/W write-leveling pass 1 failed\n",
 | ||
| 			      node, if_num, rankx);
 | ||
| 			sw_wl_failed = 1;
 | ||
| 		} else {	/* if (bytes_failed) */
 | ||
| 			// SW WL pass 1 was OK, write the settings
 | ||
| 			lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
 | ||
| 			       wl_rank.u64);
 | ||
| 			wl_rank.u64 = lmc_rd(priv,
 | ||
| 					     CVMX_LMCX_WLEVEL_RANKX(rankx,
 | ||
| 								    if_num));
 | ||
| 
 | ||
| 			// do validity check on the delay values by running
 | ||
| 			// the test 1 more time...
 | ||
| 			// FIXME: we really need to check the ECC byte setting
 | ||
| 			// here as well, so we need to enable ECC for this test!
 | ||
| 			// if there are any errors, claim SW WL failure
 | ||
| 			u64 datamask = (if_64b) ? 0xffffffffffffffffULL :
 | ||
| 				0x00000000ffffffffULL;
 | ||
| 			int errors;
 | ||
| 
 | ||
| 			// do the test
 | ||
| 			if (sw_wl_hw) {
 | ||
| 				errors = run_best_hw_patterns(priv, if_num,
 | ||
| 							      rank_addr,
 | ||
| 							      DBTRAIN_TEST,
 | ||
| 							      NULL) & 0xff;
 | ||
| 			} else {
 | ||
| 				errors = test_dram_byte64(priv, if_num,
 | ||
| 							  rank_addr, datamask,
 | ||
| 							  NULL);
 | ||
| 			}
 | ||
| 
 | ||
| 			if (errors) {
 | ||
| 				debug("N%d.LMC%d.R%d: Wlevel Rank Final Test errors 0x%03x\n",
 | ||
| 				      node, if_num, rankx, errors);
 | ||
| 				sw_wl_failed = 1;
 | ||
| 			}
 | ||
| 		}		/* if (bytes_failed) */
 | ||
| 
 | ||
| 		// FIXME? dump the WL settings, so we get more of a clue
 | ||
| 		// as to what happened where
 | ||
| 		debug("N%d.LMC%d.R%d: Wlevel Rank %#4x, 0x%016llX  : %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %s\n",
 | ||
| 		      node, if_num, rankx, wl_rank.s.status, wl_rank.u64,
 | ||
| 		      wl_rank.s.byte8, wl_status_strings[byte_test_status[8]],
 | ||
| 		      wl_rank.s.byte7, wl_status_strings[byte_test_status[7]],
 | ||
| 		      wl_rank.s.byte6, wl_status_strings[byte_test_status[6]],
 | ||
| 		      wl_rank.s.byte5, wl_status_strings[byte_test_status[5]],
 | ||
| 		      wl_rank.s.byte4, wl_status_strings[byte_test_status[4]],
 | ||
| 		      wl_rank.s.byte3, wl_status_strings[byte_test_status[3]],
 | ||
| 		      wl_rank.s.byte2, wl_status_strings[byte_test_status[2]],
 | ||
| 		      wl_rank.s.byte1, wl_status_strings[byte_test_status[1]],
 | ||
| 		      wl_rank.s.byte0, wl_status_strings[byte_test_status[0]],
 | ||
| 		      (sw_wl_rank_status == WL_HARDWARE) ? "" : "(s)");
 | ||
| 
 | ||
| 		// finally, check for fatal conditions: either chip reset
 | ||
| 		// right here, or return error flag
 | ||
| 		if ((ddr_type == DDR4_DRAM && best_vref_val_count == 0) ||
 | ||
| 		    sw_wl_failed) {
 | ||
| 			if (!ddr_disable_chip_reset) {	// do chip RESET
 | ||
| 				printf("N%d.LMC%d.R%d: INFO: Short memory test indicates a retry is needed. Resetting node...\n",
 | ||
| 				       node, if_num, rankx);
 | ||
| 				mdelay(500);
 | ||
| 				do_reset(NULL, 0, 0, NULL);
 | ||
| 			} else {
 | ||
| 				// return error flag so LMC init can be retried.
 | ||
| 				debug("N%d.LMC%d.R%d: INFO: Short memory test indicates a retry is needed. Restarting LMC init...\n",
 | ||
| 				      node, if_num, rankx);
 | ||
| 				return -EAGAIN;	// 0 indicates restart possible.
 | ||
| 			}
 | ||
| 		}
 | ||
| 		active_rank++;
 | ||
| 	}
 | ||
| 
 | ||
| 	for (rankx = 0; rankx < dimm_count * 4; rankx++) {
 | ||
| 		int parameter_set = 0;
 | ||
| 		u64 value;
 | ||
| 
 | ||
| 		if (!(rank_mask & (1 << rankx)))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		wl_rank.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx,
 | ||
| 								  if_num));
 | ||
| 
 | ||
| 		for (i = 0; i < 9; ++i) {
 | ||
| 			s = lookup_env(priv, "ddr%d_wlevel_rank%d_byte%d",
 | ||
| 				       if_num, rankx, i);
 | ||
| 			if (s) {
 | ||
| 				parameter_set |= 1;
 | ||
| 				value = strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 				upd_wl_rank(&wl_rank, i, value);
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		s = lookup_env_ull(priv, "ddr%d_wlevel_rank%d", if_num, rankx);
 | ||
| 		if (s) {
 | ||
| 			parameter_set |= 1;
 | ||
| 			value = strtoull(s, NULL, 0);
 | ||
| 			wl_rank.u64 = value;
 | ||
| 		}
 | ||
| 
 | ||
| 		if (parameter_set) {
 | ||
| 			lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
 | ||
| 			       wl_rank.u64);
 | ||
| 			wl_rank.u64 =
 | ||
| 			    lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num));
 | ||
| 			display_wl(if_num, wl_rank, rankx);
 | ||
| 		}
 | ||
| 		// if there are unused entries to be filled
 | ||
| 		if ((rank_mask & 0x0F) != 0x0F) {
 | ||
| 			if (rankx < 3) {
 | ||
| 				debug("N%d.LMC%d.R%d: checking for WLEVEL_RANK unused entries.\n",
 | ||
| 				      node, if_num, rankx);
 | ||
| 
 | ||
| 				// if rank 0, write ranks 1 and 2 here if empty
 | ||
| 				if (rankx == 0) {
 | ||
| 					// check that rank 1 is empty
 | ||
| 					if (!(rank_mask & (1 << 1))) {
 | ||
| 						debug("N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n",
 | ||
| 						      node, if_num, rankx, 1);
 | ||
| 						lmc_wr(priv,
 | ||
| 						       CVMX_LMCX_WLEVEL_RANKX(1,
 | ||
| 								if_num),
 | ||
| 						       wl_rank.u64);
 | ||
| 					}
 | ||
| 
 | ||
| 					// check that rank 2 is empty
 | ||
| 					if (!(rank_mask & (1 << 2))) {
 | ||
| 						debug("N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n",
 | ||
| 						      node, if_num, rankx, 2);
 | ||
| 						lmc_wr(priv,
 | ||
| 						       CVMX_LMCX_WLEVEL_RANKX(2,
 | ||
| 								if_num),
 | ||
| 						       wl_rank.u64);
 | ||
| 					}
 | ||
| 				}
 | ||
| 
 | ||
| 				// if rank 0, 1 or 2, write rank 3 here if empty
 | ||
| 				// check that rank 3 is empty
 | ||
| 				if (!(rank_mask & (1 << 3))) {
 | ||
| 					debug("N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n",
 | ||
| 					      node, if_num, rankx, 3);
 | ||
| 					lmc_wr(priv,
 | ||
| 					       CVMX_LMCX_WLEVEL_RANKX(3,
 | ||
| 								      if_num),
 | ||
| 					       wl_rank.u64);
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Enable 32-bit mode if required. */
 | ||
| 	cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
 | ||
| 	cfg.cn78xx.mode32b = (!if_64b);
 | ||
| 	debug("%-45s : %d\n", "MODE32B", cfg.cn78xx.mode32b);
 | ||
| 
 | ||
| 	/* Restore the ECC configuration */
 | ||
| 	if (!sw_wl_hw_default)
 | ||
| 		cfg.cn78xx.ecc_ena = use_ecc;
 | ||
| 
 | ||
| 	lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static void lmc_dll(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3;
 | ||
| 	int setting[9];
 | ||
| 	int i;
 | ||
| 
 | ||
| 	ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
 | ||
| 
 | ||
| 	for (i = 0; i < 9; ++i) {
 | ||
| 		SET_DDR_DLL_CTL3(dll90_byte_sel, ENCODE_DLL90_BYTE_SEL(i));
 | ||
| 		lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
 | ||
| 		lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
 | ||
| 		ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
 | ||
| 		setting[i] = GET_DDR_DLL_CTL3(dll90_setting);
 | ||
| 		debug("%d. LMC%d_DLL_CTL3[%d] = %016llx %d\n", i, if_num,
 | ||
| 		      GET_DDR_DLL_CTL3(dll90_byte_sel), ddr_dll_ctl3.u64,
 | ||
| 		      setting[i]);
 | ||
| 	}
 | ||
| 
 | ||
| 	debug("N%d.LMC%d: %-36s : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
 | ||
| 	      node, if_num, "DLL90 Setting 8:0",
 | ||
| 	      setting[8], setting[7], setting[6], setting[5], setting[4],
 | ||
| 	      setting[3], setting[2], setting[1], setting[0]);
 | ||
| 
 | ||
| 	process_custom_dll_offsets(priv, if_num, "ddr_dll_write_offset",
 | ||
| 				   c_cfg->dll_write_offset,
 | ||
| 				   "ddr%d_dll_write_offset_byte%d", 1);
 | ||
| 	process_custom_dll_offsets(priv, if_num, "ddr_dll_read_offset",
 | ||
| 				   c_cfg->dll_read_offset,
 | ||
| 				   "ddr%d_dll_read_offset_byte%d", 2);
 | ||
| }
 | ||
| 
 | ||
| #define SLOT_CTL_INCR(csr, chip, field, incr)				\
 | ||
| 	csr.chip.field = (csr.chip.field < (64 - incr)) ?		\
 | ||
| 		(csr.chip.field + incr) : 63
 | ||
| 
 | ||
| #define INCR(csr, chip, field, incr)                                    \
 | ||
| 	csr.chip.field = (csr.chip.field < (64 - incr)) ?		\
 | ||
| 		(csr.chip.field + incr) : 63
 | ||
| 
 | ||
| static void lmc_workaround_2(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	/* Workaround Errata 21063 */
 | ||
| 	if (octeon_is_cpuid(OCTEON_CN78XX) ||
 | ||
| 	    octeon_is_cpuid(OCTEON_CN70XX_PASS1_X)) {
 | ||
| 		union cvmx_lmcx_slot_ctl0 slot_ctl0;
 | ||
| 		union cvmx_lmcx_slot_ctl1 slot_ctl1;
 | ||
| 		union cvmx_lmcx_slot_ctl2 slot_ctl2;
 | ||
| 		union cvmx_lmcx_ext_config ext_cfg;
 | ||
| 
 | ||
| 		slot_ctl0.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL0(if_num));
 | ||
| 		slot_ctl1.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL1(if_num));
 | ||
| 		slot_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL2(if_num));
 | ||
| 
 | ||
| 		ext_cfg.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
 | ||
| 
 | ||
| 		/* When ext_cfg.s.read_ena_bprch is set add 1 */
 | ||
| 		if (ext_cfg.s.read_ena_bprch) {
 | ||
| 			SLOT_CTL_INCR(slot_ctl0, cn78xx, r2w_init, 1);
 | ||
| 			SLOT_CTL_INCR(slot_ctl0, cn78xx, r2w_l_init, 1);
 | ||
| 			SLOT_CTL_INCR(slot_ctl1, cn78xx, r2w_xrank_init, 1);
 | ||
| 			SLOT_CTL_INCR(slot_ctl2, cn78xx, r2w_xdimm_init, 1);
 | ||
| 		}
 | ||
| 
 | ||
| 		/* Always add 2 */
 | ||
| 		SLOT_CTL_INCR(slot_ctl1, cn78xx, w2r_xrank_init, 2);
 | ||
| 		SLOT_CTL_INCR(slot_ctl2, cn78xx, w2r_xdimm_init, 2);
 | ||
| 
 | ||
| 		lmc_wr(priv, CVMX_LMCX_SLOT_CTL0(if_num), slot_ctl0.u64);
 | ||
| 		lmc_wr(priv, CVMX_LMCX_SLOT_CTL1(if_num), slot_ctl1.u64);
 | ||
| 		lmc_wr(priv, CVMX_LMCX_SLOT_CTL2(if_num), slot_ctl2.u64);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Workaround Errata 21216 */
 | ||
| 	if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) ||
 | ||
| 	    octeon_is_cpuid(OCTEON_CN70XX_PASS1_X)) {
 | ||
| 		union cvmx_lmcx_slot_ctl1 slot_ctl1;
 | ||
| 		union cvmx_lmcx_slot_ctl2 slot_ctl2;
 | ||
| 
 | ||
| 		slot_ctl1.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL1(if_num));
 | ||
| 		slot_ctl1.cn78xx.w2w_xrank_init =
 | ||
| 		    max(10, (int)slot_ctl1.cn78xx.w2w_xrank_init);
 | ||
| 		lmc_wr(priv, CVMX_LMCX_SLOT_CTL1(if_num), slot_ctl1.u64);
 | ||
| 
 | ||
| 		slot_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL2(if_num));
 | ||
| 		slot_ctl2.cn78xx.w2w_xdimm_init =
 | ||
| 		    max(10, (int)slot_ctl2.cn78xx.w2w_xdimm_init);
 | ||
| 		lmc_wr(priv, CVMX_LMCX_SLOT_CTL2(if_num), slot_ctl2.u64);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void lmc_final(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	/*
 | ||
| 	 * 4.8.11 Final LMC Initialization
 | ||
| 	 *
 | ||
| 	 * Early LMC initialization, LMC write-leveling, and LMC read-leveling
 | ||
| 	 * must be completed prior to starting this final LMC initialization.
 | ||
| 	 *
 | ||
| 	 * LMC hardware updates the LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1,
 | ||
| 	 * LMC(0)_SLOT_CTL2 CSRs with minimum values based on the selected
 | ||
| 	 * readleveling and write-leveling settings. Software should not write
 | ||
| 	 * the final LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1, and LMC(0)_SLOT_CTL2
 | ||
| 	 * values until after the final read-leveling and write-leveling
 | ||
| 	 * settings are written.
 | ||
| 	 *
 | ||
| 	 * Software must ensure the LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1, and
 | ||
| 	 * LMC(0)_SLOT_CTL2 CSR values are appropriate for this step. These CSRs
 | ||
| 	 * select the minimum gaps between read operations and write operations
 | ||
| 	 * of various types.
 | ||
| 	 *
 | ||
| 	 * Software must not reduce the values in these CSR fields below the
 | ||
| 	 * values previously selected by the LMC hardware (during write-leveling
 | ||
| 	 * and read-leveling steps above).
 | ||
| 	 *
 | ||
| 	 * All sections in this chapter may be used to derive proper settings
 | ||
| 	 * for these registers.
 | ||
| 	 *
 | ||
| 	 * For minimal read latency, L2C_CTL[EF_ENA,EF_CNT] should be programmed
 | ||
| 	 * properly. This should be done prior to the first read.
 | ||
| 	 */
 | ||
| 
 | ||
| 	/* Clear any residual ECC errors */
 | ||
| 	int num_tads = 1;
 | ||
| 	int tad;
 | ||
| 	int num_mcis = 1;
 | ||
| 	int mci;
 | ||
| 
 | ||
| 	if (octeon_is_cpuid(OCTEON_CN78XX)) {
 | ||
| 		num_tads = 8;
 | ||
| 		num_mcis = 4;
 | ||
| 	} else if (octeon_is_cpuid(OCTEON_CN70XX)) {
 | ||
| 		num_tads = 1;
 | ||
| 		num_mcis = 1;
 | ||
| 	} else if (octeon_is_cpuid(OCTEON_CN73XX) ||
 | ||
| 		   octeon_is_cpuid(OCTEON_CNF75XX)) {
 | ||
| 		num_tads = 4;
 | ||
| 		num_mcis = 3;
 | ||
| 	}
 | ||
| 
 | ||
| 	lmc_wr(priv, CVMX_LMCX_INT(if_num), -1ULL);
 | ||
| 	lmc_rd(priv, CVMX_LMCX_INT(if_num));
 | ||
| 
 | ||
| 	for (tad = 0; tad < num_tads; tad++) {
 | ||
| 		l2c_wr(priv, CVMX_L2C_TADX_INT_REL(tad),
 | ||
| 		       l2c_rd(priv, CVMX_L2C_TADX_INT_REL(tad)));
 | ||
| 		debug("%-45s : (%d) 0x%08llx\n", "CVMX_L2C_TAD_INT", tad,
 | ||
| 		      l2c_rd(priv, CVMX_L2C_TADX_INT_REL(tad)));
 | ||
| 	}
 | ||
| 
 | ||
| 	for (mci = 0; mci < num_mcis; mci++) {
 | ||
| 		l2c_wr(priv, CVMX_L2C_MCIX_INT_REL(mci),
 | ||
| 		       l2c_rd(priv, CVMX_L2C_MCIX_INT_REL(mci)));
 | ||
| 		debug("%-45s : (%d) 0x%08llx\n", "L2C_MCI_INT", mci,
 | ||
| 		      l2c_rd(priv, CVMX_L2C_MCIX_INT_REL(mci)));
 | ||
| 	}
 | ||
| 
 | ||
| 	debug("%-45s : 0x%08llx\n", "LMC_INT",
 | ||
| 	      lmc_rd(priv, CVMX_LMCX_INT(if_num)));
 | ||
| }
 | ||
| 
 | ||
| static void lmc_scrambling(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	// Make sure scrambling is disabled during init...
 | ||
| 	union cvmx_lmcx_control ctrl;
 | ||
| 	union cvmx_lmcx_scramble_cfg0 lmc_scramble_cfg0;
 | ||
| 	union cvmx_lmcx_scramble_cfg1 lmc_scramble_cfg1;
 | ||
| 	union cvmx_lmcx_scramble_cfg2 lmc_scramble_cfg2;
 | ||
| 	union cvmx_lmcx_ns_ctl lmc_ns_ctl;
 | ||
| 	int use_scramble = 0;	// default OFF
 | ||
| 	char *s;
 | ||
| 
 | ||
| 	ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
 | ||
| 	lmc_scramble_cfg0.u64 = lmc_rd(priv, CVMX_LMCX_SCRAMBLE_CFG0(if_num));
 | ||
| 	lmc_scramble_cfg1.u64 = lmc_rd(priv, CVMX_LMCX_SCRAMBLE_CFG1(if_num));
 | ||
| 	lmc_scramble_cfg2.u64 = 0;	// quiet compiler
 | ||
| 	if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
 | ||
| 		lmc_scramble_cfg2.u64 =
 | ||
| 		    lmc_rd(priv, CVMX_LMCX_SCRAMBLE_CFG2(if_num));
 | ||
| 	}
 | ||
| 	lmc_ns_ctl.u64 = lmc_rd(priv, CVMX_LMCX_NS_CTL(if_num));
 | ||
| 
 | ||
| 	s = lookup_env_ull(priv, "ddr_use_scramble");
 | ||
| 	if (s)
 | ||
| 		use_scramble = simple_strtoull(s, NULL, 0);
 | ||
| 
 | ||
| 	/* Generate random values if scrambling is needed */
 | ||
| 	if (use_scramble) {
 | ||
| 		lmc_scramble_cfg0.u64 = cvmx_rng_get_random64();
 | ||
| 		lmc_scramble_cfg1.u64 = cvmx_rng_get_random64();
 | ||
| 		lmc_scramble_cfg2.u64 = cvmx_rng_get_random64();
 | ||
| 		lmc_ns_ctl.s.ns_scramble_dis = 0;
 | ||
| 		lmc_ns_ctl.s.adr_offset = 0;
 | ||
| 		ctrl.s.scramble_ena = 1;
 | ||
| 	}
 | ||
| 
 | ||
| 	s = lookup_env_ull(priv, "ddr_scramble_cfg0");
 | ||
| 	if (s) {
 | ||
| 		lmc_scramble_cfg0.u64 = simple_strtoull(s, NULL, 0);
 | ||
| 		ctrl.s.scramble_ena = 1;
 | ||
| 	}
 | ||
| 	debug("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG0",
 | ||
| 	      lmc_scramble_cfg0.u64);
 | ||
| 
 | ||
| 	lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG0(if_num), lmc_scramble_cfg0.u64);
 | ||
| 
 | ||
| 	s = lookup_env_ull(priv, "ddr_scramble_cfg1");
 | ||
| 	if (s) {
 | ||
| 		lmc_scramble_cfg1.u64 = simple_strtoull(s, NULL, 0);
 | ||
| 		ctrl.s.scramble_ena = 1;
 | ||
| 	}
 | ||
| 	debug("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG1",
 | ||
| 	      lmc_scramble_cfg1.u64);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG1(if_num), lmc_scramble_cfg1.u64);
 | ||
| 
 | ||
| 	if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
 | ||
| 		s = lookup_env_ull(priv, "ddr_scramble_cfg2");
 | ||
| 		if (s) {
 | ||
| 			lmc_scramble_cfg2.u64 = simple_strtoull(s, NULL, 0);
 | ||
| 			ctrl.s.scramble_ena = 1;
 | ||
| 		}
 | ||
| 		debug("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG2",
 | ||
| 		      lmc_scramble_cfg1.u64);
 | ||
| 		lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG2(if_num),
 | ||
| 		       lmc_scramble_cfg2.u64);
 | ||
| 	}
 | ||
| 
 | ||
| 	s = lookup_env_ull(priv, "ddr_ns_ctl");
 | ||
| 	if (s)
 | ||
| 		lmc_ns_ctl.u64 = simple_strtoull(s, NULL, 0);
 | ||
| 	debug("%-45s : 0x%016llx\n", "LMC_NS_CTL", lmc_ns_ctl.u64);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_NS_CTL(if_num), lmc_ns_ctl.u64);
 | ||
| 
 | ||
| 	lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64);
 | ||
| }
 | ||
| 
 | ||
| struct rl_score {
 | ||
| 	u64 setting;
 | ||
| 	int score;
 | ||
| };
 | ||
| 
 | ||
| static union cvmx_lmcx_rlevel_rankx rl_rank __section(".data");
 | ||
| static union cvmx_lmcx_rlevel_ctl rl_ctl __section(".data");
 | ||
| static unsigned char rodt_ctl __section(".data");
 | ||
| 
 | ||
| static int rl_rodt_err __section(".data");
 | ||
| static unsigned char rtt_nom __section(".data");
 | ||
| static unsigned char rtt_idx __section(".data");
 | ||
| static char min_rtt_nom_idx __section(".data");
 | ||
| static char max_rtt_nom_idx __section(".data");
 | ||
| static char min_rodt_ctl __section(".data");
 | ||
| static char max_rodt_ctl __section(".data");
 | ||
| static int rl_dbg_loops __section(".data");
 | ||
| static unsigned char save_ddr2t __section(".data");
 | ||
| static int rl_samples __section(".data");
 | ||
| static char rl_compute __section(".data");
 | ||
| static char saved_ddr__ptune __section(".data");
 | ||
| static char saved_ddr__ntune __section(".data");
 | ||
| static char rl_comp_offs __section(".data");
 | ||
| static char saved_int_zqcs_dis __section(".data");
 | ||
| static int max_adj_rl_del_inc __section(".data");
 | ||
| static int print_nom_ohms __section(".data");
 | ||
| static int rl_print __section(".data");
 | ||
| 
 | ||
| #ifdef ENABLE_HARDCODED_RLEVEL
 | ||
| static char part_number[21] __section(".data");
 | ||
| #endif /* ENABLE_HARDCODED_RLEVEL */
 | ||
| 
 | ||
| struct perfect_counts {
 | ||
| 	u16 count[9][32]; // 8+ECC by 64 values
 | ||
| 	u32 mask[9];      // 8+ECC, bitmask of perfect delays
 | ||
| };
 | ||
| 
 | ||
| static struct perfect_counts rank_perf[4] __section(".data");
 | ||
| static struct perfect_counts rodt_perfect_counts __section(".data");
 | ||
| static int pbm_lowsum_limit __section(".data");
 | ||
| // FIXME: PBM skip for RODT 240 and 34
 | ||
| static u32 pbm_rodt_skip __section(".data");
 | ||
| 
 | ||
| // control rank majority processing
 | ||
| static int disable_rank_majority __section(".data");
 | ||
| 
 | ||
| // default to mask 11b ODDs for DDR4 (except 73xx), else DISABLE
 | ||
| // for DDR3
 | ||
| static int enable_rldelay_bump __section(".data");
 | ||
| static int rldelay_bump_incr __section(".data");
 | ||
| static int disable_rlv_bump_this_byte __section(".data");
 | ||
| static u64 value_mask __section(".data");
 | ||
| 
 | ||
| static struct rlevel_byte_data rl_byte[9] __section(".data");
 | ||
| static int sample_loops __section(".data");
 | ||
| static int max_samples __section(".data");
 | ||
| static int rl_rank_errors __section(".data");
 | ||
| static int rl_mask_err __section(".data");
 | ||
| static int rl_nonseq_err __section(".data");
 | ||
| static struct rlevel_bitmask rl_mask[9] __section(".data");
 | ||
| static int rl_best_rank_score __section(".data");
 | ||
| 
 | ||
| static int rodt_row_skip_mask __section(".data");
 | ||
| 
 | ||
| static void rodt_loop(struct ddr_priv *priv, int rankx, struct rl_score
 | ||
| 		      rl_score[RTT_NOM_OHMS_COUNT][RODT_OHMS_COUNT][4])
 | ||
| {
 | ||
| 	union cvmx_lmcx_comp_ctl2 cc2;
 | ||
| 	const int rl_separate_ab = 1;
 | ||
| 	int i;
 | ||
| 
 | ||
| 	rl_best_rank_score = DEFAULT_BEST_RANK_SCORE;
 | ||
| 	rl_rodt_err = 0;
 | ||
| 	cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
 | ||
| 	cc2.cn78xx.rodt_ctl = rodt_ctl;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
 | ||
| 	cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
 | ||
| 	udelay(1); /* Give it a little time to take affect */
 | ||
| 	if (rl_print > 1) {
 | ||
| 		debug("Read ODT_CTL                                  : 0x%x (%d ohms)\n",
 | ||
| 		      cc2.cn78xx.rodt_ctl,
 | ||
| 		      imp_val->rodt_ohms[cc2.cn78xx.rodt_ctl]);
 | ||
| 	}
 | ||
| 
 | ||
| 	memset(rl_byte, 0, sizeof(rl_byte));
 | ||
| 	memset(&rodt_perfect_counts, 0, sizeof(rodt_perfect_counts));
 | ||
| 
 | ||
| 	// when iter RODT is the target RODT, take more samples...
 | ||
| 	max_samples = rl_samples;
 | ||
| 	if (rodt_ctl == default_rodt_ctl)
 | ||
| 		max_samples += rl_samples + 1;
 | ||
| 
 | ||
| 	for (sample_loops = 0; sample_loops < max_samples; sample_loops++) {
 | ||
| 		int redoing_nonseq_errs = 0;
 | ||
| 
 | ||
| 		rl_mask_err = 0;
 | ||
| 
 | ||
| 		if (!(rl_separate_ab && spd_rdimm &&
 | ||
| 		      ddr_type == DDR4_DRAM)) {
 | ||
| 			/* Clear read-level delays */
 | ||
| 			lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), 0);
 | ||
| 
 | ||
| 			/* read-leveling */
 | ||
| 			oct3_ddr3_seq(priv, 1 << rankx, if_num, 1);
 | ||
| 
 | ||
| 			do {
 | ||
| 				rl_rank.u64 =
 | ||
| 					lmc_rd(priv,
 | ||
| 					       CVMX_LMCX_RLEVEL_RANKX(rankx,
 | ||
| 								      if_num));
 | ||
| 			} while (rl_rank.cn78xx.status != 3);
 | ||
| 		}
 | ||
| 
 | ||
| 		rl_rank.u64 =
 | ||
| 			lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num));
 | ||
| 
 | ||
| 		// start bitmask interpretation block
 | ||
| 
 | ||
| 		memset(rl_mask, 0, sizeof(rl_mask));
 | ||
| 
 | ||
| 		if (rl_separate_ab && spd_rdimm && ddr_type == DDR4_DRAM) {
 | ||
| 			union cvmx_lmcx_rlevel_rankx rl_rank_aside;
 | ||
| 			union cvmx_lmcx_modereg_params0 mp0;
 | ||
| 
 | ||
| 			/* A-side */
 | ||
| 			mp0.u64 =
 | ||
| 				lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
 | ||
| 			mp0.s.mprloc = 0; /* MPR Page 0 Location 0 */
 | ||
| 			lmc_wr(priv,
 | ||
| 			       CVMX_LMCX_MODEREG_PARAMS0(if_num),
 | ||
| 			       mp0.u64);
 | ||
| 
 | ||
| 			/* Clear read-level delays */
 | ||
| 			lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), 0);
 | ||
| 
 | ||
| 			/* read-leveling */
 | ||
| 			oct3_ddr3_seq(priv, 1 << rankx, if_num, 1);
 | ||
| 
 | ||
| 			do {
 | ||
| 				rl_rank.u64 =
 | ||
| 					lmc_rd(priv,
 | ||
| 					       CVMX_LMCX_RLEVEL_RANKX(rankx,
 | ||
| 								      if_num));
 | ||
| 			} while (rl_rank.cn78xx.status != 3);
 | ||
| 
 | ||
| 			rl_rank.u64 =
 | ||
| 				lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx,
 | ||
| 								    if_num));
 | ||
| 
 | ||
| 			rl_rank_aside.u64 = rl_rank.u64;
 | ||
| 
 | ||
| 			rl_mask[0].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 0);
 | ||
| 			rl_mask[1].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 1);
 | ||
| 			rl_mask[2].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 2);
 | ||
| 			rl_mask[3].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 3);
 | ||
| 			rl_mask[8].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 8);
 | ||
| 			/* A-side complete */
 | ||
| 
 | ||
| 			/* B-side */
 | ||
| 			mp0.u64 =
 | ||
| 				lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
 | ||
| 			mp0.s.mprloc = 3; /* MPR Page 0 Location 3 */
 | ||
| 			lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num),
 | ||
| 			       mp0.u64);
 | ||
| 
 | ||
| 			/* Clear read-level delays */
 | ||
| 			lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), 0);
 | ||
| 
 | ||
| 			/* read-leveling */
 | ||
| 			oct3_ddr3_seq(priv, 1 << rankx, if_num, 1);
 | ||
| 
 | ||
| 			do {
 | ||
| 				rl_rank.u64 =
 | ||
| 					lmc_rd(priv,
 | ||
| 					       CVMX_LMCX_RLEVEL_RANKX(rankx,
 | ||
| 								      if_num));
 | ||
| 			} while (rl_rank.cn78xx.status != 3);
 | ||
| 
 | ||
| 			rl_rank.u64 =
 | ||
| 				lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx,
 | ||
| 								    if_num));
 | ||
| 
 | ||
| 			rl_mask[4].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 4);
 | ||
| 			rl_mask[5].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 5);
 | ||
| 			rl_mask[6].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 6);
 | ||
| 			rl_mask[7].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 7);
 | ||
| 			/* B-side complete */
 | ||
| 
 | ||
| 			upd_rl_rank(&rl_rank, 0, rl_rank_aside.s.byte0);
 | ||
| 			upd_rl_rank(&rl_rank, 1, rl_rank_aside.s.byte1);
 | ||
| 			upd_rl_rank(&rl_rank, 2, rl_rank_aside.s.byte2);
 | ||
| 			upd_rl_rank(&rl_rank, 3, rl_rank_aside.s.byte3);
 | ||
| 			/* ECC A-side */
 | ||
| 			upd_rl_rank(&rl_rank, 8, rl_rank_aside.s.byte8);
 | ||
| 
 | ||
| 			mp0.u64 =
 | ||
| 				lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
 | ||
| 			mp0.s.mprloc = 0; /* MPR Page 0 Location 0 */
 | ||
| 			lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num),
 | ||
| 			       mp0.u64);
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Evaluate the quality of the read-leveling delays from the
 | ||
| 		 * bitmasks. Also save off a software computed read-leveling
 | ||
| 		 * mask that may be used later to qualify the delay results
 | ||
| 		 * from Octeon.
 | ||
| 		 */
 | ||
| 		for (i = 0; i < (8 + ecc_ena); ++i) {
 | ||
| 			int bmerr;
 | ||
| 
 | ||
| 			if (!(if_bytemask & (1 << i)))
 | ||
| 				continue;
 | ||
| 			if (!(rl_separate_ab && spd_rdimm &&
 | ||
| 			      ddr_type == DDR4_DRAM)) {
 | ||
| 				rl_mask[i].bm =
 | ||
| 					lmc_ddr3_rl_dbg_read(priv, if_num, i);
 | ||
| 			}
 | ||
| 			bmerr = validate_ddr3_rlevel_bitmask(&rl_mask[i],
 | ||
| 							     ddr_type);
 | ||
| 			rl_mask[i].errs = bmerr;
 | ||
| 			rl_mask_err += bmerr;
 | ||
| 			// count only the "perfect" bitmasks
 | ||
| 			if (ddr_type == DDR4_DRAM && !bmerr) {
 | ||
| 				int delay;
 | ||
| 				// FIXME: for now, simple filtering:
 | ||
| 				// do NOT count PBMs for RODTs in skip mask
 | ||
| 				if ((1U << rodt_ctl) & pbm_rodt_skip)
 | ||
| 					continue;
 | ||
| 				// FIXME: could optimize this a bit?
 | ||
| 				delay = get_rl_rank(&rl_rank, i);
 | ||
| 				rank_perf[rankx].count[i][delay] += 1;
 | ||
| 				rank_perf[rankx].mask[i] |=
 | ||
| 					(1ULL << delay);
 | ||
| 				rodt_perfect_counts.count[i][delay] += 1;
 | ||
| 				rodt_perfect_counts.mask[i] |= (1ULL << delay);
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		/* Set delays for unused bytes to match byte 0. */
 | ||
| 		for (i = 0; i < 9; ++i) {
 | ||
| 			if (if_bytemask & (1 << i))
 | ||
| 				continue;
 | ||
| 			upd_rl_rank(&rl_rank, i, rl_rank.s.byte0);
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Save a copy of the byte delays in physical
 | ||
| 		 * order for sequential evaluation.
 | ||
| 		 */
 | ||
| 		unpack_rlevel_settings(if_bytemask, ecc_ena, rl_byte, rl_rank);
 | ||
| 
 | ||
| 	redo_nonseq_errs:
 | ||
| 
 | ||
| 		rl_nonseq_err  = 0;
 | ||
| 		if (!disable_sequential_delay_check) {
 | ||
| 			for (i = 0; i < 9; ++i)
 | ||
| 				rl_byte[i].sqerrs = 0;
 | ||
| 
 | ||
| 			if ((if_bytemask & 0xff) == 0xff) {
 | ||
| 				/*
 | ||
| 				 * Evaluate delay sequence across the whole
 | ||
| 				 * range of bytes for standard dimms.
 | ||
| 				 */
 | ||
| 				/* 1=RDIMM, 5=Mini-RDIMM */
 | ||
| 				if (spd_dimm_type == 1 || spd_dimm_type == 5) {
 | ||
| 					int reg_adj_del = abs(rl_byte[4].delay -
 | ||
| 							      rl_byte[5].delay);
 | ||
| 
 | ||
| 					/*
 | ||
| 					 * Registered dimm topology routes
 | ||
| 					 * from the center.
 | ||
| 					 */
 | ||
| 					rl_nonseq_err +=
 | ||
| 						nonseq_del(rl_byte, 0,
 | ||
| 							   3 + ecc_ena,
 | ||
| 							   max_adj_rl_del_inc);
 | ||
| 					rl_nonseq_err +=
 | ||
| 						nonseq_del(rl_byte, 5,
 | ||
| 							   7 + ecc_ena,
 | ||
| 							   max_adj_rl_del_inc);
 | ||
| 					// byte 5 sqerrs never gets cleared
 | ||
| 					// for RDIMMs
 | ||
| 					rl_byte[5].sqerrs = 0;
 | ||
| 					if (reg_adj_del > 1) {
 | ||
| 						/*
 | ||
| 						 * Assess proximity of bytes on
 | ||
| 						 * opposite sides of register
 | ||
| 						 */
 | ||
| 						rl_nonseq_err += (reg_adj_del -
 | ||
| 								  1) *
 | ||
| 							RLEVEL_ADJACENT_DELAY_ERROR;
 | ||
| 						// update byte 5 error
 | ||
| 						rl_byte[5].sqerrs +=
 | ||
| 							(reg_adj_del - 1) *
 | ||
| 							RLEVEL_ADJACENT_DELAY_ERROR;
 | ||
| 					}
 | ||
| 				}
 | ||
| 
 | ||
| 				/* 2=UDIMM, 6=Mini-UDIMM */
 | ||
| 				if (spd_dimm_type == 2 || spd_dimm_type == 6) {
 | ||
| 					/*
 | ||
| 					 * Unbuffered dimm topology routes
 | ||
| 					 * from end to end.
 | ||
| 					 */
 | ||
| 					rl_nonseq_err += nonseq_del(rl_byte, 0,
 | ||
| 								    7 + ecc_ena,
 | ||
| 								    max_adj_rl_del_inc);
 | ||
| 				}
 | ||
| 			} else {
 | ||
| 				rl_nonseq_err += nonseq_del(rl_byte, 0,
 | ||
| 							    3 + ecc_ena,
 | ||
| 							    max_adj_rl_del_inc);
 | ||
| 			}
 | ||
| 		} /* if (! disable_sequential_delay_check) */
 | ||
| 
 | ||
| 		rl_rank_errors = rl_mask_err + rl_nonseq_err;
 | ||
| 
 | ||
| 		// print original sample here only if we are not really
 | ||
| 		// averaging or picking best
 | ||
| 		// also do not print if we were redoing the NONSEQ score
 | ||
| 		// for using COMPUTED
 | ||
| 		if (!redoing_nonseq_errs && rl_samples < 2) {
 | ||
| 			if (rl_print > 1) {
 | ||
| 				display_rl_bm(if_num, rankx, rl_mask, ecc_ena);
 | ||
| 				display_rl_bm_scores(if_num, rankx, rl_mask,
 | ||
| 						     ecc_ena);
 | ||
| 				display_rl_seq_scores(if_num, rankx, rl_byte,
 | ||
| 						      ecc_ena);
 | ||
| 			}
 | ||
| 			display_rl_with_score(if_num, rl_rank, rankx,
 | ||
| 					      rl_rank_errors);
 | ||
| 		}
 | ||
| 
 | ||
| 		if (rl_compute) {
 | ||
| 			if (!redoing_nonseq_errs) {
 | ||
| 				/* Recompute the delays based on the bitmask */
 | ||
| 				for (i = 0; i < (8 + ecc_ena); ++i) {
 | ||
| 					if (!(if_bytemask & (1 << i)))
 | ||
| 						continue;
 | ||
| 
 | ||
| 					upd_rl_rank(&rl_rank, i,
 | ||
| 						    compute_ddr3_rlevel_delay(
 | ||
| 							    rl_mask[i].mstart,
 | ||
| 							    rl_mask[i].width,
 | ||
| 							    rl_ctl));
 | ||
| 				}
 | ||
| 
 | ||
| 				/*
 | ||
| 				 * Override the copy of byte delays with the
 | ||
| 				 * computed results.
 | ||
| 				 */
 | ||
| 				unpack_rlevel_settings(if_bytemask, ecc_ena,
 | ||
| 						       rl_byte, rl_rank);
 | ||
| 
 | ||
| 				redoing_nonseq_errs = 1;
 | ||
| 				goto redo_nonseq_errs;
 | ||
| 
 | ||
| 			} else {
 | ||
| 				/*
 | ||
| 				 * now print this if already printed the
 | ||
| 				 * original sample
 | ||
| 				 */
 | ||
| 				if (rl_samples < 2 || rl_print) {
 | ||
| 					display_rl_with_computed(if_num,
 | ||
| 								 rl_rank, rankx,
 | ||
| 								 rl_rank_errors);
 | ||
| 				}
 | ||
| 			}
 | ||
| 		} /* if (rl_compute) */
 | ||
| 
 | ||
| 		// end bitmask interpretation block
 | ||
| 
 | ||
| 		// if it is a better (lower) score, then  keep it
 | ||
| 		if (rl_rank_errors < rl_best_rank_score) {
 | ||
| 			rl_best_rank_score = rl_rank_errors;
 | ||
| 
 | ||
| 			// save the new best delays and best errors
 | ||
| 			for (i = 0; i < (8 + ecc_ena); ++i) {
 | ||
| 				rl_byte[i].best = rl_byte[i].delay;
 | ||
| 				rl_byte[i].bestsq = rl_byte[i].sqerrs;
 | ||
| 				// save bitmasks and their scores as well
 | ||
| 				// xlate UNPACKED index to PACKED index to
 | ||
| 				// get from rl_mask
 | ||
| 				rl_byte[i].bm = rl_mask[XUP(i, !!ecc_ena)].bm;
 | ||
| 				rl_byte[i].bmerrs =
 | ||
| 					rl_mask[XUP(i, !!ecc_ena)].errs;
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		rl_rodt_err += rl_rank_errors;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* We recorded the best score across the averaging loops */
 | ||
| 	rl_score[rtt_nom][rodt_ctl][rankx].score = rl_best_rank_score;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Restore the delays from the best fields that go with the best
 | ||
| 	 * score
 | ||
| 	 */
 | ||
| 	for (i = 0; i < 9; ++i) {
 | ||
| 		rl_byte[i].delay = rl_byte[i].best;
 | ||
| 		rl_byte[i].sqerrs = rl_byte[i].bestsq;
 | ||
| 	}
 | ||
| 
 | ||
| 	rl_rank.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num));
 | ||
| 
 | ||
| 	pack_rlevel_settings(if_bytemask, ecc_ena, rl_byte, &rl_rank);
 | ||
| 
 | ||
| 	if (rl_samples > 1) {
 | ||
| 		// restore the "best" bitmasks and their scores for printing
 | ||
| 		for (i = 0; i < 9; ++i) {
 | ||
| 			if ((if_bytemask & (1 << i)) == 0)
 | ||
| 				continue;
 | ||
| 			// xlate PACKED index to UNPACKED index to get from
 | ||
| 			// rl_byte
 | ||
| 			rl_mask[i].bm   = rl_byte[XPU(i, !!ecc_ena)].bm;
 | ||
| 			rl_mask[i].errs = rl_byte[XPU(i, !!ecc_ena)].bmerrs;
 | ||
| 		}
 | ||
| 
 | ||
| 		// maybe print bitmasks/scores here
 | ||
| 		if (rl_print > 1) {
 | ||
| 			display_rl_bm(if_num, rankx, rl_mask, ecc_ena);
 | ||
| 			display_rl_bm_scores(if_num, rankx, rl_mask, ecc_ena);
 | ||
| 			display_rl_seq_scores(if_num, rankx, rl_byte, ecc_ena);
 | ||
| 
 | ||
| 			display_rl_with_rodt(if_num, rl_rank, rankx,
 | ||
| 					     rl_score[rtt_nom][rodt_ctl][rankx].score,
 | ||
| 					     print_nom_ohms,
 | ||
| 					     imp_val->rodt_ohms[rodt_ctl],
 | ||
| 					     WITH_RODT_BESTSCORE);
 | ||
| 
 | ||
| 			debug("-----------\n");
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	rl_score[rtt_nom][rodt_ctl][rankx].setting = rl_rank.u64;
 | ||
| 
 | ||
| 	// print out the PBMs for the current RODT
 | ||
| 	if (ddr_type == DDR4_DRAM && rl_print > 1) { // verbosity?
 | ||
| 		// FIXME: change verbosity level after debug complete...
 | ||
| 
 | ||
| 		for (i = 0; i < 9; i++) {
 | ||
| 			u64 temp_mask;
 | ||
| 			int num_values;
 | ||
| 
 | ||
| 			// FIXME: PBM skip for RODTs in mask
 | ||
| 			if ((1U << rodt_ctl) & pbm_rodt_skip)
 | ||
| 				continue;
 | ||
| 
 | ||
| 			temp_mask = rodt_perfect_counts.mask[i];
 | ||
| 			num_values = __builtin_popcountll(temp_mask);
 | ||
| 			i = __builtin_ffsll(temp_mask) - 1;
 | ||
| 
 | ||
| 			debug("N%d.LMC%d.R%d: PERFECT: RODT %3d: Byte %d: mask 0x%02llx (%d): ",
 | ||
| 			      node, if_num, rankx,
 | ||
| 			      imp_val->rodt_ohms[rodt_ctl],
 | ||
| 			      i, temp_mask >> i, num_values);
 | ||
| 
 | ||
| 			while (temp_mask != 0) {
 | ||
| 				i = __builtin_ffsll(temp_mask) - 1;
 | ||
| 				debug("%2d(%2d) ", i,
 | ||
| 				      rodt_perfect_counts.count[i][i]);
 | ||
| 				temp_mask &= ~(1UL << i);
 | ||
| 			} /* while (temp_mask != 0) */
 | ||
| 			debug("\n");
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void rank_major_loop(struct ddr_priv *priv, int rankx, struct rl_score
 | ||
| 			    rl_score[RTT_NOM_OHMS_COUNT][RODT_OHMS_COUNT][4])
 | ||
| {
 | ||
| 	/* Start with an arbitrarily high score */
 | ||
| 	int best_rank_score = DEFAULT_BEST_RANK_SCORE;
 | ||
| 	int best_rank_rtt_nom = 0;
 | ||
| 	int best_rank_ctl = 0;
 | ||
| 	int best_rank_ohms = 0;
 | ||
| 	int best_rankx = 0;
 | ||
| 	int dimm_rank_mask;
 | ||
| 	int max_rank_score;
 | ||
| 	union cvmx_lmcx_rlevel_rankx saved_rl_rank;
 | ||
| 	int next_ohms;
 | ||
| 	int orankx;
 | ||
| 	int next_score = 0;
 | ||
| 	int best_byte, new_byte, temp_byte, orig_best_byte;
 | ||
| 	int rank_best_bytes[9];
 | ||
| 	int byte_sh;
 | ||
| 	int avg_byte;
 | ||
| 	int avg_diff;
 | ||
| 	int i;
 | ||
| 
 | ||
| 	if (!(rank_mask & (1 << rankx)))
 | ||
| 		return;
 | ||
| 
 | ||
| 	// some of the rank-related loops below need to operate only on
 | ||
| 	// the ranks of a single DIMM,
 | ||
| 	// so create a mask for their use here
 | ||
| 	if (num_ranks == 4) {
 | ||
| 		dimm_rank_mask = rank_mask; // should be 1111
 | ||
| 	} else {
 | ||
| 		dimm_rank_mask = rank_mask & 3; // should be 01 or 11
 | ||
| 		if (rankx >= 2) {
 | ||
| 			// doing a rank on the second DIMM, should be
 | ||
| 			// 0100 or 1100
 | ||
| 			dimm_rank_mask <<= 2;
 | ||
| 		}
 | ||
| 	}
 | ||
| 	debug("DIMM rank mask: 0x%x, rank mask: 0x%x, rankx: %d\n",
 | ||
| 	      dimm_rank_mask, rank_mask, rankx);
 | ||
| 
 | ||
| 	// this is the start of the BEST ROW SCORE LOOP
 | ||
| 
 | ||
| 	for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx; ++rtt_idx) {
 | ||
| 		rtt_nom = imp_val->rtt_nom_table[rtt_idx];
 | ||
| 
 | ||
| 		debug("N%d.LMC%d.R%d: starting RTT_NOM %d (%d)\n",
 | ||
| 		      node, if_num, rankx, rtt_nom,
 | ||
| 		      imp_val->rtt_nom_ohms[rtt_nom]);
 | ||
| 
 | ||
| 		for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl;
 | ||
| 		     --rodt_ctl) {
 | ||
| 			next_ohms = imp_val->rodt_ohms[rodt_ctl];
 | ||
| 
 | ||
| 			// skip RODT rows in mask, but *NOT* rows with too
 | ||
| 			// high a score;
 | ||
| 			// we will not use the skipped ones for printing or
 | ||
| 			// evaluating, but we need to allow all the
 | ||
| 			// non-skipped ones to be candidates for "best"
 | ||
| 			if (((1 << rodt_ctl) & rodt_row_skip_mask) != 0) {
 | ||
| 				debug("N%d.LMC%d.R%d: SKIPPING rodt:%d (%d) with rank_score:%d\n",
 | ||
| 				      node, if_num, rankx, rodt_ctl,
 | ||
| 				      next_ohms, next_score);
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 
 | ||
| 			// this is ROFFIX-0528
 | ||
| 			for (orankx = 0; orankx < dimm_count * 4; orankx++) {
 | ||
| 				// stay on the same DIMM
 | ||
| 				if (!(dimm_rank_mask & (1 << orankx)))
 | ||
| 					continue;
 | ||
| 
 | ||
| 				next_score = rl_score[rtt_nom][rodt_ctl][orankx].score;
 | ||
| 
 | ||
| 				// always skip a higher score
 | ||
| 				if (next_score > best_rank_score)
 | ||
| 					continue;
 | ||
| 
 | ||
| 				// if scores are equal
 | ||
| 				if (next_score == best_rank_score) {
 | ||
| 					// always skip lower ohms
 | ||
| 					if (next_ohms < best_rank_ohms)
 | ||
| 						continue;
 | ||
| 
 | ||
| 					// if same ohms
 | ||
| 					if (next_ohms == best_rank_ohms) {
 | ||
| 						// always skip the other rank(s)
 | ||
| 						if (orankx != rankx)
 | ||
| 							continue;
 | ||
| 					}
 | ||
| 					// else next_ohms are greater,
 | ||
| 					// always choose it
 | ||
| 				}
 | ||
| 				// else next_score is less than current best,
 | ||
| 				// so always choose it
 | ||
| 				debug("N%d.LMC%d.R%d: new best score: rank %d, rodt %d(%3d), new best %d, previous best %d(%d)\n",
 | ||
| 				      node, if_num, rankx, orankx, rodt_ctl, next_ohms, next_score,
 | ||
| 				      best_rank_score, best_rank_ohms);
 | ||
| 				best_rank_score	    = next_score;
 | ||
| 				best_rank_rtt_nom   = rtt_nom;
 | ||
| 				//best_rank_nom_ohms  = rtt_nom_ohms;
 | ||
| 				best_rank_ctl       = rodt_ctl;
 | ||
| 				best_rank_ohms      = next_ohms;
 | ||
| 				best_rankx          = orankx;
 | ||
| 				rl_rank.u64 =
 | ||
| 					rl_score[rtt_nom][rodt_ctl][orankx].setting;
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	// this is the end of the BEST ROW SCORE LOOP
 | ||
| 
 | ||
| 	// DANGER, Will Robinson!! Abort now if we did not find a best
 | ||
| 	// score at all...
 | ||
| 	if (best_rank_score == DEFAULT_BEST_RANK_SCORE) {
 | ||
| 		printf("N%d.LMC%d.R%d: WARNING: no best rank score found - resetting node...\n",
 | ||
| 		       node, if_num, rankx);
 | ||
| 		mdelay(500);
 | ||
| 		do_reset(NULL, 0, 0, NULL);
 | ||
| 	}
 | ||
| 
 | ||
| 	// FIXME: relative now, but still arbitrary...
 | ||
| 	max_rank_score = best_rank_score;
 | ||
| 	if (ddr_type == DDR4_DRAM) {
 | ||
| 		// halve the range if 2 DIMMs unless they are single rank...
 | ||
| 		max_rank_score += (MAX_RANK_SCORE_LIMIT / ((num_ranks > 1) ?
 | ||
| 							   dimm_count : 1));
 | ||
| 	} else {
 | ||
| 		// Since DDR3 typically has a wider score range,
 | ||
| 		// keep more of them always
 | ||
| 		max_rank_score += MAX_RANK_SCORE_LIMIT;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (!ecc_ena) {
 | ||
| 		/* ECC is not used */
 | ||
| 		rl_rank.s.byte8 = rl_rank.s.byte0;
 | ||
| 	}
 | ||
| 
 | ||
| 	// at the end, write the best row settings to the current rank
 | ||
| 	lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), rl_rank.u64);
 | ||
| 	rl_rank.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num));
 | ||
| 
 | ||
| 	saved_rl_rank.u64 = rl_rank.u64;
 | ||
| 
 | ||
| 	// this is the start of the PRINT LOOP
 | ||
| 	int pass;
 | ||
| 
 | ||
| 	// for pass==0, print current rank, pass==1 print other rank(s)
 | ||
| 	// this is done because we want to show each ranks RODT values
 | ||
| 	// together, not interlaced
 | ||
| 	// keep separates for ranks - pass=0 target rank, pass=1 other
 | ||
| 	// rank on DIMM
 | ||
| 	int mask_skipped[2] = {0, 0};
 | ||
| 	int score_skipped[2] = {0, 0};
 | ||
| 	int selected_rows[2] = {0, 0};
 | ||
| 	int zero_scores[2] = {0, 0};
 | ||
| 	for (pass = 0; pass < 2; pass++) {
 | ||
| 		for (orankx = 0; orankx < dimm_count * 4; orankx++) {
 | ||
| 			// stay on the same DIMM
 | ||
| 			if (!(dimm_rank_mask & (1 << orankx)))
 | ||
| 				continue;
 | ||
| 
 | ||
| 			if ((pass == 0 && orankx != rankx) ||
 | ||
| 			    (pass != 0 && orankx == rankx))
 | ||
| 				continue;
 | ||
| 
 | ||
| 			for (rtt_idx = min_rtt_nom_idx;
 | ||
| 			     rtt_idx <= max_rtt_nom_idx; ++rtt_idx) {
 | ||
| 				rtt_nom = imp_val->rtt_nom_table[rtt_idx];
 | ||
| 				if (dyn_rtt_nom_mask == 0) {
 | ||
| 					print_nom_ohms = -1;
 | ||
| 				} else {
 | ||
| 					print_nom_ohms =
 | ||
| 						imp_val->rtt_nom_ohms[rtt_nom];
 | ||
| 				}
 | ||
| 
 | ||
| 				// cycle through all the RODT values...
 | ||
| 				for (rodt_ctl = max_rodt_ctl;
 | ||
| 				     rodt_ctl >= min_rodt_ctl; --rodt_ctl) {
 | ||
| 					union cvmx_lmcx_rlevel_rankx
 | ||
| 						temp_rl_rank;
 | ||
| 					int temp_score =
 | ||
| 						rl_score[rtt_nom][rodt_ctl][orankx].score;
 | ||
| 					int skip_row;
 | ||
| 
 | ||
| 					temp_rl_rank.u64 =
 | ||
| 						rl_score[rtt_nom][rodt_ctl][orankx].setting;
 | ||
| 
 | ||
| 					// skip RODT rows in mask, or rows
 | ||
| 					// with too high a score;
 | ||
| 					// we will not use them for printing
 | ||
| 					// or evaluating...
 | ||
| 					if ((1 << rodt_ctl) &
 | ||
| 					    rodt_row_skip_mask) {
 | ||
| 						skip_row = WITH_RODT_SKIPPING;
 | ||
| 						++mask_skipped[pass];
 | ||
| 					} else if (temp_score >
 | ||
| 						   max_rank_score) {
 | ||
| 						skip_row = WITH_RODT_SKIPPING;
 | ||
| 						++score_skipped[pass];
 | ||
| 					} else {
 | ||
| 						skip_row = WITH_RODT_BLANK;
 | ||
| 						++selected_rows[pass];
 | ||
| 						if (temp_score == 0)
 | ||
| 							++zero_scores[pass];
 | ||
| 					}
 | ||
| 
 | ||
| 					// identify and print the BEST ROW
 | ||
| 					// when it comes up
 | ||
| 					if (skip_row == WITH_RODT_BLANK &&
 | ||
| 					    best_rankx == orankx &&
 | ||
| 					    best_rank_rtt_nom == rtt_nom &&
 | ||
| 					    best_rank_ctl == rodt_ctl)
 | ||
| 						skip_row = WITH_RODT_BESTROW;
 | ||
| 
 | ||
| 					if (rl_print) {
 | ||
| 						display_rl_with_rodt(if_num,
 | ||
| 								     temp_rl_rank, orankx, temp_score,
 | ||
| 								     print_nom_ohms,
 | ||
| 								     imp_val->rodt_ohms[rodt_ctl],
 | ||
| 								     skip_row);
 | ||
| 					}
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 	debug("N%d.LMC%d.R%d: RLROWS: selected %d+%d, zero_scores %d+%d, mask_skipped %d+%d, score_skipped %d+%d\n",
 | ||
| 	      node, if_num, rankx, selected_rows[0], selected_rows[1],
 | ||
| 	      zero_scores[0], zero_scores[1], mask_skipped[0], mask_skipped[1],
 | ||
| 	      score_skipped[0], score_skipped[1]);
 | ||
| 	// this is the end of the PRINT LOOP
 | ||
| 
 | ||
| 	// now evaluate which bytes need adjusting
 | ||
| 	// collect the new byte values; first init with current best for
 | ||
| 	// neighbor use
 | ||
| 	for (i = 0, byte_sh = 0; i < 8 + ecc_ena; i++, byte_sh += 6) {
 | ||
| 		rank_best_bytes[i] = (int)(rl_rank.u64 >> byte_sh) &
 | ||
| 			RLEVEL_BYTE_MSK;
 | ||
| 	}
 | ||
| 
 | ||
| 	// this is the start of the BEST BYTE LOOP
 | ||
| 
 | ||
| 	for (i = 0, byte_sh = 0; i < 8 + ecc_ena; i++, byte_sh += 6) {
 | ||
| 		int sum = 0, count = 0;
 | ||
| 		int count_less = 0, count_same = 0, count_more = 0;
 | ||
| 		int count_byte; // save the value we counted around
 | ||
| 		// for rank majority use
 | ||
| 		int rank_less = 0, rank_same = 0, rank_more = 0;
 | ||
| 		int neighbor;
 | ||
| 		int neigh_byte;
 | ||
| 
 | ||
| 		best_byte = rank_best_bytes[i];
 | ||
| 		orig_best_byte = rank_best_bytes[i];
 | ||
| 
 | ||
| 		// this is the start of the BEST BYTE AVERAGING LOOP
 | ||
| 
 | ||
| 		// validate the initial "best" byte by looking at the
 | ||
| 		// average of the unskipped byte-column entries
 | ||
| 		// we want to do this before we go further, so we can
 | ||
| 		// try to start with a better initial value
 | ||
| 		// this is the so-called "BESTBUY" patch set
 | ||
| 
 | ||
| 		for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx;
 | ||
| 		     ++rtt_idx) {
 | ||
| 			rtt_nom = imp_val->rtt_nom_table[rtt_idx];
 | ||
| 
 | ||
| 			for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl;
 | ||
| 			     --rodt_ctl) {
 | ||
| 				union cvmx_lmcx_rlevel_rankx temp_rl_rank;
 | ||
| 				int temp_score;
 | ||
| 
 | ||
| 				// average over all the ranks
 | ||
| 				for (orankx = 0; orankx < dimm_count * 4;
 | ||
| 				     orankx++) {
 | ||
| 					// stay on the same DIMM
 | ||
| 					if (!(dimm_rank_mask & (1 << orankx)))
 | ||
| 						continue;
 | ||
| 
 | ||
| 					temp_score =
 | ||
| 						rl_score[rtt_nom][rodt_ctl][orankx].score;
 | ||
| 					// skip RODT rows in mask, or rows with
 | ||
| 					// too high a score;
 | ||
| 					// we will not use them for printing or
 | ||
| 					// evaluating...
 | ||
| 
 | ||
| 					if (!((1 << rodt_ctl) &
 | ||
| 					      rodt_row_skip_mask) &&
 | ||
| 					    temp_score <= max_rank_score) {
 | ||
| 						temp_rl_rank.u64 =
 | ||
| 							rl_score[rtt_nom][rodt_ctl][orankx].setting;
 | ||
| 						temp_byte =
 | ||
| 							(int)(temp_rl_rank.u64 >> byte_sh) &
 | ||
| 							RLEVEL_BYTE_MSK;
 | ||
| 						sum += temp_byte;
 | ||
| 						count++;
 | ||
| 					}
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		// this is the end of the BEST BYTE AVERAGING LOOP
 | ||
| 
 | ||
| 		// FIXME: validate count and sum??
 | ||
| 		avg_byte = (int)divide_nint(sum, count);
 | ||
| 		avg_diff = best_byte - avg_byte;
 | ||
| 		new_byte = best_byte;
 | ||
| 		if (avg_diff != 0) {
 | ||
| 			// bump best up/dn by 1, not necessarily all the
 | ||
| 			// way to avg
 | ||
| 			new_byte = best_byte + ((avg_diff > 0) ? -1 : 1);
 | ||
| 		}
 | ||
| 
 | ||
| 		if (rl_print) {
 | ||
| 			debug("N%d.LMC%d.R%d: START:   Byte %d: best %d is different by %d from average %d, using %d.\n",
 | ||
| 			      node, if_num, rankx,
 | ||
| 			      i, best_byte, avg_diff, avg_byte, new_byte);
 | ||
| 		}
 | ||
| 		best_byte = new_byte;
 | ||
| 		count_byte = new_byte; // save the value we will count around
 | ||
| 
 | ||
| 		// At this point best_byte is either:
 | ||
| 		// 1. the original byte-column value from the best scoring
 | ||
| 		//    RODT row, OR
 | ||
| 		// 2. that value bumped toward the average of all the
 | ||
| 		//    byte-column values
 | ||
| 		//
 | ||
| 		// best_byte will not change from here on...
 | ||
| 
 | ||
| 		// this is the start of the BEST BYTE COUNTING LOOP
 | ||
| 
 | ||
| 		// NOTE: we do this next loop separately from above, because
 | ||
| 		// we count relative to "best_byte"
 | ||
| 		// which may have been modified by the above averaging
 | ||
| 		// operation...
 | ||
| 
 | ||
| 		for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx;
 | ||
| 		     ++rtt_idx) {
 | ||
| 			rtt_nom = imp_val->rtt_nom_table[rtt_idx];
 | ||
| 
 | ||
| 			for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl;
 | ||
| 			     --rodt_ctl) {
 | ||
| 				union cvmx_lmcx_rlevel_rankx temp_rl_rank;
 | ||
| 				int temp_score;
 | ||
| 
 | ||
| 				for (orankx = 0; orankx < dimm_count * 4;
 | ||
| 				     orankx++) { // count over all the ranks
 | ||
| 					// stay on the same DIMM
 | ||
| 					if (!(dimm_rank_mask & (1 << orankx)))
 | ||
| 						continue;
 | ||
| 
 | ||
| 					temp_score =
 | ||
| 						rl_score[rtt_nom][rodt_ctl][orankx].score;
 | ||
| 					// skip RODT rows in mask, or rows
 | ||
| 					// with too high a score;
 | ||
| 					// we will not use them for printing
 | ||
| 					// or evaluating...
 | ||
| 					if (((1 << rodt_ctl) &
 | ||
| 					     rodt_row_skip_mask) ||
 | ||
| 					    temp_score > max_rank_score)
 | ||
| 						continue;
 | ||
| 
 | ||
| 					temp_rl_rank.u64 =
 | ||
| 						rl_score[rtt_nom][rodt_ctl][orankx].setting;
 | ||
| 					temp_byte = (temp_rl_rank.u64 >>
 | ||
| 						     byte_sh) & RLEVEL_BYTE_MSK;
 | ||
| 
 | ||
| 					if (temp_byte == 0)
 | ||
| 						;  // do not count it if illegal
 | ||
| 					else if (temp_byte == best_byte)
 | ||
| 						count_same++;
 | ||
| 					else if (temp_byte == best_byte - 1)
 | ||
| 						count_less++;
 | ||
| 					else if (temp_byte == best_byte + 1)
 | ||
| 						count_more++;
 | ||
| 					// else do not count anything more
 | ||
| 					// than 1 away from the best
 | ||
| 
 | ||
| 					// no rank counting if disabled
 | ||
| 					if (disable_rank_majority)
 | ||
| 						continue;
 | ||
| 
 | ||
| 					// FIXME? count is relative to
 | ||
| 					// best_byte; should it be rank-based?
 | ||
| 					// rank counts only on main rank
 | ||
| 					if (orankx != rankx)
 | ||
| 						continue;
 | ||
| 					else if (temp_byte == best_byte)
 | ||
| 						rank_same++;
 | ||
| 					else if (temp_byte == best_byte - 1)
 | ||
| 						rank_less++;
 | ||
| 					else if (temp_byte == best_byte + 1)
 | ||
| 						rank_more++;
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		if (rl_print) {
 | ||
| 			debug("N%d.LMC%d.R%d: COUNT:   Byte %d: orig %d now %d, more %d same %d less %d (%d/%d/%d)\n",
 | ||
| 			      node, if_num, rankx,
 | ||
| 			      i, orig_best_byte, best_byte,
 | ||
| 			      count_more, count_same, count_less,
 | ||
| 			      rank_more, rank_same, rank_less);
 | ||
| 		}
 | ||
| 
 | ||
| 		// this is the end of the BEST BYTE COUNTING LOOP
 | ||
| 
 | ||
| 		// choose the new byte value
 | ||
| 		// we need to check that there is no gap greater than 2
 | ||
| 		// between adjacent bytes (adjacency depends on DIMM type)
 | ||
| 		// use the neighbor value to help decide
 | ||
| 		// initially, the rank_best_bytes[] will contain values from
 | ||
| 		// the chosen lowest score rank
 | ||
| 		new_byte = 0;
 | ||
| 
 | ||
| 		// neighbor is index-1 unless we are index 0 or index 8 (ECC)
 | ||
| 		neighbor = (i == 8) ? 3 : ((i == 0) ? 1 : i - 1);
 | ||
| 		neigh_byte = rank_best_bytes[neighbor];
 | ||
| 
 | ||
| 		// can go up or down or stay the same, so look at a numeric
 | ||
| 		// average to help
 | ||
| 		new_byte = (int)divide_nint(((count_more * (best_byte + 1)) +
 | ||
| 					     (count_same * (best_byte + 0)) +
 | ||
| 					     (count_less * (best_byte - 1))),
 | ||
| 					    max(1, (count_more + count_same +
 | ||
| 						    count_less)));
 | ||
| 
 | ||
| 		// use neighbor to help choose with average
 | ||
| 		if (i > 0 && (abs(neigh_byte - new_byte) > 2) &&
 | ||
| 		    !disable_sequential_delay_check) {
 | ||
| 			// but not for byte 0
 | ||
| 			int avg_pick = new_byte;
 | ||
| 
 | ||
| 			if ((new_byte - best_byte) != 0) {
 | ||
| 				// back to best, average did not get better
 | ||
| 				new_byte = best_byte;
 | ||
| 			} else {
 | ||
| 				// avg was the same, still too far, now move
 | ||
| 				// it towards the neighbor
 | ||
| 				new_byte += (neigh_byte > new_byte) ? 1 : -1;
 | ||
| 			}
 | ||
| 
 | ||
| 			if (rl_print) {
 | ||
| 				debug("N%d.LMC%d.R%d: AVERAGE: Byte %d: neighbor %d too different %d from average %d, picking %d.\n",
 | ||
| 				      node, if_num, rankx,
 | ||
| 				      i, neighbor, neigh_byte, avg_pick,
 | ||
| 				      new_byte);
 | ||
| 			}
 | ||
| 		} else {
 | ||
| 			// NOTE:
 | ||
| 			// For now, we let the neighbor processing above trump
 | ||
| 			// the new simple majority processing here.
 | ||
| 			// This is mostly because we have seen no smoking gun
 | ||
| 			// for a neighbor bad choice (yet?).
 | ||
| 			// Also note that we will ALWAYS be using byte 0
 | ||
| 			// majority, because of the if clause above.
 | ||
| 
 | ||
| 			// majority is dependent on the counts, which are
 | ||
| 			// relative to best_byte, so start there
 | ||
| 			int maj_byte = best_byte;
 | ||
| 			int rank_maj;
 | ||
| 			int rank_sum;
 | ||
| 
 | ||
| 			if (count_more > count_same &&
 | ||
| 			    count_more > count_less) {
 | ||
| 				maj_byte++;
 | ||
| 			} else if (count_less > count_same &&
 | ||
| 				   count_less > count_more) {
 | ||
| 				maj_byte--;
 | ||
| 			}
 | ||
| 
 | ||
| 			if (maj_byte != new_byte) {
 | ||
| 				// print only when majority choice is
 | ||
| 				// different from average
 | ||
| 				if (rl_print) {
 | ||
| 					debug("N%d.LMC%d.R%d: MAJORTY: Byte %d: picking majority of %d over average %d.\n",
 | ||
| 					      node, if_num, rankx, i, maj_byte,
 | ||
| 					      new_byte);
 | ||
| 				}
 | ||
| 				new_byte = maj_byte;
 | ||
| 			} else {
 | ||
| 				if (rl_print) {
 | ||
| 					debug("N%d.LMC%d.R%d: AVERAGE: Byte %d: picking average of %d.\n",
 | ||
| 					      node, if_num, rankx, i, new_byte);
 | ||
| 				}
 | ||
| 			}
 | ||
| 
 | ||
| 			if (!disable_rank_majority) {
 | ||
| 				// rank majority is dependent on the rank
 | ||
| 				// counts, which are relative to best_byte,
 | ||
| 				// so start there, and adjust according to the
 | ||
| 				// rank counts majority
 | ||
| 				rank_maj = best_byte;
 | ||
| 				if (rank_more > rank_same &&
 | ||
| 				    rank_more > rank_less) {
 | ||
| 					rank_maj++;
 | ||
| 				} else if (rank_less > rank_same &&
 | ||
| 					   rank_less > rank_more) {
 | ||
| 					rank_maj--;
 | ||
| 				}
 | ||
| 				rank_sum = rank_more + rank_same + rank_less;
 | ||
| 
 | ||
| 				// now, let rank majority possibly rule over
 | ||
| 				// the current new_byte however we got it
 | ||
| 				if (rank_maj != new_byte) { // only if different
 | ||
| 					// Here is where we decide whether to
 | ||
| 					// completely apply RANK_MAJORITY or not
 | ||
| 					// ignore if less than
 | ||
| 					if (rank_maj < new_byte) {
 | ||
| 						if (rl_print) {
 | ||
| 							debug("N%d.LMC%d.R%d: RANKMAJ: Byte %d: LESS: NOT using %d over %d.\n",
 | ||
| 							      node, if_num,
 | ||
| 							      rankx, i,
 | ||
| 							      rank_maj,
 | ||
| 							      new_byte);
 | ||
| 						}
 | ||
| 					} else {
 | ||
| 						// For the moment, we do it
 | ||
| 						// ONLY when running 2-slot
 | ||
| 						// configs
 | ||
| 						//  OR when rank_sum is big
 | ||
| 						// enough
 | ||
| 						if (dimm_count > 1 ||
 | ||
| 						    rank_sum > 2) {
 | ||
| 							// print only when rank
 | ||
| 							// majority choice is
 | ||
| 							// selected
 | ||
| 							if (rl_print) {
 | ||
| 								debug("N%d.LMC%d.R%d: RANKMAJ: Byte %d: picking %d over %d.\n",
 | ||
| 								      node,
 | ||
| 								      if_num,
 | ||
| 								      rankx,
 | ||
| 								      i,
 | ||
| 								      rank_maj,
 | ||
| 								      new_byte);
 | ||
| 							}
 | ||
| 							new_byte = rank_maj;
 | ||
| 						} else {
 | ||
| 							// FIXME: print some
 | ||
| 							// info when we could
 | ||
| 							// have chosen RANKMAJ
 | ||
| 							// but did not
 | ||
| 							if (rl_print) {
 | ||
| 								debug("N%d.LMC%d.R%d: RANKMAJ: Byte %d: NOT using %d over %d (best=%d,sum=%d).\n",
 | ||
| 								      node,
 | ||
| 								      if_num,
 | ||
| 								      rankx,
 | ||
| 								      i,
 | ||
| 								      rank_maj,
 | ||
| 								      new_byte,
 | ||
| 								      best_byte,
 | ||
| 								      rank_sum);
 | ||
| 							}
 | ||
| 						}
 | ||
| 					}
 | ||
| 				}
 | ||
| 			} /* if (!disable_rank_majority) */
 | ||
| 		}
 | ||
| 		// one last check:
 | ||
| 		// if new_byte is still count_byte, BUT there was no count
 | ||
| 		// for that value, DO SOMETHING!!!
 | ||
| 		// FIXME: go back to original best byte from the best row
 | ||
| 		if (new_byte == count_byte && count_same == 0) {
 | ||
| 			new_byte = orig_best_byte;
 | ||
| 			if (rl_print) {
 | ||
| 				debug("N%d.LMC%d.R%d: FAILSAF: Byte %d: going back to original %d.\n",
 | ||
| 				      node, if_num, rankx, i, new_byte);
 | ||
| 			}
 | ||
| 		}
 | ||
| 		// Look at counts for "perfect" bitmasks (PBMs) if we had
 | ||
| 		// any for this byte-lane.
 | ||
| 		// Remember, we only counted for DDR4, so zero means none
 | ||
| 		// or DDR3, and we bypass this...
 | ||
| 		value_mask = rank_perf[rankx].mask[i];
 | ||
| 		disable_rlv_bump_this_byte = 0;
 | ||
| 
 | ||
| 		if (value_mask != 0 && rl_ctl.cn78xx.offset == 1) {
 | ||
| 			int i, delay_count, delay_max = 0, del_val = 0;
 | ||
| 			int num_values = __builtin_popcountll(value_mask);
 | ||
| 			int sum_counts = 0;
 | ||
| 			u64 temp_mask = value_mask;
 | ||
| 
 | ||
| 			disable_rlv_bump_this_byte = 1;
 | ||
| 			i = __builtin_ffsll(temp_mask) - 1;
 | ||
| 			if (rl_print)
 | ||
| 				debug("N%d.LMC%d.R%d: PERFECT: Byte %d: OFF1: mask 0x%02llx (%d): ",
 | ||
| 				      node, if_num, rankx, i, value_mask >> i,
 | ||
| 				      num_values);
 | ||
| 
 | ||
| 			while (temp_mask != 0) {
 | ||
| 				i = __builtin_ffsll(temp_mask) - 1;
 | ||
| 				delay_count = rank_perf[rankx].count[i][i];
 | ||
| 				sum_counts += delay_count;
 | ||
| 				if (rl_print)
 | ||
| 					debug("%2d(%2d) ", i, delay_count);
 | ||
| 				if (delay_count >= delay_max) {
 | ||
| 					delay_max = delay_count;
 | ||
| 					del_val = i;
 | ||
| 				}
 | ||
| 				temp_mask &= ~(1UL << i);
 | ||
| 			} /* while (temp_mask != 0) */
 | ||
| 
 | ||
| 			// if sum_counts is small, just use NEW_BYTE
 | ||
| 			if (sum_counts < pbm_lowsum_limit) {
 | ||
| 				if (rl_print)
 | ||
| 					debug(": LOWSUM (%2d), choose ORIG ",
 | ||
| 					      sum_counts);
 | ||
| 				del_val = new_byte;
 | ||
| 				delay_max = rank_perf[rankx].count[i][del_val];
 | ||
| 			}
 | ||
| 
 | ||
| 			// finish printing here...
 | ||
| 			if (rl_print) {
 | ||
| 				debug(": USING %2d (%2d) D%d\n", del_val,
 | ||
| 				      delay_max, disable_rlv_bump_this_byte);
 | ||
| 			}
 | ||
| 
 | ||
| 			new_byte = del_val; // override with best PBM choice
 | ||
| 
 | ||
| 		} else if ((value_mask != 0) && (rl_ctl.cn78xx.offset == 2)) {
 | ||
| 			//                        if (value_mask != 0) {
 | ||
| 			int i, delay_count, del_val;
 | ||
| 			int num_values = __builtin_popcountll(value_mask);
 | ||
| 			int sum_counts = 0;
 | ||
| 			u64 temp_mask = value_mask;
 | ||
| 
 | ||
| 			i = __builtin_ffsll(temp_mask) - 1;
 | ||
| 			if (rl_print)
 | ||
| 				debug("N%d.LMC%d.R%d: PERFECT: Byte %d: mask 0x%02llx (%d): ",
 | ||
| 				      node, if_num, rankx, i, value_mask >> i,
 | ||
| 				      num_values);
 | ||
| 			while (temp_mask != 0) {
 | ||
| 				i = __builtin_ffsll(temp_mask) - 1;
 | ||
| 				delay_count = rank_perf[rankx].count[i][i];
 | ||
| 				sum_counts += delay_count;
 | ||
| 				if (rl_print)
 | ||
| 					debug("%2d(%2d) ", i, delay_count);
 | ||
| 				temp_mask &= ~(1UL << i);
 | ||
| 			} /* while (temp_mask != 0) */
 | ||
| 
 | ||
| 			del_val = __builtin_ffsll(value_mask) - 1;
 | ||
| 			delay_count =
 | ||
| 				rank_perf[rankx].count[i][del_val];
 | ||
| 
 | ||
| 			// overkill, normally only 1-4 bits
 | ||
| 			i = (value_mask >> del_val) & 0x1F;
 | ||
| 
 | ||
| 			// if sum_counts is small, treat as special and use
 | ||
| 			// NEW_BYTE
 | ||
| 			if (sum_counts < pbm_lowsum_limit) {
 | ||
| 				if (rl_print)
 | ||
| 					debug(": LOWSUM (%2d), choose ORIG",
 | ||
| 					      sum_counts);
 | ||
| 				i = 99; // SPECIAL case...
 | ||
| 			}
 | ||
| 
 | ||
| 			switch (i) {
 | ||
| 			case 0x01 /* 00001b */:
 | ||
| 				// allow BUMP
 | ||
| 				break;
 | ||
| 
 | ||
| 			case 0x13 /* 10011b */:
 | ||
| 			case 0x0B /* 01011b */:
 | ||
| 			case 0x03 /* 00011b */:
 | ||
| 				del_val += 1; // take the second
 | ||
| 				disable_rlv_bump_this_byte = 1; // allow no BUMP
 | ||
| 				break;
 | ||
| 
 | ||
| 			case 0x0D /* 01101b */:
 | ||
| 			case 0x05 /* 00101b */:
 | ||
| 				// test count of lowest and all
 | ||
| 				if (delay_count >= 5 || sum_counts <= 5)
 | ||
| 					del_val += 1; // take the hole
 | ||
| 				else
 | ||
| 					del_val += 2; // take the next set
 | ||
| 				disable_rlv_bump_this_byte = 1; // allow no BUMP
 | ||
| 				break;
 | ||
| 
 | ||
| 			case 0x0F /* 01111b */:
 | ||
| 			case 0x17 /* 10111b */:
 | ||
| 			case 0x07 /* 00111b */:
 | ||
| 				del_val += 1; // take the second
 | ||
| 				if (delay_count < 5) { // lowest count is small
 | ||
| 					int second =
 | ||
| 						rank_perf[rankx].count[i][del_val];
 | ||
| 					int third =
 | ||
| 						rank_perf[rankx].count[i][del_val + 1];
 | ||
| 					// test if middle is more than 1 OR
 | ||
| 					// top is more than 1;
 | ||
| 					// this means if they are BOTH 1,
 | ||
| 					// then we keep the second...
 | ||
| 					if (second > 1 || third > 1) {
 | ||
| 						// if middle is small OR top
 | ||
| 						// is large
 | ||
| 						if (second < 5 ||
 | ||
| 						    third > 1) {
 | ||
| 							// take the top
 | ||
| 							del_val += 1;
 | ||
| 							if (rl_print)
 | ||
| 								debug(": TOP7 ");
 | ||
| 						}
 | ||
| 					}
 | ||
| 				}
 | ||
| 				disable_rlv_bump_this_byte = 1; // allow no BUMP
 | ||
| 				break;
 | ||
| 
 | ||
| 			default: // all others...
 | ||
| 				if (rl_print)
 | ||
| 					debug(": ABNORMAL, choose ORIG");
 | ||
| 
 | ||
| 			case 99: // special
 | ||
| 				 // FIXME: choose original choice?
 | ||
| 				del_val = new_byte;
 | ||
| 				disable_rlv_bump_this_byte = 1; // allow no BUMP
 | ||
| 				break;
 | ||
| 			}
 | ||
| 			delay_count =
 | ||
| 				rank_perf[rankx].count[i][del_val];
 | ||
| 
 | ||
| 			// finish printing here...
 | ||
| 			if (rl_print)
 | ||
| 				debug(": USING %2d (%2d) D%d\n", del_val,
 | ||
| 				      delay_count, disable_rlv_bump_this_byte);
 | ||
| 			new_byte = del_val; // override with best PBM choice
 | ||
| 		} else {
 | ||
| 			if (ddr_type == DDR4_DRAM) { // only report when DDR4
 | ||
| 				// FIXME: remove or increase VBL for this
 | ||
| 				// output...
 | ||
| 				if (rl_print)
 | ||
| 					debug("N%d.LMC%d.R%d: PERFECT: Byte %d: ZERO PBMs, USING %d\n",
 | ||
| 					      node, if_num, rankx, i,
 | ||
| 					      new_byte);
 | ||
| 				// prevent ODD bump, rely on original
 | ||
| 				disable_rlv_bump_this_byte = 1;
 | ||
| 			}
 | ||
| 		} /* if (value_mask != 0) */
 | ||
| 
 | ||
| 		// optionally bump the delay value
 | ||
| 		if (enable_rldelay_bump && !disable_rlv_bump_this_byte) {
 | ||
| 			if ((new_byte & enable_rldelay_bump) ==
 | ||
| 			    enable_rldelay_bump) {
 | ||
| 				int bump_value = new_byte + rldelay_bump_incr;
 | ||
| 
 | ||
| 				if (rl_print) {
 | ||
| 					debug("N%d.LMC%d.R%d: RLVBUMP: Byte %d: CHANGING %d to %d (%s)\n",
 | ||
| 					      node, if_num, rankx, i,
 | ||
| 					      new_byte, bump_value,
 | ||
| 					      (value_mask &
 | ||
| 					       (1 << bump_value)) ?
 | ||
| 					      "PBM" : "NOPBM");
 | ||
| 				}
 | ||
| 				new_byte = bump_value;
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		// last checks for count-related purposes
 | ||
| 		if (new_byte == best_byte && count_more > 0 &&
 | ||
| 		    count_less == 0) {
 | ||
| 			// we really should take best_byte + 1
 | ||
| 			if (rl_print) {
 | ||
| 				debug("N%d.LMC%d.R%d: CADJMOR: Byte %d: CHANGING %d to %d\n",
 | ||
| 				      node, if_num, rankx, i,
 | ||
| 				      new_byte, best_byte + 1);
 | ||
| 				new_byte = best_byte + 1;
 | ||
| 			}
 | ||
| 		} else if ((new_byte < best_byte) && (count_same > 0)) {
 | ||
| 			// we really should take best_byte
 | ||
| 			if (rl_print) {
 | ||
| 				debug("N%d.LMC%d.R%d: CADJSAM: Byte %d: CHANGING %d to %d\n",
 | ||
| 				      node, if_num, rankx, i,
 | ||
| 				      new_byte, best_byte);
 | ||
| 				new_byte = best_byte;
 | ||
| 			}
 | ||
| 		} else if (new_byte > best_byte) {
 | ||
| 			if ((new_byte == (best_byte + 1)) &&
 | ||
| 			    count_more == 0 && count_less > 0) {
 | ||
| 				// we really should take best_byte
 | ||
| 				if (rl_print) {
 | ||
| 					debug("N%d.LMC%d.R%d: CADJLE1: Byte %d: CHANGING %d to %d\n",
 | ||
| 					      node, if_num, rankx, i,
 | ||
| 					      new_byte, best_byte);
 | ||
| 					new_byte = best_byte;
 | ||
| 				}
 | ||
| 			} else if ((new_byte >= (best_byte + 2)) &&
 | ||
| 				   ((count_more > 0) || (count_same > 0))) {
 | ||
| 				if (rl_print) {
 | ||
| 					debug("N%d.LMC%d.R%d: CADJLE2: Byte %d: CHANGING %d to %d\n",
 | ||
| 					      node, if_num, rankx, i,
 | ||
| 					      new_byte, best_byte + 1);
 | ||
| 					new_byte = best_byte + 1;
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		if (rl_print) {
 | ||
| 			debug("N%d.LMC%d.R%d: SUMMARY: Byte %d: orig %d now %d, more %d same %d less %d, using %d\n",
 | ||
| 			      node, if_num, rankx, i, orig_best_byte,
 | ||
| 			      best_byte, count_more, count_same, count_less,
 | ||
| 			      new_byte);
 | ||
| 		}
 | ||
| 
 | ||
| 		// update the byte with the new value (NOTE: orig value in
 | ||
| 		// the CSR may not be current "best")
 | ||
| 		upd_rl_rank(&rl_rank, i, new_byte);
 | ||
| 
 | ||
| 		// save new best for neighbor use
 | ||
| 		rank_best_bytes[i] = new_byte;
 | ||
| 	} /* for (i = 0; i < 8+ecc_ena; i++) */
 | ||
| 
 | ||
| 	////////////////// this is the end of the BEST BYTE LOOP
 | ||
| 
 | ||
| 	if (saved_rl_rank.u64 != rl_rank.u64) {
 | ||
| 		lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num),
 | ||
| 		       rl_rank.u64);
 | ||
| 		rl_rank.u64 = lmc_rd(priv,
 | ||
| 				     CVMX_LMCX_RLEVEL_RANKX(rankx, if_num));
 | ||
| 		debug("Adjusting Read-Leveling per-RANK settings.\n");
 | ||
| 	} else {
 | ||
| 		debug("Not Adjusting Read-Leveling per-RANK settings.\n");
 | ||
| 	}
 | ||
| 	display_rl_with_final(if_num, rl_rank, rankx);
 | ||
| 
 | ||
| 	// FIXME: does this help make the output a little easier to focus?
 | ||
| 	if (rl_print > 0)
 | ||
| 		debug("-----------\n");
 | ||
| 
 | ||
| #define RLEVEL_RANKX_EXTRAS_INCR  0
 | ||
| 	// if there are unused entries to be filled
 | ||
| 	if ((rank_mask & 0x0f) != 0x0f) {
 | ||
| 		// copy the current rank
 | ||
| 		union cvmx_lmcx_rlevel_rankx temp_rl_rank = rl_rank;
 | ||
| 
 | ||
| 		if (rankx < 3) {
 | ||
| #if RLEVEL_RANKX_EXTRAS_INCR > 0
 | ||
| 			int byte, delay;
 | ||
| 
 | ||
| 			// modify the copy in prep for writing to empty slot(s)
 | ||
| 			for (byte = 0; byte < 9; byte++) {
 | ||
| 				delay = get_rl_rank(&temp_rl_rank, byte) +
 | ||
| 					RLEVEL_RANKX_EXTRAS_INCR;
 | ||
| 				if (delay > RLEVEL_BYTE_MSK)
 | ||
| 					delay = RLEVEL_BYTE_MSK;
 | ||
| 				upd_rl_rank(&temp_rl_rank, byte, delay);
 | ||
| 			}
 | ||
| #endif
 | ||
| 
 | ||
| 			// if rank 0, write rank 1 and rank 2 here if empty
 | ||
| 			if (rankx == 0) {
 | ||
| 				// check that rank 1 is empty
 | ||
| 				if (!(rank_mask & (1 << 1))) {
 | ||
| 					debug("N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n",
 | ||
| 					      node, if_num, rankx, 1);
 | ||
| 					lmc_wr(priv,
 | ||
| 					       CVMX_LMCX_RLEVEL_RANKX(1,
 | ||
| 								      if_num),
 | ||
| 					       temp_rl_rank.u64);
 | ||
| 				}
 | ||
| 
 | ||
| 				// check that rank 2 is empty
 | ||
| 				if (!(rank_mask & (1 << 2))) {
 | ||
| 					debug("N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n",
 | ||
| 					      node, if_num, rankx, 2);
 | ||
| 					lmc_wr(priv,
 | ||
| 					       CVMX_LMCX_RLEVEL_RANKX(2,
 | ||
| 								      if_num),
 | ||
| 					       temp_rl_rank.u64);
 | ||
| 				}
 | ||
| 			}
 | ||
| 
 | ||
| 			// if ranks 0, 1 or 2, write rank 3 here if empty
 | ||
| 			// check that rank 3 is empty
 | ||
| 			if (!(rank_mask & (1 << 3))) {
 | ||
| 				debug("N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n",
 | ||
| 				      node, if_num, rankx, 3);
 | ||
| 				lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(3, if_num),
 | ||
| 				       temp_rl_rank.u64);
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void lmc_read_leveling(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	struct rl_score rl_score[RTT_NOM_OHMS_COUNT][RODT_OHMS_COUNT][4];
 | ||
| 	union cvmx_lmcx_control ctl;
 | ||
| 	union cvmx_lmcx_config cfg;
 | ||
| 	int rankx;
 | ||
| 	char *s;
 | ||
| 	int i;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 4.8.10 LMC Read Leveling
 | ||
| 	 *
 | ||
| 	 * LMC supports an automatic read-leveling separately per byte-lane
 | ||
| 	 * using the DDR3 multipurpose register predefined pattern for system
 | ||
| 	 * calibration defined in the JEDEC DDR3 specifications.
 | ||
| 	 *
 | ||
| 	 * All of DDR PLL, LMC CK, and LMC DRESET, and early LMC initializations
 | ||
| 	 * must be completed prior to starting this LMC read-leveling sequence.
 | ||
| 	 *
 | ||
| 	 * Software could simply write the desired read-leveling values into
 | ||
| 	 * LMC(0)_RLEVEL_RANK(0..3). This section describes a sequence that uses
 | ||
| 	 * LMC's autoread-leveling capabilities.
 | ||
| 	 *
 | ||
| 	 * When LMC does the read-leveling sequence for a rank, it first enables
 | ||
| 	 * the DDR3 multipurpose register predefined pattern for system
 | ||
| 	 * calibration on the selected DRAM rank via a DDR3 MR3 write, then
 | ||
| 	 * executes 64 RD operations at different internal delay settings, then
 | ||
| 	 * disables the predefined pattern via another DDR3 MR3 write
 | ||
| 	 * operation. LMC determines the pass or fail of each of the 64 settings
 | ||
| 	 * independently for each byte lane, then writes appropriate
 | ||
| 	 * LMC(0)_RLEVEL_RANK(0..3)[BYTE*] values for the rank.
 | ||
| 	 *
 | ||
| 	 * After read-leveling for a rank, software can read the 64 pass/fail
 | ||
| 	 * indications for one byte lane via LMC(0)_RLEVEL_DBG[BITMASK].
 | ||
| 	 * Software can observe all pass/fail results for all byte lanes in a
 | ||
| 	 * rank via separate read-leveling sequences on the rank with different
 | ||
| 	 * LMC(0)_RLEVEL_CTL[BYTE] values.
 | ||
| 	 *
 | ||
| 	 * The 64 pass/fail results will typically have failures for the low
 | ||
| 	 * delays, followed by a run of some passing settings, followed by more
 | ||
| 	 * failures in the remaining high delays.  LMC sets
 | ||
| 	 * LMC(0)_RLEVEL_RANK(0..3)[BYTE*] to one of the passing settings.
 | ||
| 	 * First, LMC selects the longest run of successes in the 64 results.
 | ||
| 	 * (In the unlikely event that there is more than one longest run, LMC
 | ||
| 	 * selects the first one.) Then if LMC(0)_RLEVEL_CTL[OFFSET_EN] = 1 and
 | ||
| 	 * the selected run has more than LMC(0)_RLEVEL_CTL[OFFSET] successes,
 | ||
| 	 * LMC selects the last passing setting in the run minus
 | ||
| 	 * LMC(0)_RLEVEL_CTL[OFFSET]. Otherwise LMC selects the middle setting
 | ||
| 	 * in the run (rounding earlier when necessary). We expect the
 | ||
| 	 * read-leveling sequence to produce good results with the reset values
 | ||
| 	 * LMC(0)_RLEVEL_CTL [OFFSET_EN]=1, LMC(0)_RLEVEL_CTL[OFFSET] = 2.
 | ||
| 	 *
 | ||
| 	 * The read-leveling sequence has the following steps:
 | ||
| 	 *
 | ||
| 	 * 1. Select desired LMC(0)_RLEVEL_CTL[OFFSET_EN,OFFSET,BYTE] settings.
 | ||
| 	 *    Do the remaining substeps 2-4 separately for each rank i with
 | ||
| 	 *    attached DRAM.
 | ||
| 	 *
 | ||
| 	 * 2. Without changing any other fields in LMC(0)_CONFIG,
 | ||
| 	 *
 | ||
| 	 *    o write LMC(0)_SEQ_CTL[SEQ_SEL] to select read-leveling
 | ||
| 	 *
 | ||
| 	 *    o write LMC(0)_CONFIG[RANKMASK] = (1 << i)
 | ||
| 	 *
 | ||
| 	 *    o write LMC(0)_SEQ_CTL[INIT_START] = 1
 | ||
| 	 *
 | ||
| 	 *    This initiates the previously-described read-leveling.
 | ||
| 	 *
 | ||
| 	 * 3. Wait until LMC(0)_RLEVEL_RANKi[STATUS] != 2
 | ||
| 	 *
 | ||
| 	 *    LMC will have updated LMC(0)_RLEVEL_RANKi[BYTE*] for all byte
 | ||
| 	 *    lanes at this point.
 | ||
| 	 *
 | ||
| 	 *    If ECC DRAM is not present (i.e. when DRAM is not attached to the
 | ||
| 	 *    DDR_CBS_0_* and DDR_CB<7:0> chip signals, or the DDR_DQS_<4>_* and
 | ||
| 	 *    DDR_DQ<35:32> chip signals), write LMC(0)_RLEVEL_RANK*[BYTE8] =
 | ||
| 	 *    LMC(0)_RLEVEL_RANK*[BYTE0]. Write LMC(0)_RLEVEL_RANK*[BYTE4] =
 | ||
| 	 *    LMC(0)_RLEVEL_RANK*[BYTE0].
 | ||
| 	 *
 | ||
| 	 * 4. If desired, consult LMC(0)_RLEVEL_DBG[BITMASK] and compare to
 | ||
| 	 *    LMC(0)_RLEVEL_RANKi[BYTE*] for the lane selected by
 | ||
| 	 *    LMC(0)_RLEVEL_CTL[BYTE]. If desired, modify
 | ||
| 	 *    LMC(0)_RLEVEL_CTL[BYTE] to a new value and repeat so that all
 | ||
| 	 *    BITMASKs can be observed.
 | ||
| 	 *
 | ||
| 	 * 5. Initialize LMC(0)_RLEVEL_RANK* values for all unused ranks.
 | ||
| 	 *
 | ||
| 	 *    Let rank i be a rank with attached DRAM.
 | ||
| 	 *
 | ||
| 	 *    For all ranks j that do not have attached DRAM, set
 | ||
| 	 *    LMC(0)_RLEVEL_RANKj = LMC(0)_RLEVEL_RANKi.
 | ||
| 	 *
 | ||
| 	 * This read-leveling sequence can help select the proper CN70XX ODT
 | ||
| 	 * resistance value (LMC(0)_COMP_CTL2[RODT_CTL]). A hardware-generated
 | ||
| 	 * LMC(0)_RLEVEL_RANKi[BYTEj] value (for a used byte lane j) that is
 | ||
| 	 * drastically different from a neighboring LMC(0)_RLEVEL_RANKi[BYTEk]
 | ||
| 	 * (for a used byte lane k) can indicate that the CN70XX ODT value is
 | ||
| 	 * bad. It is possible to simultaneously optimize both
 | ||
| 	 * LMC(0)_COMP_CTL2[RODT_CTL] and LMC(0)_RLEVEL_RANKn[BYTE*] values by
 | ||
| 	 * performing this read-leveling sequence for several
 | ||
| 	 * LMC(0)_COMP_CTL2[RODT_CTL] values and selecting the one with the
 | ||
| 	 * best LMC(0)_RLEVEL_RANKn[BYTE*] profile for the ranks.
 | ||
| 	 */
 | ||
| 
 | ||
| 	rl_rodt_err = 0;
 | ||
| 	rl_dbg_loops = 1;
 | ||
| 	saved_int_zqcs_dis = 0;
 | ||
| 	max_adj_rl_del_inc = 0;
 | ||
| 	rl_print = RLEVEL_PRINTALL_DEFAULT;
 | ||
| 
 | ||
| #ifdef ENABLE_HARDCODED_RLEVEL
 | ||
| 	part_number[21] = {0};
 | ||
| #endif /* ENABLE_HARDCODED_RLEVEL */
 | ||
| 
 | ||
| 	pbm_lowsum_limit = 5; // FIXME: is this a good default?
 | ||
| 	// FIXME: PBM skip for RODT 240 and 34
 | ||
| 	pbm_rodt_skip = (1U << ddr4_rodt_ctl_240_ohm) |
 | ||
| 		(1U << ddr4_rodt_ctl_34_ohm);
 | ||
| 
 | ||
| 	disable_rank_majority = 0; // control rank majority processing
 | ||
| 
 | ||
| 	// default to mask 11b ODDs for DDR4 (except 73xx), else DISABLE
 | ||
| 	// for DDR3
 | ||
| 	rldelay_bump_incr = 0;
 | ||
| 	disable_rlv_bump_this_byte = 0;
 | ||
| 
 | ||
| 	enable_rldelay_bump = (ddr_type == DDR4_DRAM) ?
 | ||
| 		((octeon_is_cpuid(OCTEON_CN73XX)) ? 1 : 3) : 0;
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_disable_rank_majority");
 | ||
| 	if (s)
 | ||
| 		disable_rank_majority = !!simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_pbm_lowsum_limit");
 | ||
| 	if (s)
 | ||
| 		pbm_lowsum_limit = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_pbm_rodt_skip");
 | ||
| 	if (s)
 | ||
| 		pbm_rodt_skip = simple_strtoul(s, NULL, 0);
 | ||
| 	memset(rank_perf, 0, sizeof(rank_perf));
 | ||
| 
 | ||
| 	ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
 | ||
| 	save_ddr2t = ctl.cn78xx.ddr2t;
 | ||
| 
 | ||
| 	cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
 | ||
| 	ecc_ena = cfg.cn78xx.ecc_ena;
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_rlevel_2t");
 | ||
| 	if (s)
 | ||
| 		ctl.cn78xx.ddr2t = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
 | ||
| 
 | ||
| 	debug("LMC%d: Performing Read-Leveling\n", if_num);
 | ||
| 
 | ||
| 	rl_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_CTL(if_num));
 | ||
| 
 | ||
| 	rl_samples = c_cfg->rlevel_average_loops;
 | ||
| 	if (rl_samples == 0) {
 | ||
| 		rl_samples = RLEVEL_SAMPLES_DEFAULT;
 | ||
| 		// up the samples for these cases
 | ||
| 		if (dimm_count == 1 || num_ranks == 1)
 | ||
| 			rl_samples = rl_samples * 2 + 1;
 | ||
| 	}
 | ||
| 
 | ||
| 	rl_compute = c_cfg->rlevel_compute;
 | ||
| 	rl_ctl.cn78xx.offset_en = c_cfg->offset_en;
 | ||
| 	rl_ctl.cn78xx.offset    = spd_rdimm
 | ||
| 		? c_cfg->offset_rdimm
 | ||
| 		: c_cfg->offset_udimm;
 | ||
| 
 | ||
| 	int value = 1; // should ALWAYS be set
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_rlevel_delay_unload");
 | ||
| 	if (s)
 | ||
| 		value = !!simple_strtoul(s, NULL, 0);
 | ||
| 	rl_ctl.cn78xx.delay_unload_0 = value;
 | ||
| 	rl_ctl.cn78xx.delay_unload_1 = value;
 | ||
| 	rl_ctl.cn78xx.delay_unload_2 = value;
 | ||
| 	rl_ctl.cn78xx.delay_unload_3 = value;
 | ||
| 
 | ||
| 	// use OR_DIS=1 to try for better results
 | ||
| 	rl_ctl.cn78xx.or_dis = 1;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If we will be switching to 32bit mode level based on only
 | ||
| 	 * four bits because there are only 4 ECC bits.
 | ||
| 	 */
 | ||
| 	rl_ctl.cn78xx.bitmask = (if_64b) ? 0xFF : 0x0F;
 | ||
| 
 | ||
| 	// allow overrides
 | ||
| 	s = lookup_env(priv, "ddr_rlevel_ctl_or_dis");
 | ||
| 	if (s)
 | ||
| 		rl_ctl.cn78xx.or_dis = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_rlevel_ctl_bitmask");
 | ||
| 	if (s)
 | ||
| 		rl_ctl.cn78xx.bitmask = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	rl_comp_offs = spd_rdimm
 | ||
| 		? c_cfg->rlevel_comp_offset_rdimm
 | ||
| 		: c_cfg->rlevel_comp_offset_udimm;
 | ||
| 	s = lookup_env(priv, "ddr_rlevel_comp_offset");
 | ||
| 	if (s)
 | ||
| 		rl_comp_offs = strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_rlevel_offset");
 | ||
| 	if (s)
 | ||
| 		rl_ctl.cn78xx.offset   = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_rlevel_offset_en");
 | ||
| 	if (s)
 | ||
| 		rl_ctl.cn78xx.offset_en   = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_rlevel_ctl");
 | ||
| 	if (s)
 | ||
| 		rl_ctl.u64   = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	lmc_wr(priv,
 | ||
| 	       CVMX_LMCX_RLEVEL_CTL(if_num),
 | ||
| 	       rl_ctl.u64);
 | ||
| 
 | ||
| 	// do this here so we can look at final RLEVEL_CTL[offset] setting...
 | ||
| 	s = lookup_env(priv, "ddr_enable_rldelay_bump");
 | ||
| 	if (s) {
 | ||
| 		// also use as mask bits
 | ||
| 		enable_rldelay_bump = strtoul(s, NULL, 0);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (enable_rldelay_bump != 0)
 | ||
| 		rldelay_bump_incr = (rl_ctl.cn78xx.offset == 1) ? -1 : 1;
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr%d_rlevel_debug_loops", if_num);
 | ||
| 	if (s)
 | ||
| 		rl_dbg_loops = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_rtt_nom_auto");
 | ||
| 	if (s)
 | ||
| 		ddr_rtt_nom_auto = !!simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_rlevel_average");
 | ||
| 	if (s)
 | ||
| 		rl_samples = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_rlevel_compute");
 | ||
| 	if (s)
 | ||
| 		rl_compute = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_rlevel_printall");
 | ||
| 	if (s)
 | ||
| 		rl_print = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	debug("RLEVEL_CTL                                    : 0x%016llx\n",
 | ||
| 	      rl_ctl.u64);
 | ||
| 	debug("RLEVEL_OFFSET                                 : %6d\n",
 | ||
| 	      rl_ctl.cn78xx.offset);
 | ||
| 	debug("RLEVEL_OFFSET_EN                              : %6d\n",
 | ||
| 	      rl_ctl.cn78xx.offset_en);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * The purpose for the indexed table is to sort the settings
 | ||
| 	 * by the ohm value to simplify the testing when incrementing
 | ||
| 	 * through the settings.  (index => ohms) 1=120, 2=60, 3=40,
 | ||
| 	 * 4=30, 5=20
 | ||
| 	 */
 | ||
| 	min_rtt_nom_idx = (c_cfg->min_rtt_nom_idx == 0) ?
 | ||
| 		1 : c_cfg->min_rtt_nom_idx;
 | ||
| 	max_rtt_nom_idx = (c_cfg->max_rtt_nom_idx == 0) ?
 | ||
| 		5 : c_cfg->max_rtt_nom_idx;
 | ||
| 
 | ||
| 	min_rodt_ctl = (c_cfg->min_rodt_ctl == 0) ? 1 : c_cfg->min_rodt_ctl;
 | ||
| 	max_rodt_ctl = (c_cfg->max_rodt_ctl == 0) ? 5 : c_cfg->max_rodt_ctl;
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_min_rodt_ctl");
 | ||
| 	if (s)
 | ||
| 		min_rodt_ctl = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_max_rodt_ctl");
 | ||
| 	if (s)
 | ||
| 		max_rodt_ctl = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_min_rtt_nom_idx");
 | ||
| 	if (s)
 | ||
| 		min_rtt_nom_idx = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_max_rtt_nom_idx");
 | ||
| 	if (s)
 | ||
| 		max_rtt_nom_idx = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| #ifdef ENABLE_HARDCODED_RLEVEL
 | ||
| 	if (c_cfg->rl_tbl) {
 | ||
| 		/* Check for hard-coded read-leveling settings */
 | ||
| 		get_dimm_part_number(part_number, &dimm_config_table[0],
 | ||
| 				     0, ddr_type);
 | ||
| 		for (rankx = 0; rankx < dimm_count * 4; rankx++) {
 | ||
| 			if (!(rank_mask & (1 << rankx)))
 | ||
| 				continue;
 | ||
| 
 | ||
| 			rl_rank.u64 = lmc_rd(priv,
 | ||
| 					     CVMX_LMCX_RLEVEL_RANKX(rankx,
 | ||
| 								    if_num));
 | ||
| 
 | ||
| 			i = 0;
 | ||
| 			while (c_cfg->rl_tbl[i].part) {
 | ||
| 				debug("DIMM part number:\"%s\", SPD: \"%s\"\n",
 | ||
| 				      c_cfg->rl_tbl[i].part, part_number);
 | ||
| 				if ((strcmp(part_number,
 | ||
| 					    c_cfg->rl_tbl[i].part) == 0) &&
 | ||
| 				    (abs(c_cfg->rl_tbl[i].speed -
 | ||
| 					 2 * ddr_hertz / (1000 * 1000)) < 10)) {
 | ||
| 					debug("Using hard-coded read leveling for DIMM part number: \"%s\"\n",
 | ||
| 					      part_number);
 | ||
| 					rl_rank.u64 =
 | ||
| 						c_cfg->rl_tbl[i].rl_rank[if_num][rankx];
 | ||
| 					lmc_wr(priv,
 | ||
| 					       CVMX_LMCX_RLEVEL_RANKX(rankx,
 | ||
| 								      if_num),
 | ||
| 					       rl_rank.u64);
 | ||
| 					rl_rank.u64 =
 | ||
| 						lmc_rd(priv,
 | ||
| 						       CVMX_LMCX_RLEVEL_RANKX(rankx,
 | ||
| 									      if_num));
 | ||
| 					display_rl(if_num, rl_rank, rankx);
 | ||
| 					/* Disable h/w read-leveling */
 | ||
| 					rl_dbg_loops = 0;
 | ||
| 					break;
 | ||
| 				}
 | ||
| 				++i;
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| #endif /* ENABLE_HARDCODED_RLEVEL */
 | ||
| 
 | ||
| 	max_adj_rl_del_inc = c_cfg->maximum_adjacent_rlevel_delay_increment;
 | ||
| 	s = lookup_env(priv, "ddr_maximum_adjacent_rlevel_delay_increment");
 | ||
| 	if (s)
 | ||
| 		max_adj_rl_del_inc = strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	while (rl_dbg_loops--) {
 | ||
| 		union cvmx_lmcx_modereg_params1 mp1;
 | ||
| 		union cvmx_lmcx_comp_ctl2 cc2;
 | ||
| 
 | ||
| 		/* Initialize the error scoreboard */
 | ||
| 		memset(rl_score, 0, sizeof(rl_score));
 | ||
| 
 | ||
| 		cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
 | ||
| 		saved_ddr__ptune = cc2.cn78xx.ddr__ptune;
 | ||
| 		saved_ddr__ntune = cc2.cn78xx.ddr__ntune;
 | ||
| 
 | ||
| 		/* Disable dynamic compensation settings */
 | ||
| 		if (rl_comp_offs != 0) {
 | ||
| 			cc2.cn78xx.ptune = saved_ddr__ptune;
 | ||
| 			cc2.cn78xx.ntune = saved_ddr__ntune;
 | ||
| 
 | ||
| 			/*
 | ||
| 			 * Round up the ptune calculation to bias the odd
 | ||
| 			 * cases toward ptune
 | ||
| 			 */
 | ||
| 			cc2.cn78xx.ptune += divide_roundup(rl_comp_offs, 2);
 | ||
| 			cc2.cn78xx.ntune -= rl_comp_offs / 2;
 | ||
| 
 | ||
| 			ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
 | ||
| 			saved_int_zqcs_dis = ctl.s.int_zqcs_dis;
 | ||
| 			/* Disable ZQCS while in bypass. */
 | ||
| 			ctl.s.int_zqcs_dis = 1;
 | ||
| 			lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
 | ||
| 
 | ||
| 			cc2.cn78xx.byp = 1; /* Enable bypass mode */
 | ||
| 			lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
 | ||
| 			lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
 | ||
| 			/* Read again */
 | ||
| 			cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
 | ||
| 			debug("DDR__PTUNE/DDR__NTUNE                         : %d/%d\n",
 | ||
| 			      cc2.cn78xx.ddr__ptune, cc2.cn78xx.ddr__ntune);
 | ||
| 		}
 | ||
| 
 | ||
| 		mp1.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num));
 | ||
| 
 | ||
| 		for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx;
 | ||
| 		     ++rtt_idx) {
 | ||
| 			rtt_nom = imp_val->rtt_nom_table[rtt_idx];
 | ||
| 
 | ||
| 			/*
 | ||
| 			 * When the read ODT mask is zero the dyn_rtt_nom_mask
 | ||
| 			 * is zero than RTT_NOM will not be changing during
 | ||
| 			 * read-leveling.  Since the value is fixed we only need
 | ||
| 			 * to test it once.
 | ||
| 			 */
 | ||
| 			if (dyn_rtt_nom_mask == 0) {
 | ||
| 				// flag not to print NOM ohms
 | ||
| 				print_nom_ohms = -1;
 | ||
| 			} else {
 | ||
| 				if (dyn_rtt_nom_mask & 1)
 | ||
| 					mp1.s.rtt_nom_00 = rtt_nom;
 | ||
| 				if (dyn_rtt_nom_mask & 2)
 | ||
| 					mp1.s.rtt_nom_01 = rtt_nom;
 | ||
| 				if (dyn_rtt_nom_mask & 4)
 | ||
| 					mp1.s.rtt_nom_10 = rtt_nom;
 | ||
| 				if (dyn_rtt_nom_mask & 8)
 | ||
| 					mp1.s.rtt_nom_11 = rtt_nom;
 | ||
| 				// FIXME? rank 0 ohms always?
 | ||
| 				print_nom_ohms =
 | ||
| 					imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00];
 | ||
| 			}
 | ||
| 
 | ||
| 			lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num),
 | ||
| 			       mp1.u64);
 | ||
| 
 | ||
| 			if (print_nom_ohms >= 0 && rl_print > 1) {
 | ||
| 				debug("\n");
 | ||
| 				debug("RTT_NOM     %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
 | ||
| 				      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_11],
 | ||
| 				      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_10],
 | ||
| 				      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_01],
 | ||
| 				      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00],
 | ||
| 				      mp1.s.rtt_nom_11,
 | ||
| 				      mp1.s.rtt_nom_10,
 | ||
| 				      mp1.s.rtt_nom_01,
 | ||
| 				      mp1.s.rtt_nom_00);
 | ||
| 			}
 | ||
| 
 | ||
| 			ddr_init_seq(priv, rank_mask, if_num);
 | ||
| 
 | ||
| 			// Try RANK outside RODT to rearrange the output...
 | ||
| 			for (rankx = 0; rankx < dimm_count * 4; rankx++) {
 | ||
| 				if (!(rank_mask & (1 << rankx)))
 | ||
| 					continue;
 | ||
| 
 | ||
| 				for (rodt_ctl = max_rodt_ctl;
 | ||
| 				     rodt_ctl >= min_rodt_ctl; --rodt_ctl)
 | ||
| 					rodt_loop(priv, rankx, rl_score);
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		/* Re-enable dynamic compensation settings. */
 | ||
| 		if (rl_comp_offs != 0) {
 | ||
| 			cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
 | ||
| 
 | ||
| 			cc2.cn78xx.ptune = 0;
 | ||
| 			cc2.cn78xx.ntune = 0;
 | ||
| 			cc2.cn78xx.byp = 0; /* Disable bypass mode */
 | ||
| 			lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
 | ||
| 			/* Read once */
 | ||
| 			lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
 | ||
| 
 | ||
| 			/* Read again */
 | ||
| 			cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
 | ||
| 			debug("DDR__PTUNE/DDR__NTUNE                         : %d/%d\n",
 | ||
| 			      cc2.cn78xx.ddr__ptune, cc2.cn78xx.ddr__ntune);
 | ||
| 
 | ||
| 			ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
 | ||
| 			/* Restore original setting */
 | ||
| 			ctl.s.int_zqcs_dis = saved_int_zqcs_dis;
 | ||
| 			lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
 | ||
| 		}
 | ||
| 
 | ||
| 		int override_compensation = 0;
 | ||
| 
 | ||
| 		s = lookup_env(priv, "ddr__ptune");
 | ||
| 		if (s)
 | ||
| 			saved_ddr__ptune = strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 		s = lookup_env(priv, "ddr__ntune");
 | ||
| 		if (s) {
 | ||
| 			saved_ddr__ntune = strtoul(s, NULL, 0);
 | ||
| 			override_compensation = 1;
 | ||
| 		}
 | ||
| 
 | ||
| 		if (override_compensation) {
 | ||
| 			cc2.cn78xx.ptune = saved_ddr__ptune;
 | ||
| 			cc2.cn78xx.ntune = saved_ddr__ntune;
 | ||
| 
 | ||
| 			ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
 | ||
| 			saved_int_zqcs_dis = ctl.s.int_zqcs_dis;
 | ||
| 			/* Disable ZQCS while in bypass. */
 | ||
| 			ctl.s.int_zqcs_dis = 1;
 | ||
| 			lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
 | ||
| 
 | ||
| 			cc2.cn78xx.byp = 1; /* Enable bypass mode */
 | ||
| 			lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
 | ||
| 			/* Read again */
 | ||
| 			cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
 | ||
| 
 | ||
| 			debug("DDR__PTUNE/DDR__NTUNE                         : %d/%d\n",
 | ||
| 			      cc2.cn78xx.ptune, cc2.cn78xx.ntune);
 | ||
| 		}
 | ||
| 
 | ||
| 		/* Evaluation block */
 | ||
| 		/* Still at initial value? */
 | ||
| 		int best_rodt_score = DEFAULT_BEST_RANK_SCORE;
 | ||
| 		int auto_rodt_ctl = 0;
 | ||
| 		int auto_rtt_nom  = 0;
 | ||
| 		int rodt_score;
 | ||
| 
 | ||
| 		rodt_row_skip_mask = 0;
 | ||
| 
 | ||
| 		// just add specific RODT rows to the skip mask for DDR4
 | ||
| 		// at this time...
 | ||
| 		if (ddr_type == DDR4_DRAM) {
 | ||
| 			// skip RODT row 34 ohms for all DDR4 types
 | ||
| 			rodt_row_skip_mask |= (1 << ddr4_rodt_ctl_34_ohm);
 | ||
| 			// skip RODT row 40 ohms for all DDR4 types
 | ||
| 			rodt_row_skip_mask |= (1 << ddr4_rodt_ctl_40_ohm);
 | ||
| 			// For now, do not skip RODT row 40 or 48 ohm when
 | ||
| 			// ddr_hertz is above 1075 MHz
 | ||
| 			if (ddr_hertz > 1075000000) {
 | ||
| 				// noskip RODT row 40 ohms
 | ||
| 				rodt_row_skip_mask &=
 | ||
| 					~(1 << ddr4_rodt_ctl_40_ohm);
 | ||
| 				// noskip RODT row 48 ohms
 | ||
| 				rodt_row_skip_mask &=
 | ||
| 					~(1 << ddr4_rodt_ctl_48_ohm);
 | ||
| 			}
 | ||
| 			// For now, do not skip RODT row 48 ohm for 2Rx4
 | ||
| 			// stacked die DIMMs
 | ||
| 			if (is_stacked_die && num_ranks == 2 &&
 | ||
| 			    dram_width == 4) {
 | ||
| 				// noskip RODT row 48 ohms
 | ||
| 				rodt_row_skip_mask &=
 | ||
| 					~(1 << ddr4_rodt_ctl_48_ohm);
 | ||
| 			}
 | ||
| 			// for now, leave all rows eligible when we have
 | ||
| 			// mini-DIMMs...
 | ||
| 			if (spd_dimm_type == 5 || spd_dimm_type == 6)
 | ||
| 				rodt_row_skip_mask = 0;
 | ||
| 			// for now, leave all rows eligible when we have
 | ||
| 			// a 2-slot 1-rank config
 | ||
| 			if (dimm_count == 2 && num_ranks == 1)
 | ||
| 				rodt_row_skip_mask = 0;
 | ||
| 
 | ||
| 			debug("Evaluating Read-Leveling Scoreboard for AUTO settings.\n");
 | ||
| 			for (rtt_idx = min_rtt_nom_idx;
 | ||
| 			     rtt_idx <= max_rtt_nom_idx; ++rtt_idx) {
 | ||
| 				rtt_nom = imp_val->rtt_nom_table[rtt_idx];
 | ||
| 
 | ||
| 				for (rodt_ctl = max_rodt_ctl;
 | ||
| 				     rodt_ctl >= min_rodt_ctl; --rodt_ctl) {
 | ||
| 					rodt_score = 0;
 | ||
| 					for (rankx = 0; rankx < dimm_count * 4;
 | ||
| 					     rankx++) {
 | ||
| 						if (!(rank_mask & (1 << rankx)))
 | ||
| 							continue;
 | ||
| 
 | ||
| 						debug("rl_score[rtt_nom=%d][rodt_ctl=%d][rankx=%d].score:%d\n",
 | ||
| 						      rtt_nom, rodt_ctl, rankx,
 | ||
| 						      rl_score[rtt_nom][rodt_ctl][rankx].score);
 | ||
| 						rodt_score +=
 | ||
| 							rl_score[rtt_nom][rodt_ctl][rankx].score;
 | ||
| 					}
 | ||
| 					// FIXME: do we need to skip RODT rows
 | ||
| 					// here, like we do below in the
 | ||
| 					// by-RANK settings?
 | ||
| 
 | ||
| 					/*
 | ||
| 					 * When using automatic ODT settings use
 | ||
| 					 * the ODT settings associated with the
 | ||
| 					 * best score for all of the tested ODT
 | ||
| 					 * combinations.
 | ||
| 					 */
 | ||
| 
 | ||
| 					if (rodt_score < best_rodt_score ||
 | ||
| 					    (rodt_score == best_rodt_score &&
 | ||
| 					     (imp_val->rodt_ohms[rodt_ctl] >
 | ||
| 					      imp_val->rodt_ohms[auto_rodt_ctl]))) {
 | ||
| 						debug("AUTO: new best score for rodt:%d (%d), new score:%d, previous score:%d\n",
 | ||
| 						      rodt_ctl,
 | ||
| 						      imp_val->rodt_ohms[rodt_ctl],
 | ||
| 						      rodt_score,
 | ||
| 						      best_rodt_score);
 | ||
| 						best_rodt_score = rodt_score;
 | ||
| 						auto_rodt_ctl   = rodt_ctl;
 | ||
| 						auto_rtt_nom    = rtt_nom;
 | ||
| 					}
 | ||
| 				}
 | ||
| 			}
 | ||
| 
 | ||
| 			mp1.u64 = lmc_rd(priv,
 | ||
| 					 CVMX_LMCX_MODEREG_PARAMS1(if_num));
 | ||
| 
 | ||
| 			if (ddr_rtt_nom_auto) {
 | ||
| 				/* Store the automatically set RTT_NOM value */
 | ||
| 				if (dyn_rtt_nom_mask & 1)
 | ||
| 					mp1.s.rtt_nom_00 = auto_rtt_nom;
 | ||
| 				if (dyn_rtt_nom_mask & 2)
 | ||
| 					mp1.s.rtt_nom_01 = auto_rtt_nom;
 | ||
| 				if (dyn_rtt_nom_mask & 4)
 | ||
| 					mp1.s.rtt_nom_10 = auto_rtt_nom;
 | ||
| 				if (dyn_rtt_nom_mask & 8)
 | ||
| 					mp1.s.rtt_nom_11 = auto_rtt_nom;
 | ||
| 			} else {
 | ||
| 				/*
 | ||
| 				 * restore the manual settings to the register
 | ||
| 				 */
 | ||
| 				mp1.s.rtt_nom_00 = default_rtt_nom[0];
 | ||
| 				mp1.s.rtt_nom_01 = default_rtt_nom[1];
 | ||
| 				mp1.s.rtt_nom_10 = default_rtt_nom[2];
 | ||
| 				mp1.s.rtt_nom_11 = default_rtt_nom[3];
 | ||
| 			}
 | ||
| 
 | ||
| 			lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num),
 | ||
| 			       mp1.u64);
 | ||
| 			debug("RTT_NOM     %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
 | ||
| 			      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_11],
 | ||
| 			      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_10],
 | ||
| 			      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_01],
 | ||
| 			      imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00],
 | ||
| 			      mp1.s.rtt_nom_11,
 | ||
| 			      mp1.s.rtt_nom_10,
 | ||
| 			      mp1.s.rtt_nom_01,
 | ||
| 			      mp1.s.rtt_nom_00);
 | ||
| 
 | ||
| 			debug("RTT_WR      %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
 | ||
| 			      imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 3)],
 | ||
| 			      imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 2)],
 | ||
| 			      imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 1)],
 | ||
| 			      imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 0)],
 | ||
| 			      extr_wr(mp1.u64, 3),
 | ||
| 			      extr_wr(mp1.u64, 2),
 | ||
| 			      extr_wr(mp1.u64, 1),
 | ||
| 			      extr_wr(mp1.u64, 0));
 | ||
| 
 | ||
| 			debug("DIC         %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
 | ||
| 			      imp_val->dic_ohms[mp1.s.dic_11],
 | ||
| 			      imp_val->dic_ohms[mp1.s.dic_10],
 | ||
| 			      imp_val->dic_ohms[mp1.s.dic_01],
 | ||
| 			      imp_val->dic_ohms[mp1.s.dic_00],
 | ||
| 			      mp1.s.dic_11,
 | ||
| 			      mp1.s.dic_10,
 | ||
| 			      mp1.s.dic_01,
 | ||
| 			      mp1.s.dic_00);
 | ||
| 
 | ||
| 			if (ddr_type == DDR4_DRAM) {
 | ||
| 				union cvmx_lmcx_modereg_params2 mp2;
 | ||
| 				/*
 | ||
| 				 * We must read the CSR, and not depend on
 | ||
| 				 * odt_config[odt_idx].odt_mask2, since we could
 | ||
| 				 * have overridden values with envvars.
 | ||
| 				 * NOTE: this corrects the printout, since the
 | ||
| 				 * CSR is not written with the old values...
 | ||
| 				 */
 | ||
| 				mp2.u64 = lmc_rd(priv,
 | ||
| 						 CVMX_LMCX_MODEREG_PARAMS2(if_num));
 | ||
| 
 | ||
| 				debug("RTT_PARK    %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
 | ||
| 				      imp_val->rtt_nom_ohms[mp2.s.rtt_park_11],
 | ||
| 				      imp_val->rtt_nom_ohms[mp2.s.rtt_park_10],
 | ||
| 				      imp_val->rtt_nom_ohms[mp2.s.rtt_park_01],
 | ||
| 				      imp_val->rtt_nom_ohms[mp2.s.rtt_park_00],
 | ||
| 				      mp2.s.rtt_park_11,
 | ||
| 				      mp2.s.rtt_park_10,
 | ||
| 				      mp2.s.rtt_park_01,
 | ||
| 				      mp2.s.rtt_park_00);
 | ||
| 
 | ||
| 				debug("%-45s :  0x%x,0x%x,0x%x,0x%x\n",
 | ||
| 				      "VREF_RANGE",
 | ||
| 				      mp2.s.vref_range_11,
 | ||
| 				      mp2.s.vref_range_10,
 | ||
| 				      mp2.s.vref_range_01,
 | ||
| 				      mp2.s.vref_range_00);
 | ||
| 
 | ||
| 				debug("%-45s :  0x%x,0x%x,0x%x,0x%x\n",
 | ||
| 				      "VREF_VALUE",
 | ||
| 				      mp2.s.vref_value_11,
 | ||
| 				      mp2.s.vref_value_10,
 | ||
| 				      mp2.s.vref_value_01,
 | ||
| 				      mp2.s.vref_value_00);
 | ||
| 			}
 | ||
| 
 | ||
| 			cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
 | ||
| 			if (ddr_rodt_ctl_auto) {
 | ||
| 				cc2.cn78xx.rodt_ctl = auto_rodt_ctl;
 | ||
| 			} else {
 | ||
| 				// back to the original setting
 | ||
| 				cc2.cn78xx.rodt_ctl = default_rodt_ctl;
 | ||
| 			}
 | ||
| 			lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
 | ||
| 			cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
 | ||
| 			debug("Read ODT_CTL                                  : 0x%x (%d ohms)\n",
 | ||
| 			      cc2.cn78xx.rodt_ctl,
 | ||
| 			      imp_val->rodt_ohms[cc2.cn78xx.rodt_ctl]);
 | ||
| 
 | ||
| 			/*
 | ||
| 			 * Use the delays associated with the best score for
 | ||
| 			 * each individual rank
 | ||
| 			 */
 | ||
| 			debug("Evaluating Read-Leveling Scoreboard for per-RANK settings.\n");
 | ||
| 
 | ||
| 			// this is the the RANK MAJOR LOOP
 | ||
| 			for (rankx = 0; rankx < dimm_count * 4; rankx++)
 | ||
| 				rank_major_loop(priv, rankx, rl_score);
 | ||
| 		}  /* Evaluation block */
 | ||
| 	} /* while(rl_dbg_loops--) */
 | ||
| 
 | ||
| 	ctl.cn78xx.ddr2t = save_ddr2t;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
 | ||
| 	ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
 | ||
| 	/* Display final 2T value */
 | ||
| 	debug("DDR2T                                         : %6d\n",
 | ||
| 	      ctl.cn78xx.ddr2t);
 | ||
| 
 | ||
| 	ddr_init_seq(priv, rank_mask, if_num);
 | ||
| 
 | ||
| 	for (rankx = 0; rankx < dimm_count * 4; rankx++) {
 | ||
| 		u64 value;
 | ||
| 		int parameter_set = 0;
 | ||
| 
 | ||
| 		if (!(rank_mask & (1 << rankx)))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		rl_rank.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx,
 | ||
| 								  if_num));
 | ||
| 
 | ||
| 		for (i = 0; i < 9; ++i) {
 | ||
| 			s = lookup_env(priv, "ddr%d_rlevel_rank%d_byte%d",
 | ||
| 				       if_num, rankx, i);
 | ||
| 			if (s) {
 | ||
| 				parameter_set |= 1;
 | ||
| 				value = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 				upd_rl_rank(&rl_rank, i, value);
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		s = lookup_env_ull(priv, "ddr%d_rlevel_rank%d", if_num, rankx);
 | ||
| 		if (s) {
 | ||
| 			parameter_set |= 1;
 | ||
| 			value = simple_strtoull(s, NULL, 0);
 | ||
| 			rl_rank.u64 = value;
 | ||
| 		}
 | ||
| 
 | ||
| 		if (parameter_set) {
 | ||
| 			lmc_wr(priv,
 | ||
| 			       CVMX_LMCX_RLEVEL_RANKX(rankx, if_num),
 | ||
| 			       rl_rank.u64);
 | ||
| 			rl_rank.u64 = lmc_rd(priv,
 | ||
| 					     CVMX_LMCX_RLEVEL_RANKX(rankx,
 | ||
| 								    if_num));
 | ||
| 			display_rl(if_num, rl_rank, rankx);
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| int init_octeon3_ddr3_interface(struct ddr_priv *priv,
 | ||
| 				struct ddr_conf *_ddr_conf, u32 _ddr_hertz,
 | ||
| 				u32 cpu_hertz, u32 ddr_ref_hertz, int _if_num,
 | ||
| 				u32 _if_mask)
 | ||
| {
 | ||
| 	union cvmx_lmcx_control ctrl;
 | ||
| 	int ret;
 | ||
| 	char *s;
 | ||
| 	int i;
 | ||
| 
 | ||
| 	if_num = _if_num;
 | ||
| 	ddr_hertz = _ddr_hertz;
 | ||
| 	ddr_conf = _ddr_conf;
 | ||
| 	if_mask = _if_mask;
 | ||
| 	odt_1rank_config = ddr_conf->odt_1rank_config;
 | ||
| 	odt_2rank_config = ddr_conf->odt_2rank_config;
 | ||
| 	odt_4rank_config = ddr_conf->odt_4rank_config;
 | ||
| 	dimm_config_table = ddr_conf->dimm_config_table;
 | ||
| 	c_cfg = &ddr_conf->custom_lmc_config;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Compute clock rates to the nearest picosecond.
 | ||
| 	 */
 | ||
| 	tclk_psecs = hertz_to_psecs(ddr_hertz);	/* Clock in psecs */
 | ||
| 	eclk_psecs = hertz_to_psecs(cpu_hertz);	/* Clock in psecs */
 | ||
| 
 | ||
| 	dimm_count = 0;
 | ||
| 	/* Accumulate and report all the errors before giving up */
 | ||
| 	fatal_error = 0;
 | ||
| 
 | ||
| 	/* Flag that indicates safe DDR settings should be used */
 | ||
| 	safe_ddr_flag = 0;
 | ||
| 	if_64b = 1;		/* Octeon II Default: 64bit interface width */
 | ||
| 	mem_size_mbytes = 0;
 | ||
| 	bank_bits = 0;
 | ||
| 	column_bits_start = 1;
 | ||
| 	use_ecc = 1;
 | ||
| 	min_cas_latency = 0, max_cas_latency = 0, override_cas_latency = 0;
 | ||
| 	spd_package = 0;
 | ||
| 	spd_rawcard = 0;
 | ||
| 	spd_rawcard_aorb = 0;
 | ||
| 	spd_rdimm_registers = 0;
 | ||
| 	is_stacked_die = 0;
 | ||
| 	is_3ds_dimm = 0;	// 3DS
 | ||
| 	lranks_per_prank = 1;	// 3DS: logical ranks per package rank
 | ||
| 	lranks_bits = 0;	// 3DS: logical ranks bits
 | ||
| 	die_capacity = 0;	// in Mbits; only used for 3DS
 | ||
| 
 | ||
| 	wl_mask_err = 0;
 | ||
| 	dyn_rtt_nom_mask = 0;
 | ||
| 	ddr_disable_chip_reset = 1;
 | ||
| 	match_wl_rtt_nom = 0;
 | ||
| 
 | ||
| 	internal_retries = 0;
 | ||
| 
 | ||
| 	disable_deskew_training = 0;
 | ||
| 	restart_if_dsk_incomplete = 0;
 | ||
| 	last_lane = ((if_64b) ? 8 : 4) + use_ecc;
 | ||
| 
 | ||
| 	disable_sequential_delay_check = 0;
 | ||
| 	wl_print = WLEVEL_PRINTALL_DEFAULT;
 | ||
| 
 | ||
| 	enable_by_rank_init = 1;	// FIXME: default by-rank ON
 | ||
| 	saved_rank_mask = 0;
 | ||
| 
 | ||
| 	node = 0;
 | ||
| 
 | ||
| 	memset(hwl_alts, 0, sizeof(hwl_alts));
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Initialize these to shut up the compiler. They are configured
 | ||
| 	 * and used only for DDR4
 | ||
| 	 */
 | ||
| 	ddr4_trrd_lmin = 6000;
 | ||
| 	ddr4_tccd_lmin = 6000;
 | ||
| 
 | ||
| 	debug("\nInitializing node %d DDR interface %d, DDR Clock %d, DDR Reference Clock %d, CPUID 0x%08x\n",
 | ||
| 	      node, if_num, ddr_hertz, ddr_ref_hertz, read_c0_prid());
 | ||
| 
 | ||
| 	if (dimm_config_table[0].spd_addrs[0] == 0 &&
 | ||
| 	    !dimm_config_table[0].spd_ptrs[0]) {
 | ||
| 		printf("ERROR: No dimms specified in the dimm_config_table.\n");
 | ||
| 		return -1;
 | ||
| 	}
 | ||
| 
 | ||
| 	// allow some overrides to be done
 | ||
| 
 | ||
| 	// this one controls several things related to DIMM geometry: HWL and RL
 | ||
| 	disable_sequential_delay_check = c_cfg->disable_sequential_delay_check;
 | ||
| 	s = lookup_env(priv, "ddr_disable_sequential_delay_check");
 | ||
| 	if (s)
 | ||
| 		disable_sequential_delay_check = strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	// this one controls whether chip RESET is done, or LMC init restarted
 | ||
| 	// from step 6.9.6
 | ||
| 	s = lookup_env(priv, "ddr_disable_chip_reset");
 | ||
| 	if (s)
 | ||
| 		ddr_disable_chip_reset = !!strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	// this one controls whether Deskew Training is performed
 | ||
| 	s = lookup_env(priv, "ddr_disable_deskew_training");
 | ||
| 	if (s)
 | ||
| 		disable_deskew_training = !!strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	if (ddr_verbose(priv)) {
 | ||
| 		printf("DDR SPD Table:");
 | ||
| 		for (didx = 0; didx < DDR_CFG_T_MAX_DIMMS; ++didx) {
 | ||
| 			if (dimm_config_table[didx].spd_addrs[0] == 0)
 | ||
| 				break;
 | ||
| 
 | ||
| 			printf(" --ddr%dspd=0x%02x", if_num,
 | ||
| 			       dimm_config_table[didx].spd_addrs[0]);
 | ||
| 			if (dimm_config_table[didx].spd_addrs[1] != 0)
 | ||
| 				printf(",0x%02x",
 | ||
| 				       dimm_config_table[didx].spd_addrs[1]);
 | ||
| 		}
 | ||
| 		printf("\n");
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Walk the DRAM Socket Configuration Table to see what is installed.
 | ||
| 	 */
 | ||
| 	for (didx = 0; didx < DDR_CFG_T_MAX_DIMMS; ++didx) {
 | ||
| 		/* Check for lower DIMM socket populated */
 | ||
| 		if (validate_dimm(priv, &dimm_config_table[didx], 0)) {
 | ||
| 			if (ddr_verbose(priv))
 | ||
| 				report_dimm(&dimm_config_table[didx], 0,
 | ||
| 					    dimm_count, if_num);
 | ||
| 			++dimm_count;
 | ||
| 		} else {
 | ||
| 			break;
 | ||
| 		}		/* Finished when there is no lower DIMM */
 | ||
| 	}
 | ||
| 
 | ||
| 	initialize_ddr_clock(priv, ddr_conf, cpu_hertz, ddr_hertz,
 | ||
| 			     ddr_ref_hertz, if_num, if_mask);
 | ||
| 
 | ||
| 	if (!odt_1rank_config)
 | ||
| 		odt_1rank_config = disable_odt_config;
 | ||
| 	if (!odt_2rank_config)
 | ||
| 		odt_2rank_config = disable_odt_config;
 | ||
| 	if (!odt_4rank_config)
 | ||
| 		odt_4rank_config = disable_odt_config;
 | ||
| 
 | ||
| 	s = env_get("ddr_safe");
 | ||
| 	if (s) {
 | ||
| 		safe_ddr_flag = !!simple_strtoul(s, NULL, 0);
 | ||
| 		printf("Parameter found in environment. ddr_safe = %d\n",
 | ||
| 		       safe_ddr_flag);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (dimm_count == 0) {
 | ||
| 		printf("ERROR: DIMM 0 not detected.\n");
 | ||
| 		return (-1);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (c_cfg->mode32b)
 | ||
| 		if_64b = 0;
 | ||
| 
 | ||
| 	s = lookup_env(priv, "if_64b");
 | ||
| 	if (s)
 | ||
| 		if_64b = !!simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	if (if_64b == 1) {
 | ||
| 		if (octeon_is_cpuid(OCTEON_CN70XX)) {
 | ||
| 			printf("64-bit interface width is not supported for this Octeon model\n");
 | ||
| 			++fatal_error;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	/* ddr_type only indicates DDR4 or DDR3 */
 | ||
| 	ddr_type = (read_spd(&dimm_config_table[0], 0,
 | ||
| 			     DDR4_SPD_KEY_BYTE_DEVICE_TYPE) == 0x0C) ? 4 : 3;
 | ||
| 	debug("DRAM Device Type: DDR%d\n", ddr_type);
 | ||
| 
 | ||
| 	if (ddr_type == DDR4_DRAM) {
 | ||
| 		int spd_module_type;
 | ||
| 		int asymmetric;
 | ||
| 		const char *signal_load[4] = { "", "MLS", "3DS", "RSV" };
 | ||
| 
 | ||
| 		imp_val = &ddr4_impedence_val;
 | ||
| 
 | ||
| 		spd_addr =
 | ||
| 		    read_spd(&dimm_config_table[0], 0,
 | ||
| 			     DDR4_SPD_ADDRESSING_ROW_COL_BITS);
 | ||
| 		spd_org =
 | ||
| 		    read_spd(&dimm_config_table[0], 0,
 | ||
| 			     DDR4_SPD_MODULE_ORGANIZATION);
 | ||
| 		spd_banks =
 | ||
| 		    0xFF & read_spd(&dimm_config_table[0], 0,
 | ||
| 				    DDR4_SPD_DENSITY_BANKS);
 | ||
| 
 | ||
| 		bank_bits =
 | ||
| 		    (2 + ((spd_banks >> 4) & 0x3)) + ((spd_banks >> 6) & 0x3);
 | ||
| 		/* Controller can only address 4 bits. */
 | ||
| 		bank_bits = min((int)bank_bits, 4);
 | ||
| 
 | ||
| 		spd_package =
 | ||
| 		    0XFF & read_spd(&dimm_config_table[0], 0,
 | ||
| 				    DDR4_SPD_PACKAGE_TYPE);
 | ||
| 		if (spd_package & 0x80) {	// non-monolithic device
 | ||
| 			is_stacked_die = ((spd_package & 0x73) == 0x11);
 | ||
| 			debug("DDR4: Package Type 0x%02x (%s), %d die\n",
 | ||
| 			      spd_package, signal_load[(spd_package & 3)],
 | ||
| 			      ((spd_package >> 4) & 7) + 1);
 | ||
| 			is_3ds_dimm = ((spd_package & 3) == 2);	// is it 3DS?
 | ||
| 			if (is_3ds_dimm) {	// is it 3DS?
 | ||
| 				lranks_per_prank = ((spd_package >> 4) & 7) + 1;
 | ||
| 				// FIXME: should make sure it is only 2H or 4H
 | ||
| 				// or 8H?
 | ||
| 				lranks_bits = lranks_per_prank >> 1;
 | ||
| 				if (lranks_bits == 4)
 | ||
| 					lranks_bits = 3;
 | ||
| 			}
 | ||
| 		} else if (spd_package != 0) {
 | ||
| 			// FIXME: print non-zero monolithic device definition
 | ||
| 			debug("DDR4: Package Type MONOLITHIC: %d die, signal load %d\n",
 | ||
| 			      ((spd_package >> 4) & 7) + 1, (spd_package & 3));
 | ||
| 		}
 | ||
| 
 | ||
| 		asymmetric = (spd_org >> 6) & 1;
 | ||
| 		if (asymmetric) {
 | ||
| 			int spd_secondary_pkg =
 | ||
| 			    read_spd(&dimm_config_table[0], 0,
 | ||
| 				     DDR4_SPD_SECONDARY_PACKAGE_TYPE);
 | ||
| 			debug("DDR4: Module Organization: ASYMMETRICAL: Secondary Package Type 0x%02x\n",
 | ||
| 			      spd_secondary_pkg);
 | ||
| 		} else {
 | ||
| 			u64 bus_width =
 | ||
| 				8 << (0x07 &
 | ||
| 				read_spd(&dimm_config_table[0], 0,
 | ||
| 					 DDR4_SPD_MODULE_MEMORY_BUS_WIDTH));
 | ||
| 			u64 ddr_width = 4 << ((spd_org >> 0) & 0x7);
 | ||
| 			u64 module_cap;
 | ||
| 			int shift = (spd_banks & 0x0F);
 | ||
| 
 | ||
| 			die_capacity = (shift < 8) ? (256UL << shift) :
 | ||
| 				((12UL << (shift & 1)) << 10);
 | ||
| 			debug("DDR4: Module Organization: SYMMETRICAL: capacity per die %d %cbit\n",
 | ||
| 			      (die_capacity > 512) ? (die_capacity >> 10) :
 | ||
| 			      die_capacity, (die_capacity > 512) ? 'G' : 'M');
 | ||
| 			module_cap = ((u64)die_capacity << 20) / 8UL *
 | ||
| 				bus_width / ddr_width *
 | ||
| 				(1UL + ((spd_org >> 3) & 0x7));
 | ||
| 
 | ||
| 			// is it 3DS?
 | ||
| 			if (is_3ds_dimm) {
 | ||
| 				module_cap *= (u64)(((spd_package >> 4) & 7) +
 | ||
| 						    1);
 | ||
| 			}
 | ||
| 			debug("DDR4: Module Organization: SYMMETRICAL: capacity per module %lld GB\n",
 | ||
| 			      module_cap >> 30);
 | ||
| 		}
 | ||
| 
 | ||
| 		spd_rawcard =
 | ||
| 		    0xFF & read_spd(&dimm_config_table[0], 0,
 | ||
| 				    DDR4_SPD_REFERENCE_RAW_CARD);
 | ||
| 		debug("DDR4: Reference Raw Card 0x%02x\n", spd_rawcard);
 | ||
| 
 | ||
| 		spd_module_type =
 | ||
| 		    read_spd(&dimm_config_table[0], 0,
 | ||
| 			     DDR4_SPD_KEY_BYTE_MODULE_TYPE);
 | ||
| 		if (spd_module_type & 0x80) {	// HYBRID module
 | ||
| 			debug("DDR4: HYBRID module, type %s\n",
 | ||
| 			      ((spd_module_type & 0x70) ==
 | ||
| 			       0x10) ? "NVDIMM" : "UNKNOWN");
 | ||
| 		}
 | ||
| 		spd_thermal_sensor =
 | ||
| 		    read_spd(&dimm_config_table[0], 0,
 | ||
| 			     DDR4_SPD_MODULE_THERMAL_SENSOR);
 | ||
| 		spd_dimm_type = spd_module_type & 0x0F;
 | ||
| 		spd_rdimm = (spd_dimm_type == 1) || (spd_dimm_type == 5) ||
 | ||
| 			(spd_dimm_type == 8);
 | ||
| 		if (spd_rdimm) {
 | ||
| 			u16 spd_mfgr_id, spd_register_rev, spd_mod_attr;
 | ||
| 			static const u16 manu_ids[4] = {
 | ||
| 				0xb380, 0x3286, 0x9780, 0xb304
 | ||
| 			};
 | ||
| 			static const char *manu_names[4] = {
 | ||
| 				"XXX", "XXXXXXX", "XX", "XXXXX"
 | ||
| 			};
 | ||
| 			int mc;
 | ||
| 
 | ||
| 			spd_mfgr_id =
 | ||
| 			    (0xFFU &
 | ||
| 			     read_spd(&dimm_config_table[0], 0,
 | ||
| 				      DDR4_SPD_REGISTER_MANUFACTURER_ID_LSB)) |
 | ||
| 			    ((0xFFU &
 | ||
| 			      read_spd(&dimm_config_table[0], 0,
 | ||
| 				       DDR4_SPD_REGISTER_MANUFACTURER_ID_MSB))
 | ||
| 			     << 8);
 | ||
| 			spd_register_rev =
 | ||
| 			    0xFFU & read_spd(&dimm_config_table[0], 0,
 | ||
| 					     DDR4_SPD_REGISTER_REVISION_NUMBER);
 | ||
| 			for (mc = 0; mc < 4; mc++)
 | ||
| 				if (manu_ids[mc] == spd_mfgr_id)
 | ||
| 					break;
 | ||
| 
 | ||
| 			debug("DDR4: RDIMM Register Manufacturer ID: %s, Revision: 0x%02x\n",
 | ||
| 			      (mc >= 4) ? "UNKNOWN" : manu_names[mc],
 | ||
| 			      spd_register_rev);
 | ||
| 
 | ||
| 			// RAWCARD A or B must be bit 7=0 and bits 4-0
 | ||
| 			// either 00000(A) or 00001(B)
 | ||
| 			spd_rawcard_aorb = ((spd_rawcard & 0x9fUL) <= 1);
 | ||
| 			// RDIMM Module Attributes
 | ||
| 			spd_mod_attr =
 | ||
| 			    0xFFU & read_spd(&dimm_config_table[0], 0,
 | ||
| 					DDR4_SPD_UDIMM_ADDR_MAPPING_FROM_EDGE);
 | ||
| 			spd_rdimm_registers = ((1 << (spd_mod_attr & 3)) >> 1);
 | ||
| 			debug("DDR4: RDIMM Module Attributes (0x%02x): Register Type DDR4RCD%02d, DRAM rows %d, Registers %d\n",
 | ||
| 			      spd_mod_attr, (spd_mod_attr >> 4) + 1,
 | ||
| 			      ((1 << ((spd_mod_attr >> 2) & 3)) >> 1),
 | ||
| 			      spd_rdimm_registers);
 | ||
| 		}
 | ||
| 		dimm_type_name = ddr4_dimm_types[spd_dimm_type];
 | ||
| 	} else {		/* if (ddr_type == DDR4_DRAM) */
 | ||
| 		const char *signal_load[4] = { "UNK", "MLS", "SLS", "RSV" };
 | ||
| 
 | ||
| 		imp_val = &ddr3_impedence_val;
 | ||
| 
 | ||
| 		spd_addr =
 | ||
| 		    read_spd(&dimm_config_table[0], 0,
 | ||
| 			     DDR3_SPD_ADDRESSING_ROW_COL_BITS);
 | ||
| 		spd_org =
 | ||
| 		    read_spd(&dimm_config_table[0], 0,
 | ||
| 			     DDR3_SPD_MODULE_ORGANIZATION);
 | ||
| 		spd_banks =
 | ||
| 		    read_spd(&dimm_config_table[0], 0,
 | ||
| 			     DDR3_SPD_DENSITY_BANKS) & 0xff;
 | ||
| 
 | ||
| 		bank_bits = 3 + ((spd_banks >> 4) & 0x7);
 | ||
| 		/* Controller can only address 3 bits. */
 | ||
| 		bank_bits = min((int)bank_bits, 3);
 | ||
| 		spd_dimm_type =
 | ||
| 		    0x0f & read_spd(&dimm_config_table[0], 0,
 | ||
| 				    DDR3_SPD_KEY_BYTE_MODULE_TYPE);
 | ||
| 		spd_rdimm = (spd_dimm_type == 1) || (spd_dimm_type == 5) ||
 | ||
| 			(spd_dimm_type == 9);
 | ||
| 
 | ||
| 		spd_package =
 | ||
| 		    0xFF & read_spd(&dimm_config_table[0], 0,
 | ||
| 				    DDR3_SPD_SDRAM_DEVICE_TYPE);
 | ||
| 		if (spd_package & 0x80) {	// non-standard device
 | ||
| 			debug("DDR3: Device Type 0x%02x (%s), %d die\n",
 | ||
| 			      spd_package, signal_load[(spd_package & 3)],
 | ||
| 			      ((1 << ((spd_package >> 4) & 7)) >> 1));
 | ||
| 		} else if (spd_package != 0) {
 | ||
| 			// FIXME: print non-zero monolithic device definition
 | ||
| 			debug("DDR3: Device Type MONOLITHIC: %d die, signal load %d\n",
 | ||
| 			      ((1 << (spd_package >> 4) & 7) >> 1),
 | ||
| 			      (spd_package & 3));
 | ||
| 		}
 | ||
| 
 | ||
| 		spd_rawcard =
 | ||
| 		    0xFF & read_spd(&dimm_config_table[0], 0,
 | ||
| 				    DDR3_SPD_REFERENCE_RAW_CARD);
 | ||
| 		debug("DDR3: Reference Raw Card 0x%02x\n", spd_rawcard);
 | ||
| 		spd_thermal_sensor =
 | ||
| 		    read_spd(&dimm_config_table[0], 0,
 | ||
| 			     DDR3_SPD_MODULE_THERMAL_SENSOR);
 | ||
| 
 | ||
| 		if (spd_rdimm) {
 | ||
| 			int spd_mfgr_id, spd_register_rev, spd_mod_attr;
 | ||
| 
 | ||
| 			spd_mfgr_id =
 | ||
| 			    (0xFFU &
 | ||
| 			     read_spd(&dimm_config_table[0], 0,
 | ||
| 				      DDR3_SPD_REGISTER_MANUFACTURER_ID_LSB)) |
 | ||
| 			    ((0xFFU &
 | ||
| 			      read_spd(&dimm_config_table[0], 0,
 | ||
| 				       DDR3_SPD_REGISTER_MANUFACTURER_ID_MSB))
 | ||
| 			     << 8);
 | ||
| 			spd_register_rev =
 | ||
| 			    0xFFU & read_spd(&dimm_config_table[0], 0,
 | ||
| 					     DDR3_SPD_REGISTER_REVISION_NUMBER);
 | ||
| 			debug("DDR3: RDIMM Register Manufacturer ID 0x%x Revision 0x%02x\n",
 | ||
| 			      spd_mfgr_id, spd_register_rev);
 | ||
| 			// Module Attributes
 | ||
| 			spd_mod_attr =
 | ||
| 			    0xFFU & read_spd(&dimm_config_table[0], 0,
 | ||
| 					     DDR3_SPD_ADDRESS_MAPPING);
 | ||
| 			spd_rdimm_registers = ((1 << (spd_mod_attr & 3)) >> 1);
 | ||
| 			debug("DDR3: RDIMM Module Attributes (0x%02x): DRAM rows %d, Registers %d\n",
 | ||
| 			      spd_mod_attr,
 | ||
| 			      ((1 << ((spd_mod_attr >> 2) & 3)) >> 1),
 | ||
| 			      spd_rdimm_registers);
 | ||
| 		}
 | ||
| 		dimm_type_name = ddr3_dimm_types[spd_dimm_type];
 | ||
| 	}
 | ||
| 
 | ||
| 	if (spd_thermal_sensor & 0x80) {
 | ||
| 		debug("DDR%d: SPD: Thermal Sensor PRESENT\n",
 | ||
| 		      (ddr_type == DDR4_DRAM) ? 4 : 3);
 | ||
| 	}
 | ||
| 
 | ||
| 	debug("spd_addr        : %#06x\n", spd_addr);
 | ||
| 	debug("spd_org         : %#06x\n", spd_org);
 | ||
| 	debug("spd_banks       : %#06x\n", spd_banks);
 | ||
| 
 | ||
| 	row_bits = 12 + ((spd_addr >> 3) & 0x7);
 | ||
| 	col_bits = 9 + ((spd_addr >> 0) & 0x7);
 | ||
| 
 | ||
| 	num_ranks = 1 + ((spd_org >> 3) & 0x7);
 | ||
| 	dram_width = 4 << ((spd_org >> 0) & 0x7);
 | ||
| 	num_banks = 1 << bank_bits;
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_num_ranks");
 | ||
| 	if (s)
 | ||
| 		num_ranks = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_enable_by_rank_init");
 | ||
| 	if (s)
 | ||
| 		enable_by_rank_init = !!simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	// FIXME: for now, we can only handle a DDR4 2rank-1slot config
 | ||
| 	// FIXME: also, by-rank init does not work correctly if 32-bit mode...
 | ||
| 	if (enable_by_rank_init && (ddr_type != DDR4_DRAM ||
 | ||
| 				    dimm_count != 1 || if_64b != 1 ||
 | ||
| 				    num_ranks != 2))
 | ||
| 		enable_by_rank_init = 0;
 | ||
| 
 | ||
| 	if (enable_by_rank_init) {
 | ||
| 		struct dimm_odt_config *odt_config;
 | ||
| 		union cvmx_lmcx_modereg_params1 mp1;
 | ||
| 		union cvmx_lmcx_modereg_params2 modereg_params2;
 | ||
| 		int by_rank_rodt, by_rank_wr, by_rank_park;
 | ||
| 
 | ||
| 		// Do ODT settings changes which work best for 2R-1S configs
 | ||
| 		debug("DDR4: 2R-1S special BY-RANK init ODT settings updated\n");
 | ||
| 
 | ||
| 		// setup for modifying config table values - 2 ranks and 1 DIMM
 | ||
| 		odt_config =
 | ||
| 		    (struct dimm_odt_config *)&ddr_conf->odt_2rank_config[0];
 | ||
| 
 | ||
| 		// original was 80, first try was 60
 | ||
| 		by_rank_rodt = ddr4_rodt_ctl_48_ohm;
 | ||
| 		s = lookup_env(priv, "ddr_by_rank_rodt");
 | ||
| 		if (s)
 | ||
| 			by_rank_rodt = strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 		odt_config->qs_dic = /*RODT_CTL */ by_rank_rodt;
 | ||
| 
 | ||
| 		// this is for MODEREG_PARAMS1 fields
 | ||
| 		// fetch the original settings
 | ||
| 		mp1.u64 = odt_config->modereg_params1.u64;
 | ||
| 
 | ||
| 		by_rank_wr = ddr4_rttwr_80ohm;	// originals were 240
 | ||
| 		s = lookup_env(priv, "ddr_by_rank_wr");
 | ||
| 		if (s)
 | ||
| 			by_rank_wr = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 		// change specific settings here...
 | ||
| 		insrt_wr(&mp1.u64, /*rank */ 00, by_rank_wr);
 | ||
| 		insrt_wr(&mp1.u64, /*rank */ 01, by_rank_wr);
 | ||
| 
 | ||
| 		// save final settings
 | ||
| 		odt_config->modereg_params1.u64 = mp1.u64;
 | ||
| 
 | ||
| 		// this is for MODEREG_PARAMS2 fields
 | ||
| 		// fetch the original settings
 | ||
| 		modereg_params2.u64 = odt_config->modereg_params2.u64;
 | ||
| 
 | ||
| 		by_rank_park = ddr4_rttpark_none;	// originals were 120
 | ||
| 		s = lookup_env(priv, "ddr_by_rank_park");
 | ||
| 		if (s)
 | ||
| 			by_rank_park = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 		// change specific settings here...
 | ||
| 		modereg_params2.s.rtt_park_00 = by_rank_park;
 | ||
| 		modereg_params2.s.rtt_park_01 = by_rank_park;
 | ||
| 
 | ||
| 		// save final settings
 | ||
| 		odt_config->modereg_params2.u64 = modereg_params2.u64;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * FIX
 | ||
| 	 * Check that values are within some theoretical limits.
 | ||
| 	 * col_bits(min) = row_lsb(min) - bank_bits(max) - bus_bits(max) =
 | ||
| 	 *   14 - 3 - 4 = 7
 | ||
| 	 * col_bits(max) = row_lsb(max) - bank_bits(min) - bus_bits(min) =
 | ||
| 	 *   18 - 2 - 3 = 13
 | ||
| 	 */
 | ||
| 	if (col_bits > 13 || col_bits < 7) {
 | ||
| 		printf("Unsupported number of Col Bits: %d\n", col_bits);
 | ||
| 		++fatal_error;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * FIX
 | ||
| 	 * Check that values are within some theoretical limits.
 | ||
| 	 * row_bits(min) = pbank_lsb(min) - row_lsb(max) - rank_bits =
 | ||
| 	 *   26 - 18 - 1 = 7
 | ||
| 	 * row_bits(max) = pbank_lsb(max) - row_lsb(min) - rank_bits =
 | ||
| 	 *   33 - 14 - 1 = 18
 | ||
| 	 */
 | ||
| 	if (row_bits > 18 || row_bits < 7) {
 | ||
| 		printf("Unsupported number of Row Bits: %d\n", row_bits);
 | ||
| 		++fatal_error;
 | ||
| 	}
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_rdimm_ena");
 | ||
| 	if (s)
 | ||
| 		spd_rdimm = !!simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	wl_loops = WLEVEL_LOOPS_DEFAULT;
 | ||
| 	// accept generic or interface-specific override
 | ||
| 	s = lookup_env(priv, "ddr_wlevel_loops");
 | ||
| 	if (!s)
 | ||
| 		s = lookup_env(priv, "ddr%d_wlevel_loops", if_num);
 | ||
| 
 | ||
| 	if (s)
 | ||
| 		wl_loops = strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_ranks");
 | ||
| 	if (s)
 | ||
| 		num_ranks = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	bunk_enable = (num_ranks > 1);
 | ||
| 
 | ||
| 	if (octeon_is_cpuid(OCTEON_CN7XXX))
 | ||
| 		column_bits_start = 3;
 | ||
| 	else
 | ||
| 		printf("ERROR: Unsupported Octeon model: 0x%x\n",
 | ||
| 		       read_c0_prid());
 | ||
| 
 | ||
| 	row_lsb = column_bits_start + col_bits + bank_bits - (!if_64b);
 | ||
| 	debug("row_lsb = column_bits_start + col_bits + bank_bits = %d\n",
 | ||
| 	      row_lsb);
 | ||
| 
 | ||
| 	pbank_lsb = row_lsb + row_bits + bunk_enable;
 | ||
| 	debug("pbank_lsb = row_lsb + row_bits + bunk_enable = %d\n", pbank_lsb);
 | ||
| 
 | ||
| 	if (lranks_per_prank > 1) {
 | ||
| 		pbank_lsb = row_lsb + row_bits + lranks_bits + bunk_enable;
 | ||
| 		debug("DDR4: 3DS: pbank_lsb = (%d row_lsb) + (%d row_bits) + (%d lranks_bits) + (%d bunk_enable) = %d\n",
 | ||
| 		      row_lsb, row_bits, lranks_bits, bunk_enable, pbank_lsb);
 | ||
| 	}
 | ||
| 
 | ||
| 	mem_size_mbytes = dimm_count * ((1ull << pbank_lsb) >> 20);
 | ||
| 	if (num_ranks == 4) {
 | ||
| 		/*
 | ||
| 		 * Quad rank dimm capacity is equivalent to two dual-rank
 | ||
| 		 * dimms.
 | ||
| 		 */
 | ||
| 		mem_size_mbytes *= 2;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Mask with 1 bits set for for each active rank, allowing 2 bits
 | ||
| 	 * per dimm. This makes later calculations simpler, as a variety
 | ||
| 	 * of CSRs use this layout. This init needs to be updated for dual
 | ||
| 	 * configs (ie non-identical DIMMs).
 | ||
| 	 *
 | ||
| 	 * Bit 0 = dimm0, rank 0
 | ||
| 	 * Bit 1 = dimm0, rank 1
 | ||
| 	 * Bit 2 = dimm1, rank 0
 | ||
| 	 * Bit 3 = dimm1, rank 1
 | ||
| 	 * ...
 | ||
| 	 */
 | ||
| 	rank_mask = 0x1;
 | ||
| 	if (num_ranks > 1)
 | ||
| 		rank_mask = 0x3;
 | ||
| 	if (num_ranks > 2)
 | ||
| 		rank_mask = 0xf;
 | ||
| 
 | ||
| 	for (i = 1; i < dimm_count; i++)
 | ||
| 		rank_mask |= ((rank_mask & 0x3) << (2 * i));
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If we are booting from RAM, the DRAM controller is
 | ||
| 	 * already set up.  Just return the memory size
 | ||
| 	 */
 | ||
| 	if (priv->flags & FLAG_RAM_RESIDENT) {
 | ||
| 		debug("Ram Boot: Skipping LMC config\n");
 | ||
| 		return mem_size_mbytes;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (ddr_type == DDR4_DRAM) {
 | ||
| 		spd_ecc =
 | ||
| 		    !!(read_spd
 | ||
| 		       (&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MODULE_MEMORY_BUS_WIDTH) & 8);
 | ||
| 	} else {
 | ||
| 		spd_ecc =
 | ||
| 		    !!(read_spd
 | ||
| 		       (&dimm_config_table[0], 0,
 | ||
| 			DDR3_SPD_MEMORY_BUS_WIDTH) & 8);
 | ||
| 	}
 | ||
| 
 | ||
| 	char rank_spec[8];
 | ||
| 
 | ||
| 	printable_rank_spec(rank_spec, num_ranks, dram_width, spd_package);
 | ||
| 	debug("Summary: %d %s%s %s %s, row bits=%d, col bits=%d, bank bits=%d\n",
 | ||
| 	      dimm_count, dimm_type_name, (dimm_count > 1) ? "s" : "",
 | ||
| 	      rank_spec,
 | ||
| 	      (spd_ecc) ? "ECC" : "non-ECC", row_bits, col_bits, bank_bits);
 | ||
| 
 | ||
| 	if (ddr_type == DDR4_DRAM) {
 | ||
| 		spd_cas_latency =
 | ||
| 		    ((0xff &
 | ||
| 		      read_spd(&dimm_config_table[0], 0,
 | ||
| 			       DDR4_SPD_CAS_LATENCIES_BYTE0)) << 0);
 | ||
| 		spd_cas_latency |=
 | ||
| 		    ((0xff &
 | ||
| 		      read_spd(&dimm_config_table[0], 0,
 | ||
| 			       DDR4_SPD_CAS_LATENCIES_BYTE1)) << 8);
 | ||
| 		spd_cas_latency |=
 | ||
| 		    ((0xff &
 | ||
| 		      read_spd(&dimm_config_table[0], 0,
 | ||
| 			       DDR4_SPD_CAS_LATENCIES_BYTE2)) << 16);
 | ||
| 		spd_cas_latency |=
 | ||
| 		    ((0xff &
 | ||
| 		      read_spd(&dimm_config_table[0], 0,
 | ||
| 			       DDR4_SPD_CAS_LATENCIES_BYTE3)) << 24);
 | ||
| 	} else {
 | ||
| 		spd_cas_latency =
 | ||
| 		    0xff & read_spd(&dimm_config_table[0], 0,
 | ||
| 				    DDR3_SPD_CAS_LATENCIES_LSB);
 | ||
| 		spd_cas_latency |=
 | ||
| 		    ((0xff &
 | ||
| 		      read_spd(&dimm_config_table[0], 0,
 | ||
| 			       DDR3_SPD_CAS_LATENCIES_MSB)) << 8);
 | ||
| 	}
 | ||
| 	debug("spd_cas_latency : %#06x\n", spd_cas_latency);
 | ||
| 
 | ||
| 	if (ddr_type == DDR4_DRAM) {
 | ||
| 		/*
 | ||
| 		 * No other values for DDR4 MTB and FTB are specified at the
 | ||
| 		 * current time so don't bother reading them. Can't speculate
 | ||
| 		 * how new values will be represented.
 | ||
| 		 */
 | ||
| 		int spdmtb = 125;
 | ||
| 		int spdftb = 1;
 | ||
| 
 | ||
| 		taamin = spdmtb * read_spd(&dimm_config_table[0], 0,
 | ||
| 					   DDR4_SPD_MIN_CAS_LATENCY_TAAMIN) +
 | ||
| 			 spdftb * (signed char)read_spd(&dimm_config_table[0],
 | ||
| 			 0, DDR4_SPD_MIN_CAS_LATENCY_FINE_TAAMIN);
 | ||
| 
 | ||
| 		ddr4_tckavgmin = spdmtb * read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MINIMUM_CYCLE_TIME_TCKAVGMIN) +
 | ||
| 			spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MIN_CYCLE_TIME_FINE_TCKAVGMIN);
 | ||
| 
 | ||
| 		ddr4_tckavgmax = spdmtb * read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MAXIMUM_CYCLE_TIME_TCKAVGMAX) +
 | ||
| 			spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MAX_CYCLE_TIME_FINE_TCKAVGMAX);
 | ||
| 
 | ||
| 		ddr4_trdcmin = spdmtb * read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MIN_RAS_CAS_DELAY_TRCDMIN) +
 | ||
| 			spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MIN_RAS_TO_CAS_DELAY_FINE_TRCDMIN);
 | ||
| 
 | ||
| 		ddr4_trpmin = spdmtb * read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MIN_ROW_PRECHARGE_DELAY_TRPMIN) +
 | ||
| 			spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MIN_ROW_PRECHARGE_DELAY_FINE_TRPMIN);
 | ||
| 
 | ||
| 		ddr4_trasmin = spdmtb *
 | ||
| 			(((read_spd
 | ||
| 			   (&dimm_config_table[0], 0,
 | ||
| 			    DDR4_SPD_UPPER_NIBBLES_TRAS_TRC) & 0xf) << 8) +
 | ||
| 			 (read_spd
 | ||
| 			  (&dimm_config_table[0], 0,
 | ||
| 			   DDR4_SPD_MIN_ACTIVE_PRECHARGE_LSB_TRASMIN) & 0xff));
 | ||
| 
 | ||
| 		ddr4_trcmin = spdmtb *
 | ||
| 			((((read_spd
 | ||
| 			    (&dimm_config_table[0], 0,
 | ||
| 			     DDR4_SPD_UPPER_NIBBLES_TRAS_TRC) >> 4) & 0xf) <<
 | ||
| 			  8) + (read_spd
 | ||
| 				(&dimm_config_table[0], 0,
 | ||
| 				 DDR4_SPD_MIN_ACTIVE_REFRESH_LSB_TRCMIN) &
 | ||
| 				0xff))
 | ||
| 			+ spdftb * (signed char)read_spd(&dimm_config_table[0],
 | ||
| 							 0,
 | ||
| 			DDR4_SPD_MIN_ACT_TO_ACT_REFRESH_DELAY_FINE_TRCMIN);
 | ||
| 
 | ||
| 		ddr4_trfc1min = spdmtb * (((read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC1MIN) & 0xff) <<
 | ||
| 			8) + (read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC1MIN) & 0xff));
 | ||
| 
 | ||
| 		ddr4_trfc2min = spdmtb * (((read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC2MIN) & 0xff) <<
 | ||
| 			8) + (read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC2MIN) & 0xff));
 | ||
| 
 | ||
| 		ddr4_trfc4min = spdmtb * (((read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC4MIN) & 0xff) <<
 | ||
| 			8) + (read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC4MIN) & 0xff));
 | ||
| 
 | ||
| 		ddr4_tfawmin = spdmtb * (((read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MIN_FOUR_ACTIVE_WINDOW_MSN_TFAWMIN) & 0xf) <<
 | ||
| 			8) + (read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MIN_FOUR_ACTIVE_WINDOW_LSB_TFAWMIN) & 0xff));
 | ||
| 
 | ||
| 		ddr4_trrd_smin = spdmtb * read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MIN_ROW_ACTIVE_DELAY_SAME_TRRD_SMIN) +
 | ||
| 			spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MIN_ACT_TO_ACT_DELAY_DIFF_FINE_TRRD_SMIN);
 | ||
| 
 | ||
| 		ddr4_trrd_lmin = spdmtb * read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MIN_ROW_ACTIVE_DELAY_DIFF_TRRD_LMIN) +
 | ||
| 			spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MIN_ACT_TO_ACT_DELAY_SAME_FINE_TRRD_LMIN);
 | ||
| 
 | ||
| 		ddr4_tccd_lmin = spdmtb * read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MIN_CAS_TO_CAS_DELAY_TCCD_LMIN) +
 | ||
| 			spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_MIN_CAS_TO_CAS_DELAY_FINE_TCCD_LMIN);
 | ||
| 
 | ||
| 		debug("%-45s : %6d ps\n", "Medium Timebase (MTB)", spdmtb);
 | ||
| 		debug("%-45s : %6d ps\n", "Fine Timebase   (FTB)", spdftb);
 | ||
| 
 | ||
| 		debug("%-45s : %6d ps (%ld MT/s)\n",
 | ||
| 		      "SDRAM Minimum Cycle Time (tCKAVGmin)", ddr4_tckavgmin,
 | ||
| 		      pretty_psecs_to_mts(ddr4_tckavgmin));
 | ||
| 		debug("%-45s : %6d ps\n",
 | ||
| 		      "SDRAM Maximum Cycle Time (tCKAVGmax)", ddr4_tckavgmax);
 | ||
| 		debug("%-45s : %6d ps\n", "Minimum CAS Latency Time (taamin)",
 | ||
| 		      taamin);
 | ||
| 		debug("%-45s : %6d ps\n",
 | ||
| 		      "Minimum RAS to CAS Delay Time (tRCDmin)", ddr4_trdcmin);
 | ||
| 		debug("%-45s : %6d ps\n",
 | ||
| 		      "Minimum Row Precharge Delay Time (tRPmin)", ddr4_trpmin);
 | ||
| 		debug("%-45s : %6d ps\n",
 | ||
| 		      "Minimum Active to Precharge Delay (tRASmin)",
 | ||
| 		      ddr4_trasmin);
 | ||
| 		debug("%-45s : %6d ps\n",
 | ||
| 		      "Minimum Active to Active/Refr. Delay (tRCmin)",
 | ||
| 		      ddr4_trcmin);
 | ||
| 		debug("%-45s : %6d ps\n",
 | ||
| 		      "Minimum Refresh Recovery Delay (tRFC1min)",
 | ||
| 		      ddr4_trfc1min);
 | ||
| 		debug("%-45s : %6d ps\n",
 | ||
| 		      "Minimum Refresh Recovery Delay (tRFC2min)",
 | ||
| 		      ddr4_trfc2min);
 | ||
| 		debug("%-45s : %6d ps\n",
 | ||
| 		      "Minimum Refresh Recovery Delay (tRFC4min)",
 | ||
| 		      ddr4_trfc4min);
 | ||
| 		debug("%-45s : %6d ps\n",
 | ||
| 		      "Minimum Four Activate Window Time (tFAWmin)",
 | ||
| 		      ddr4_tfawmin);
 | ||
| 		debug("%-45s : %6d ps\n",
 | ||
| 		      "Minimum Act. to Act. Delay (tRRD_Smin)", ddr4_trrd_smin);
 | ||
| 		debug("%-45s : %6d ps\n",
 | ||
| 		      "Minimum Act. to Act. Delay (tRRD_Lmin)", ddr4_trrd_lmin);
 | ||
| 		debug("%-45s : %6d ps\n",
 | ||
| 		      "Minimum CAS to CAS Delay Time (tCCD_Lmin)",
 | ||
| 		      ddr4_tccd_lmin);
 | ||
| 
 | ||
| #define DDR4_TWR 15000
 | ||
| #define DDR4_TWTR_S 2500
 | ||
| 
 | ||
| 		tckmin = ddr4_tckavgmin;
 | ||
| 		twr = DDR4_TWR;
 | ||
| 		trcd = ddr4_trdcmin;
 | ||
| 		trrd = ddr4_trrd_smin;
 | ||
| 		trp = ddr4_trpmin;
 | ||
| 		tras = ddr4_trasmin;
 | ||
| 		trc = ddr4_trcmin;
 | ||
| 		trfc = ddr4_trfc1min;
 | ||
| 		twtr = DDR4_TWTR_S;
 | ||
| 		tfaw = ddr4_tfawmin;
 | ||
| 
 | ||
| 		if (spd_rdimm) {
 | ||
| 			spd_addr_mirror = read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR4_SPD_RDIMM_ADDR_MAPPING_FROM_REGISTER_TO_DRAM) &
 | ||
| 			0x1;
 | ||
| 		} else {
 | ||
| 			spd_addr_mirror = read_spd(&dimm_config_table[0], 0,
 | ||
| 				DDR4_SPD_UDIMM_ADDR_MAPPING_FROM_EDGE) & 0x1;
 | ||
| 		}
 | ||
| 		debug("spd_addr_mirror : %#06x\n", spd_addr_mirror);
 | ||
| 	} else {
 | ||
| 		spd_mtb_dividend =
 | ||
| 		    0xff & read_spd(&dimm_config_table[0], 0,
 | ||
| 				    DDR3_SPD_MEDIUM_TIMEBASE_DIVIDEND);
 | ||
| 		spd_mtb_divisor =
 | ||
| 		    0xff & read_spd(&dimm_config_table[0], 0,
 | ||
| 				    DDR3_SPD_MEDIUM_TIMEBASE_DIVISOR);
 | ||
| 		spd_tck_min =
 | ||
| 		    0xff & read_spd(&dimm_config_table[0], 0,
 | ||
| 				    DDR3_SPD_MINIMUM_CYCLE_TIME_TCKMIN);
 | ||
| 		spd_taa_min =
 | ||
| 		    0xff & read_spd(&dimm_config_table[0], 0,
 | ||
| 				    DDR3_SPD_MIN_CAS_LATENCY_TAAMIN);
 | ||
| 
 | ||
| 		spd_twr =
 | ||
| 		    0xff & read_spd(&dimm_config_table[0], 0,
 | ||
| 				    DDR3_SPD_MIN_WRITE_RECOVERY_TWRMIN);
 | ||
| 		spd_trcd =
 | ||
| 		    0xff & read_spd(&dimm_config_table[0], 0,
 | ||
| 				    DDR3_SPD_MIN_RAS_CAS_DELAY_TRCDMIN);
 | ||
| 		spd_trrd =
 | ||
| 		    0xff & read_spd(&dimm_config_table[0], 0,
 | ||
| 				    DDR3_SPD_MIN_ROW_ACTIVE_DELAY_TRRDMIN);
 | ||
| 		spd_trp =
 | ||
| 		    0xff & read_spd(&dimm_config_table[0], 0,
 | ||
| 				    DDR3_SPD_MIN_ROW_PRECHARGE_DELAY_TRPMIN);
 | ||
| 		spd_tras =
 | ||
| 		    0xff & read_spd(&dimm_config_table[0], 0,
 | ||
| 				    DDR3_SPD_MIN_ACTIVE_PRECHARGE_LSB_TRASMIN);
 | ||
| 		spd_tras |=
 | ||
| 		    ((0xff &
 | ||
| 		      read_spd(&dimm_config_table[0], 0,
 | ||
| 			       DDR3_SPD_UPPER_NIBBLES_TRAS_TRC) & 0xf) << 8);
 | ||
| 		spd_trc =
 | ||
| 		    0xff & read_spd(&dimm_config_table[0], 0,
 | ||
| 				    DDR3_SPD_MIN_ACTIVE_REFRESH_LSB_TRCMIN);
 | ||
| 		spd_trc |=
 | ||
| 		    ((0xff &
 | ||
| 		      read_spd(&dimm_config_table[0], 0,
 | ||
| 			       DDR3_SPD_UPPER_NIBBLES_TRAS_TRC) & 0xf0) << 4);
 | ||
| 		spd_trfc =
 | ||
| 		    0xff & read_spd(&dimm_config_table[0], 0,
 | ||
| 				    DDR3_SPD_MIN_REFRESH_RECOVERY_LSB_TRFCMIN);
 | ||
| 		spd_trfc |=
 | ||
| 		    ((0xff &
 | ||
| 		      read_spd(&dimm_config_table[0], 0,
 | ||
| 			       DDR3_SPD_MIN_REFRESH_RECOVERY_MSB_TRFCMIN)) <<
 | ||
| 		     8);
 | ||
| 		spd_twtr =
 | ||
| 		    0xff & read_spd(&dimm_config_table[0], 0,
 | ||
| 				DDR3_SPD_MIN_INTERNAL_WRITE_READ_CMD_TWTRMIN);
 | ||
| 		spd_trtp =
 | ||
| 		    0xff & read_spd(&dimm_config_table[0], 0,
 | ||
| 			DDR3_SPD_MIN_INTERNAL_READ_PRECHARGE_CMD_TRTPMIN);
 | ||
| 		spd_tfaw =
 | ||
| 		    0xff & read_spd(&dimm_config_table[0], 0,
 | ||
| 				    DDR3_SPD_MIN_FOUR_ACTIVE_WINDOW_TFAWMIN);
 | ||
| 		spd_tfaw |=
 | ||
| 		    ((0xff &
 | ||
| 		      read_spd(&dimm_config_table[0], 0,
 | ||
| 			       DDR3_SPD_UPPER_NIBBLE_TFAW) & 0xf) << 8);
 | ||
| 		spd_addr_mirror =
 | ||
| 		    0xff & read_spd(&dimm_config_table[0], 0,
 | ||
| 				    DDR3_SPD_ADDRESS_MAPPING) & 0x1;
 | ||
| 		/* Only address mirror unbuffered dimms.  */
 | ||
| 		spd_addr_mirror = spd_addr_mirror && !spd_rdimm;
 | ||
| 		ftb_dividend =
 | ||
| 		    read_spd(&dimm_config_table[0], 0,
 | ||
| 			     DDR3_SPD_FINE_TIMEBASE_DIVIDEND_DIVISOR) >> 4;
 | ||
| 		ftb_divisor =
 | ||
| 		    read_spd(&dimm_config_table[0], 0,
 | ||
| 			     DDR3_SPD_FINE_TIMEBASE_DIVIDEND_DIVISOR) & 0xf;
 | ||
| 		/* Make sure that it is not 0 */
 | ||
| 		ftb_divisor = (ftb_divisor == 0) ? 1 : ftb_divisor;
 | ||
| 
 | ||
| 		debug("spd_twr         : %#06x\n", spd_twr);
 | ||
| 		debug("spd_trcd        : %#06x\n", spd_trcd);
 | ||
| 		debug("spd_trrd        : %#06x\n", spd_trrd);
 | ||
| 		debug("spd_trp         : %#06x\n", spd_trp);
 | ||
| 		debug("spd_tras        : %#06x\n", spd_tras);
 | ||
| 		debug("spd_trc         : %#06x\n", spd_trc);
 | ||
| 		debug("spd_trfc        : %#06x\n", spd_trfc);
 | ||
| 		debug("spd_twtr        : %#06x\n", spd_twtr);
 | ||
| 		debug("spd_trtp        : %#06x\n", spd_trtp);
 | ||
| 		debug("spd_tfaw        : %#06x\n", spd_tfaw);
 | ||
| 		debug("spd_addr_mirror : %#06x\n", spd_addr_mirror);
 | ||
| 
 | ||
| 		mtb_psec = spd_mtb_dividend * 1000 / spd_mtb_divisor;
 | ||
| 		taamin = mtb_psec * spd_taa_min;
 | ||
| 		taamin += ftb_dividend *
 | ||
| 			(signed char)read_spd(&dimm_config_table[0],
 | ||
| 				0, DDR3_SPD_MIN_CAS_LATENCY_FINE_TAAMIN) /
 | ||
| 			ftb_divisor;
 | ||
| 		tckmin = mtb_psec * spd_tck_min;
 | ||
| 		tckmin += ftb_dividend *
 | ||
| 			(signed char)read_spd(&dimm_config_table[0],
 | ||
| 				0, DDR3_SPD_MINIMUM_CYCLE_TIME_FINE_TCKMIN) /
 | ||
| 			ftb_divisor;
 | ||
| 
 | ||
| 		twr = spd_twr * mtb_psec;
 | ||
| 		trcd = spd_trcd * mtb_psec;
 | ||
| 		trrd = spd_trrd * mtb_psec;
 | ||
| 		trp = spd_trp * mtb_psec;
 | ||
| 		tras = spd_tras * mtb_psec;
 | ||
| 		trc = spd_trc * mtb_psec;
 | ||
| 		trfc = spd_trfc * mtb_psec;
 | ||
| 		if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) && trfc < 260000) {
 | ||
| 			// default to this - because it works...
 | ||
| 			int new_trfc = 260000;
 | ||
| 
 | ||
| 			s = env_get("ddr_trfc");
 | ||
| 			if (s) {
 | ||
| 				new_trfc = simple_strtoul(s, NULL, 0);
 | ||
| 				printf("Parameter found in environment. ddr_trfc = %d\n",
 | ||
| 				       new_trfc);
 | ||
| 				if (new_trfc < 160000 || new_trfc > 260000) {
 | ||
| 					// back to default if out of range
 | ||
| 					new_trfc = 260000;
 | ||
| 				}
 | ||
| 			}
 | ||
| 			debug("N%d.LMC%d: Adjusting tRFC from %d to %d, for CN78XX Pass 2.x\n",
 | ||
| 			      node, if_num, trfc, new_trfc);
 | ||
| 			trfc = new_trfc;
 | ||
| 		}
 | ||
| 
 | ||
| 		twtr = spd_twtr * mtb_psec;
 | ||
| 		trtp = spd_trtp * mtb_psec;
 | ||
| 		tfaw = spd_tfaw * mtb_psec;
 | ||
| 
 | ||
| 		debug("Medium Timebase (MTB)                         : %6d ps\n",
 | ||
| 		      mtb_psec);
 | ||
| 		debug("Minimum Cycle Time (tckmin)                   : %6d ps (%ld MT/s)\n",
 | ||
| 		      tckmin, pretty_psecs_to_mts(tckmin));
 | ||
| 		debug("Minimum CAS Latency Time (taamin)             : %6d ps\n",
 | ||
| 		      taamin);
 | ||
| 		debug("Write Recovery Time (tWR)                     : %6d ps\n",
 | ||
| 		      twr);
 | ||
| 		debug("Minimum RAS to CAS delay (tRCD)               : %6d ps\n",
 | ||
| 		      trcd);
 | ||
| 		debug("Minimum Row Active to Row Active delay (tRRD) : %6d ps\n",
 | ||
| 		      trrd);
 | ||
| 		debug("Minimum Row Precharge Delay (tRP)             : %6d ps\n",
 | ||
| 		      trp);
 | ||
| 		debug("Minimum Active to Precharge (tRAS)            : %6d ps\n",
 | ||
| 		      tras);
 | ||
| 		debug("Minimum Active to Active/Refresh Delay (tRC)  : %6d ps\n",
 | ||
| 		      trc);
 | ||
| 		debug("Minimum Refresh Recovery Delay (tRFC)         : %6d ps\n",
 | ||
| 		      trfc);
 | ||
| 		debug("Internal write to read command delay (tWTR)   : %6d ps\n",
 | ||
| 		      twtr);
 | ||
| 		debug("Min Internal Rd to Precharge Cmd Delay (tRTP) : %6d ps\n",
 | ||
| 		      trtp);
 | ||
| 		debug("Minimum Four Activate Window Delay (tFAW)     : %6d ps\n",
 | ||
| 		      tfaw);
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * When the cycle time is within 1 psec of the minimum accept it
 | ||
| 	 * as a slight rounding error and adjust it to exactly the minimum
 | ||
| 	 * cycle time. This avoids an unnecessary warning.
 | ||
| 	 */
 | ||
| 	if (abs(tclk_psecs - tckmin) < 2)
 | ||
| 		tclk_psecs = tckmin;
 | ||
| 
 | ||
| 	if (tclk_psecs < (u64)tckmin) {
 | ||
| 		printf("WARNING!!!!: DDR Clock Rate (tCLK: %ld) exceeds DIMM specifications (tckmin: %ld)!!!!\n",
 | ||
| 		       tclk_psecs, (ulong)tckmin);
 | ||
| 	}
 | ||
| 
 | ||
| 	debug("DDR Clock Rate (tCLK)                         : %6ld ps\n",
 | ||
| 	      tclk_psecs);
 | ||
| 	debug("Core Clock Rate (eCLK)                        : %6ld ps\n",
 | ||
| 	      eclk_psecs);
 | ||
| 
 | ||
| 	s = env_get("ddr_use_ecc");
 | ||
| 	if (s) {
 | ||
| 		use_ecc = !!simple_strtoul(s, NULL, 0);
 | ||
| 		printf("Parameter found in environment. ddr_use_ecc = %d\n",
 | ||
| 		       use_ecc);
 | ||
| 	}
 | ||
| 	use_ecc = use_ecc && spd_ecc;
 | ||
| 
 | ||
| 	if_bytemask = if_64b ? (use_ecc ? 0x1ff : 0xff)
 | ||
| 	    : (use_ecc ? 0x01f : 0x0f);
 | ||
| 
 | ||
| 	debug("DRAM Interface width: %d bits %s bytemask 0x%03x\n",
 | ||
| 	      if_64b ? 64 : 32, use_ecc ? "+ECC" : "", if_bytemask);
 | ||
| 
 | ||
| 	debug("\n------ Board Custom Configuration Settings ------\n");
 | ||
| 	debug("%-45s : %d\n", "MIN_RTT_NOM_IDX   ", c_cfg->min_rtt_nom_idx);
 | ||
| 	debug("%-45s : %d\n", "MAX_RTT_NOM_IDX   ", c_cfg->max_rtt_nom_idx);
 | ||
| 	debug("%-45s : %d\n", "MIN_RODT_CTL      ", c_cfg->min_rodt_ctl);
 | ||
| 	debug("%-45s : %d\n", "MAX_RODT_CTL      ", c_cfg->max_rodt_ctl);
 | ||
| 	debug("%-45s : %d\n", "MIN_CAS_LATENCY   ", c_cfg->min_cas_latency);
 | ||
| 	debug("%-45s : %d\n", "OFFSET_EN         ", c_cfg->offset_en);
 | ||
| 	debug("%-45s : %d\n", "OFFSET_UDIMM      ", c_cfg->offset_udimm);
 | ||
| 	debug("%-45s : %d\n", "OFFSET_RDIMM      ", c_cfg->offset_rdimm);
 | ||
| 	debug("%-45s : %d\n", "DDR_RTT_NOM_AUTO  ", c_cfg->ddr_rtt_nom_auto);
 | ||
| 	debug("%-45s : %d\n", "DDR_RODT_CTL_AUTO ", c_cfg->ddr_rodt_ctl_auto);
 | ||
| 	if (spd_rdimm)
 | ||
| 		debug("%-45s : %d\n", "RLEVEL_COMP_OFFSET",
 | ||
| 		      c_cfg->rlevel_comp_offset_rdimm);
 | ||
| 	else
 | ||
| 		debug("%-45s : %d\n", "RLEVEL_COMP_OFFSET",
 | ||
| 		      c_cfg->rlevel_comp_offset_udimm);
 | ||
| 	debug("%-45s : %d\n", "RLEVEL_COMPUTE    ", c_cfg->rlevel_compute);
 | ||
| 	debug("%-45s : %d\n", "DDR2T_UDIMM       ", c_cfg->ddr2t_udimm);
 | ||
| 	debug("%-45s : %d\n", "DDR2T_RDIMM       ", c_cfg->ddr2t_rdimm);
 | ||
| 	debug("%-45s : %d\n", "FPRCH2            ", c_cfg->fprch2);
 | ||
| 	debug("%-45s : %d\n", "PTUNE_OFFSET      ", c_cfg->ptune_offset);
 | ||
| 	debug("%-45s : %d\n", "NTUNE_OFFSET      ", c_cfg->ntune_offset);
 | ||
| 	debug("-------------------------------------------------\n");
 | ||
| 
 | ||
| 	cl = divide_roundup(taamin, tclk_psecs);
 | ||
| 
 | ||
| 	debug("Desired CAS Latency                           : %6d\n", cl);
 | ||
| 
 | ||
| 	min_cas_latency = c_cfg->min_cas_latency;
 | ||
| 
 | ||
| 	s = lookup_env(priv, "ddr_min_cas_latency");
 | ||
| 	if (s)
 | ||
| 		min_cas_latency = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	debug("CAS Latencies supported in DIMM               :");
 | ||
| 	base_cl = (ddr_type == DDR4_DRAM) ? 7 : 4;
 | ||
| 	for (i = 0; i < 32; ++i) {
 | ||
| 		if ((spd_cas_latency >> i) & 1) {
 | ||
| 			debug(" %d", i + base_cl);
 | ||
| 			max_cas_latency = i + base_cl;
 | ||
| 			if (min_cas_latency == 0)
 | ||
| 				min_cas_latency = i + base_cl;
 | ||
| 		}
 | ||
| 	}
 | ||
| 	debug("\n");
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Use relaxed timing when running slower than the minimum
 | ||
| 	 * supported speed.  Adjust timing to match the smallest supported
 | ||
| 	 * CAS Latency.
 | ||
| 	 */
 | ||
| 	if (min_cas_latency > cl) {
 | ||
| 		ulong adjusted_tclk = taamin / min_cas_latency;
 | ||
| 
 | ||
| 		cl = min_cas_latency;
 | ||
| 		debug("Slow clock speed. Adjusting timing: tClk = %ld, Adjusted tClk = %ld\n",
 | ||
| 		      tclk_psecs, adjusted_tclk);
 | ||
| 		tclk_psecs = adjusted_tclk;
 | ||
| 	}
 | ||
| 
 | ||
| 	s = env_get("ddr_cas_latency");
 | ||
| 	if (s) {
 | ||
| 		override_cas_latency = simple_strtoul(s, NULL, 0);
 | ||
| 		printf("Parameter found in environment. ddr_cas_latency = %d\n",
 | ||
| 		       override_cas_latency);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Make sure that the selected cas latency is legal */
 | ||
| 	for (i = (cl - base_cl); i < 32; ++i) {
 | ||
| 		if ((spd_cas_latency >> i) & 1) {
 | ||
| 			cl = i + base_cl;
 | ||
| 			break;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if (max_cas_latency < cl)
 | ||
| 		cl = max_cas_latency;
 | ||
| 
 | ||
| 	if (override_cas_latency != 0)
 | ||
| 		cl = override_cas_latency;
 | ||
| 
 | ||
| 	debug("CAS Latency                                   : %6d\n", cl);
 | ||
| 
 | ||
| 	if ((cl * tckmin) > 20000) {
 | ||
| 		debug("(CLactual * tckmin) = %d exceeds 20 ns\n",
 | ||
| 		      (cl * tckmin));
 | ||
| 	}
 | ||
| 
 | ||
| 	if (tclk_psecs < (ulong)tckmin) {
 | ||
| 		printf("WARNING!!!!!!: DDR3 Clock Rate (tCLK: %ld) exceeds DIMM specifications (tckmin:%ld)!!!!!!!!\n",
 | ||
| 		       tclk_psecs, (ulong)tckmin);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (num_banks != 4 && num_banks != 8 && num_banks != 16) {
 | ||
| 		printf("Unsupported number of banks %d. Must be 4 or 8.\n",
 | ||
| 		       num_banks);
 | ||
| 		++fatal_error;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (num_ranks != 1 && num_ranks != 2 && num_ranks != 4) {
 | ||
| 		printf("Unsupported number of ranks: %d\n", num_ranks);
 | ||
| 		++fatal_error;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (octeon_is_cpuid(OCTEON_CN78XX) ||
 | ||
| 	    octeon_is_cpuid(OCTEON_CN73XX) ||
 | ||
| 	    octeon_is_cpuid(OCTEON_CNF75XX)) {
 | ||
| 		if (dram_width != 8 && dram_width != 16 && dram_width != 4) {
 | ||
| 			printf("Unsupported SDRAM Width, %d.  Must be 4, 8 or 16.\n",
 | ||
| 			       dram_width);
 | ||
| 			++fatal_error;
 | ||
| 		}
 | ||
| 	} else if (dram_width != 8 && dram_width != 16) {
 | ||
| 		printf("Unsupported SDRAM Width, %d.  Must be 8 or 16.\n",
 | ||
| 		       dram_width);
 | ||
| 		++fatal_error;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 ** Bail out here if things are not copasetic.
 | ||
| 	 */
 | ||
| 	if (fatal_error)
 | ||
| 		return (-1);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 4.8.4 LMC RESET Initialization
 | ||
| 	 *
 | ||
| 	 * The purpose of this step is to assert/deassert the RESET# pin at the
 | ||
| 	 * DDR3/DDR4 parts.
 | ||
| 	 *
 | ||
| 	 * This LMC RESET step is done for all enabled LMCs.
 | ||
| 	 */
 | ||
| 	perform_lmc_reset(priv, node, if_num);
 | ||
| 
 | ||
| 	// Make sure scrambling is disabled during init...
 | ||
| 	ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
 | ||
| 	ctrl.s.scramble_ena = 0;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64);
 | ||
| 
 | ||
| 	lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG0(if_num), 0);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG1(if_num), 0);
 | ||
| 	if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X))
 | ||
| 		lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG2(if_num), 0);
 | ||
| 
 | ||
| 	odt_idx = min(dimm_count - 1, 3);
 | ||
| 
 | ||
| 	switch (num_ranks) {
 | ||
| 	case 1:
 | ||
| 		odt_config = odt_1rank_config;
 | ||
| 		break;
 | ||
| 	case 2:
 | ||
| 		odt_config = odt_2rank_config;
 | ||
| 		break;
 | ||
| 	case 4:
 | ||
| 		odt_config = odt_4rank_config;
 | ||
| 		break;
 | ||
| 	default:
 | ||
| 		odt_config = disable_odt_config;
 | ||
| 		printf("Unsupported number of ranks: %d\n", num_ranks);
 | ||
| 		++fatal_error;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 4.8.5 Early LMC Initialization
 | ||
| 	 *
 | ||
| 	 * All of DDR PLL, LMC CK, and LMC DRESET initializations must be
 | ||
| 	 * completed prior to starting this LMC initialization sequence.
 | ||
| 	 *
 | ||
| 	 * Perform the following five substeps for early LMC initialization:
 | ||
| 	 *
 | ||
| 	 * 1. Software must ensure there are no pending DRAM transactions.
 | ||
| 	 *
 | ||
| 	 * 2. Write LMC(0)_CONFIG, LMC(0)_CONTROL, LMC(0)_TIMING_PARAMS0,
 | ||
| 	 *    LMC(0)_TIMING_PARAMS1, LMC(0)_MODEREG_PARAMS0,
 | ||
| 	 *    LMC(0)_MODEREG_PARAMS1, LMC(0)_DUAL_MEMCFG, LMC(0)_NXM,
 | ||
| 	 *    LMC(0)_WODT_MASK, LMC(0)_RODT_MASK, LMC(0)_COMP_CTL2,
 | ||
| 	 *    LMC(0)_PHY_CTL, LMC(0)_DIMM0/1_PARAMS, and LMC(0)_DIMM_CTL with
 | ||
| 	 *    appropriate values. All sections in this chapter can be used to
 | ||
| 	 *    derive proper register settings.
 | ||
| 	 */
 | ||
| 
 | ||
| 	/* LMC(0)_CONFIG */
 | ||
| 	lmc_config(priv);
 | ||
| 
 | ||
| 	/* LMC(0)_CONTROL */
 | ||
| 	lmc_control(priv);
 | ||
| 
 | ||
| 	/* LMC(0)_TIMING_PARAMS0 */
 | ||
| 	lmc_timing_params0(priv);
 | ||
| 
 | ||
| 	/* LMC(0)_TIMING_PARAMS1 */
 | ||
| 	lmc_timing_params1(priv);
 | ||
| 
 | ||
| 	/* LMC(0)_TIMING_PARAMS2 */
 | ||
| 	lmc_timing_params2(priv);
 | ||
| 
 | ||
| 	/* LMC(0)_MODEREG_PARAMS0 */
 | ||
| 	lmc_modereg_params0(priv);
 | ||
| 
 | ||
| 	/* LMC(0)_MODEREG_PARAMS1 */
 | ||
| 	lmc_modereg_params1(priv);
 | ||
| 
 | ||
| 	/* LMC(0)_MODEREG_PARAMS2 */
 | ||
| 	lmc_modereg_params2(priv);
 | ||
| 
 | ||
| 	/* LMC(0)_MODEREG_PARAMS3 */
 | ||
| 	lmc_modereg_params3(priv);
 | ||
| 
 | ||
| 	/* LMC(0)_NXM */
 | ||
| 	lmc_nxm(priv);
 | ||
| 
 | ||
| 	/* LMC(0)_WODT_MASK */
 | ||
| 	lmc_wodt_mask(priv);
 | ||
| 
 | ||
| 	/* LMC(0)_RODT_MASK */
 | ||
| 	lmc_rodt_mask(priv);
 | ||
| 
 | ||
| 	/* LMC(0)_COMP_CTL2 */
 | ||
| 	lmc_comp_ctl2(priv);
 | ||
| 
 | ||
| 	/* LMC(0)_PHY_CTL */
 | ||
| 	lmc_phy_ctl(priv);
 | ||
| 
 | ||
| 	/* LMC(0)_EXT_CONFIG */
 | ||
| 	lmc_ext_config(priv);
 | ||
| 
 | ||
| 	/* LMC(0)_EXT_CONFIG2 */
 | ||
| 	lmc_ext_config2(priv);
 | ||
| 
 | ||
| 	/* LMC(0)_DIMM0/1_PARAMS */
 | ||
| 	lmc_dimm01_params(priv);
 | ||
| 
 | ||
| 	ret = lmc_rank_init(priv);
 | ||
| 	if (ret < 0)
 | ||
| 		return 0;	/* 0 indicates problem */
 | ||
| 
 | ||
| 	lmc_config_2(priv);
 | ||
| 
 | ||
| 	lmc_write_leveling(priv);
 | ||
| 
 | ||
| 	lmc_read_leveling(priv);
 | ||
| 
 | ||
| 	lmc_workaround(priv);
 | ||
| 
 | ||
| 	ret = lmc_sw_write_leveling(priv);
 | ||
| 	if (ret < 0)
 | ||
| 		return 0;	/* 0 indicates problem */
 | ||
| 
 | ||
| 	// this sometimes causes stack overflow crashes..
 | ||
| 	// display only for DDR4 RDIMMs.
 | ||
| 	if (ddr_type == DDR4_DRAM && spd_rdimm) {
 | ||
| 		int i;
 | ||
| 
 | ||
| 		for (i = 0; i < 3; i += 2)	// just pages 0 and 2 for now..
 | ||
| 			display_mpr_page(priv, rank_mask, if_num, i);
 | ||
| 	}
 | ||
| 
 | ||
| 	lmc_dll(priv);
 | ||
| 
 | ||
| 	lmc_workaround_2(priv);
 | ||
| 
 | ||
| 	lmc_final(priv);
 | ||
| 
 | ||
| 	lmc_scrambling(priv);
 | ||
| 
 | ||
| 	return mem_size_mbytes;
 | ||
| }
 | ||
| 
 | ||
| /////    HW-assist byte DLL offset tuning   //////
 | ||
| 
 | ||
| static int cvmx_dram_get_num_lmc(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	union cvmx_lmcx_dll_ctl2 lmcx_dll_ctl2;
 | ||
| 
 | ||
| 	if (octeon_is_cpuid(OCTEON_CN70XX))
 | ||
| 		return 1;
 | ||
| 
 | ||
| 	if (octeon_is_cpuid(OCTEON_CN73XX) || octeon_is_cpuid(OCTEON_CNF75XX)) {
 | ||
| 		// sample LMC1
 | ||
| 		lmcx_dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(1));
 | ||
| 		if (lmcx_dll_ctl2.cn78xx.intf_en)
 | ||
| 			return 2;
 | ||
| 		else
 | ||
| 			return 1;
 | ||
| 	}
 | ||
| 
 | ||
| 	// for CN78XX, LMCs are always active in pairs, and always LMC0/1
 | ||
| 	// so, we sample LMC2 to see if 2 and 3 are active
 | ||
| 	lmcx_dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(2));
 | ||
| 	if (lmcx_dll_ctl2.cn78xx.intf_en)
 | ||
| 		return 4;
 | ||
| 	else
 | ||
| 		return 2;
 | ||
| }
 | ||
| 
 | ||
| // got to do these here, even though already defined in BDK
 | ||
| 
 | ||
| // all DDR3, and DDR4 x16 today, use only 3 bank bits;
 | ||
| // DDR4 x4 and x8 always have 4 bank bits
 | ||
| // NOTE: this will change in the future, when DDR4 x16 devices can
 | ||
| // come with 16 banks!! FIXME!!
 | ||
| static int cvmx_dram_get_num_bank_bits(struct ddr_priv *priv, int lmc)
 | ||
| {
 | ||
| 	union cvmx_lmcx_dll_ctl2 lmcx_dll_ctl2;
 | ||
| 	union cvmx_lmcx_config lmcx_config;
 | ||
| 	union cvmx_lmcx_ddr_pll_ctl lmcx_ddr_pll_ctl;
 | ||
| 	int bank_width;
 | ||
| 
 | ||
| 	// can always read this
 | ||
| 	lmcx_dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(lmc));
 | ||
| 
 | ||
| 	if (lmcx_dll_ctl2.cn78xx.dreset)	// check LMCn
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(lmc));
 | ||
| 	lmcx_ddr_pll_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(lmc));
 | ||
| 
 | ||
| 	bank_width = ((lmcx_ddr_pll_ctl.s.ddr4_mode != 0) &&
 | ||
| 		      (lmcx_config.s.bg2_enable)) ? 4 : 3;
 | ||
| 
 | ||
| 	return bank_width;
 | ||
| }
 | ||
| 
 | ||
| #define EXTRACT(v, lsb, width) (((v) >> (lsb)) & ((1ull << (width)) - 1))
 | ||
| #define ADDRESS_HOLE 0x10000000ULL
 | ||
| 
 | ||
| static void cvmx_dram_address_extract_info(struct ddr_priv *priv, u64 address,
 | ||
| 					   int *node, int *lmc, int *dimm,
 | ||
| 					   int *prank, int *lrank, int *bank,
 | ||
| 					   int *row, int *col)
 | ||
| {
 | ||
| 	int bank_lsb, xbits;
 | ||
| 	union cvmx_l2c_ctl l2c_ctl;
 | ||
| 	union cvmx_lmcx_config lmcx_config;
 | ||
| 	union cvmx_lmcx_control lmcx_control;
 | ||
| 	union cvmx_lmcx_ext_config ext_config;
 | ||
| 	int bitno = (octeon_is_cpuid(OCTEON_CN7XXX)) ? 20 : 18;
 | ||
| 	int bank_width;
 | ||
| 	int dimm_lsb;
 | ||
| 	int dimm_width;
 | ||
| 	int prank_lsb, lrank_lsb;
 | ||
| 	int prank_width, lrank_width;
 | ||
| 	int row_lsb;
 | ||
| 	int row_width;
 | ||
| 	int col_hi_lsb;
 | ||
| 	int col_hi_width;
 | ||
| 	int col_hi;
 | ||
| 
 | ||
| 	if (octeon_is_cpuid(OCTEON_CN73XX) || octeon_is_cpuid(OCTEON_CNF75XX))
 | ||
| 		bitno = 18;
 | ||
| 
 | ||
| 	*node = EXTRACT(address, 40, 2);	/* Address bits [41:40] */
 | ||
| 
 | ||
| 	address &= (1ULL << 40) - 1;	// lop off any node bits or above
 | ||
| 	if (address >= ADDRESS_HOLE)	// adjust down if at HOLE or above
 | ||
| 		address -= ADDRESS_HOLE;
 | ||
| 
 | ||
| 	/* Determine the LMC controllers */
 | ||
| 	l2c_ctl.u64 = l2c_rd(priv, CVMX_L2C_CTL_REL);
 | ||
| 
 | ||
| 	/* xbits depends on number of LMCs */
 | ||
| 	xbits = cvmx_dram_get_num_lmc(priv) >> 1;	// 4->2, 2->1, 1->0
 | ||
| 	bank_lsb = 7 + xbits;
 | ||
| 
 | ||
| 	/* LMC number is probably aliased */
 | ||
| 	if (l2c_ctl.s.disidxalias) {
 | ||
| 		*lmc = EXTRACT(address, 7, xbits);
 | ||
| 	}  else {
 | ||
| 		*lmc = EXTRACT(address, 7, xbits) ^
 | ||
| 			EXTRACT(address, bitno, xbits) ^
 | ||
| 			EXTRACT(address, 12, xbits);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Figure out the bank field width */
 | ||
| 	lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(*lmc));
 | ||
| 	ext_config.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(*lmc));
 | ||
| 	bank_width = cvmx_dram_get_num_bank_bits(priv, *lmc);
 | ||
| 
 | ||
| 	/* Extract additional info from the LMC_CONFIG CSR */
 | ||
| 	dimm_lsb = 28 + lmcx_config.s.pbank_lsb + xbits;
 | ||
| 	dimm_width = 40 - dimm_lsb;
 | ||
| 	prank_lsb = dimm_lsb - lmcx_config.s.rank_ena;
 | ||
| 	prank_width = dimm_lsb - prank_lsb;
 | ||
| 	lrank_lsb = prank_lsb - ext_config.s.dimm0_cid;
 | ||
| 	lrank_width = prank_lsb - lrank_lsb;
 | ||
| 	row_lsb = 14 + lmcx_config.s.row_lsb + xbits;
 | ||
| 	row_width = lrank_lsb - row_lsb;
 | ||
| 	col_hi_lsb = bank_lsb + bank_width;
 | ||
| 	col_hi_width = row_lsb - col_hi_lsb;
 | ||
| 
 | ||
| 	/* Extract the parts of the address */
 | ||
| 	*dimm = EXTRACT(address, dimm_lsb, dimm_width);
 | ||
| 	*prank = EXTRACT(address, prank_lsb, prank_width);
 | ||
| 	*lrank = EXTRACT(address, lrank_lsb, lrank_width);
 | ||
| 	*row = EXTRACT(address, row_lsb, row_width);
 | ||
| 
 | ||
| 	/* bank calculation may be aliased... */
 | ||
| 	lmcx_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(*lmc));
 | ||
| 	if (lmcx_control.s.xor_bank) {
 | ||
| 		*bank = EXTRACT(address, bank_lsb, bank_width) ^
 | ||
| 			EXTRACT(address, 12 + xbits, bank_width);
 | ||
| 	} else {
 | ||
| 		*bank = EXTRACT(address, bank_lsb, bank_width);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* LMC number already extracted */
 | ||
| 	col_hi = EXTRACT(address, col_hi_lsb, col_hi_width);
 | ||
| 	*col = EXTRACT(address, 3, 4) | (col_hi << 4);
 | ||
| 	/* Bus byte is address bits [2:0]. Unused here */
 | ||
| }
 | ||
| 
 | ||
| // end of added workarounds
 | ||
| 
 | ||
| // NOTE: "mode" argument:
 | ||
| //         DBTRAIN_TEST: for testing using GP patterns, includes ECC
 | ||
| //         DBTRAIN_DBI:  for DBI deskew training behavior (uses GP patterns)
 | ||
| //         DBTRAIN_LFSR: for testing using LFSR patterns, includes ECC
 | ||
| // NOTE: trust the caller to specify the correct/supported mode
 | ||
| //
 | ||
| static int test_dram_byte_hw(struct ddr_priv *priv, int if_num, u64 p,
 | ||
| 			     int mode, u64 *xor_data)
 | ||
| {
 | ||
| 	u64 p1;
 | ||
| 	u64 k;
 | ||
| 	int errors = 0;
 | ||
| 
 | ||
| 	u64 mpr_data0, mpr_data1;
 | ||
| 	u64 bad_bits[2] = { 0, 0 };
 | ||
| 
 | ||
| 	int node_address, lmc, dimm;
 | ||
| 	int prank, lrank;
 | ||
| 	int bank, row, col;
 | ||
| 	int save_or_dis;
 | ||
| 	int byte;
 | ||
| 	int ba_loop, ba_bits;
 | ||
| 
 | ||
| 	union cvmx_lmcx_rlevel_ctl rlevel_ctl;
 | ||
| 	union cvmx_lmcx_dbtrain_ctl dbtrain_ctl;
 | ||
| 	union cvmx_lmcx_phy_ctl phy_ctl;
 | ||
| 
 | ||
| 	int biter_errs;
 | ||
| 
 | ||
| 	// FIXME: K iterations set to 4 for now.
 | ||
| 	// FIXME: decrement to increase interations.
 | ||
| 	// FIXME: must be no less than 22 to stay above an LMC hash field.
 | ||
| 	int kshift = 27;
 | ||
| 
 | ||
| 	const char *s;
 | ||
| 	int node = 0;
 | ||
| 
 | ||
| 	// allow override default setting for kshift
 | ||
| 	s = env_get("ddr_tune_set_kshift");
 | ||
| 	if (s) {
 | ||
| 		int temp = simple_strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 		if (temp < 22 || temp > 28) {
 | ||
| 			debug("N%d.LMC%d: ILLEGAL override of kshift to %d, using default %d\n",
 | ||
| 			      node, if_num, temp, kshift);
 | ||
| 		} else {
 | ||
| 			debug("N%d.LMC%d: overriding kshift (%d) to %d\n",
 | ||
| 			      node, if_num, kshift, temp);
 | ||
| 			kshift = temp;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 1) Make sure that RLEVEL_CTL[OR_DIS] = 0.
 | ||
| 	 */
 | ||
| 	rlevel_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_CTL(if_num));
 | ||
| 	save_or_dis = rlevel_ctl.s.or_dis;
 | ||
| 	/* or_dis must be disabled for this sequence */
 | ||
| 	rlevel_ctl.s.or_dis = 0;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_RLEVEL_CTL(if_num), rlevel_ctl.u64);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * NOTE: this step done in the calling routine(s)...
 | ||
| 	 * 3) Setup GENERAL_PURPOSE[0-2] registers with the data pattern
 | ||
| 	 * of choice.
 | ||
| 	 * a. GENERAL_PURPOSE0[DATA<63:0>] – sets the initial lower
 | ||
| 	 * (rising edge) 64 bits of data.
 | ||
| 	 * b. GENERAL_PURPOSE1[DATA<63:0>] – sets the initial upper
 | ||
| 	 * (falling edge) 64 bits of data.
 | ||
| 	 * c. GENERAL_PURPOSE2[DATA<15:0>] – sets the initial lower
 | ||
| 	 * (rising edge <7:0>) and upper (falling edge <15:8>) ECC data.
 | ||
| 	 */
 | ||
| 
 | ||
| 	// final address must include LMC and node
 | ||
| 	p |= (if_num << 7);	/* Map address into proper interface */
 | ||
| 	p |= (u64)node << CVMX_NODE_MEM_SHIFT;	// map to node
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Add base offset to both test regions to not clobber u-boot stuff
 | ||
| 	 * when running from L2 for NAND boot.
 | ||
| 	 */
 | ||
| 	p += 0x20000000;	// offset to 512MB, ie above THE HOLE!!!
 | ||
| 	p |= 1ull << 63;	// needed for OCTEON
 | ||
| 
 | ||
| 	errors = 0;
 | ||
| 
 | ||
| 	cvmx_dram_address_extract_info(priv, p, &node_address, &lmc, &dimm,
 | ||
| 				       &prank, &lrank, &bank, &row, &col);
 | ||
| 	debug("%s: START at A:0x%012llx, N%d L%d D%d/%d R%d B%1x Row:%05x Col:%05x\n",
 | ||
| 	      __func__, p, node_address, lmc, dimm, prank, lrank, bank,
 | ||
| 	      row, col);
 | ||
| 
 | ||
| 	// only check once per call, and ignore if no match...
 | ||
| 	if ((int)node != node_address) {
 | ||
| 		printf("ERROR: Node address mismatch\n");
 | ||
| 		return 0;
 | ||
| 	}
 | ||
| 	if (lmc != if_num) {
 | ||
| 		printf("ERROR: LMC address mismatch\n");
 | ||
| 		return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 7) Set PHY_CTL[PHY_RESET] = 1 (LMC automatically clears this as
 | ||
| 	 * it’s a one-shot operation). This is to get into the habit of
 | ||
| 	 * resetting PHY’s SILO to the original 0 location.
 | ||
| 	 */
 | ||
| 	phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
 | ||
| 	phy_ctl.s.phy_reset = 1;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Walk through a range of addresses avoiding bits that alias
 | ||
| 	 * interfaces on the CN88XX.
 | ||
| 	 */
 | ||
| 
 | ||
| 	// FIXME: want to try to keep the K increment from affecting the
 | ||
| 	// LMC via hash, so keep it above bit 21 we also want to keep k
 | ||
| 	// less than the base offset of bit 29 (512MB)
 | ||
| 
 | ||
| 	for (k = 0; k < (1UL << 29); k += (1UL << kshift)) {
 | ||
| 		// FIXME: the sequence will interate over 1/2 cacheline
 | ||
| 		// FIXME: for each unit specified in "read_cmd_count",
 | ||
| 		// FIXME: so, we setup each sequence to do the max cachelines
 | ||
| 		// it can
 | ||
| 
 | ||
| 		p1 = p + k;
 | ||
| 
 | ||
| 		cvmx_dram_address_extract_info(priv, p1, &node_address, &lmc,
 | ||
| 					       &dimm, &prank, &lrank, &bank,
 | ||
| 					       &row, &col);
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * 2) Setup the fields of the CSR DBTRAIN_CTL as follows:
 | ||
| 		 * a. COL, ROW, BA, BG, PRANK points to the starting point
 | ||
| 		 * of the address.
 | ||
| 		 * You can just set them to all 0.
 | ||
| 		 * b. RW_TRAIN – set this to 1.
 | ||
| 		 * c. TCCD_L – set this to 0.
 | ||
| 		 * d. READ_CMD_COUNT – instruct the sequence to the how many
 | ||
| 		 * writes/reads.
 | ||
| 		 * It is 5 bits field, so set to 31 of maximum # of r/w.
 | ||
| 		 */
 | ||
| 		dbtrain_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DBTRAIN_CTL(if_num));
 | ||
| 		dbtrain_ctl.s.column_a = col;
 | ||
| 		dbtrain_ctl.s.row_a = row;
 | ||
| 		dbtrain_ctl.s.bg = (bank >> 2) & 3;
 | ||
| 		dbtrain_ctl.s.prank = (dimm * 2) + prank;	// FIXME?
 | ||
| 		dbtrain_ctl.s.lrank = lrank;	// FIXME?
 | ||
| 		dbtrain_ctl.s.activate = (mode == DBTRAIN_DBI);
 | ||
| 		dbtrain_ctl.s.write_ena = 1;
 | ||
| 		dbtrain_ctl.s.read_cmd_count = 31;	// max count pass 1.x
 | ||
| 		if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) ||
 | ||
| 		    octeon_is_cpuid(OCTEON_CNF75XX)) {
 | ||
| 			// max count on chips that support it
 | ||
| 			dbtrain_ctl.s.cmd_count_ext = 3;
 | ||
| 		} else {
 | ||
| 			// max count pass 1.x
 | ||
| 			dbtrain_ctl.s.cmd_count_ext = 0;
 | ||
| 		}
 | ||
| 
 | ||
| 		dbtrain_ctl.s.rw_train = 1;
 | ||
| 		dbtrain_ctl.s.tccd_sel = (mode == DBTRAIN_DBI);
 | ||
| 		// LFSR should only be on when chip supports it...
 | ||
| 		dbtrain_ctl.s.lfsr_pattern_sel = (mode == DBTRAIN_LFSR) ? 1 : 0;
 | ||
| 
 | ||
| 		biter_errs = 0;
 | ||
| 
 | ||
| 		// for each address, iterate over the 4 "banks" in the BA
 | ||
| 		for (ba_loop = 0, ba_bits = bank & 3;
 | ||
| 		     ba_loop < 4; ba_loop++, ba_bits = (ba_bits + 1) & 3) {
 | ||
| 			dbtrain_ctl.s.ba = ba_bits;
 | ||
| 			lmc_wr(priv, CVMX_LMCX_DBTRAIN_CTL(if_num),
 | ||
| 			       dbtrain_ctl.u64);
 | ||
| 
 | ||
| 			/*
 | ||
| 			 * We will use the RW_TRAINING sequence (14) for
 | ||
| 			 * this task.
 | ||
| 			 *
 | ||
| 			 * 4) Kick off the sequence (SEQ_CTL[SEQ_SEL] = 14,
 | ||
| 			 *    SEQ_CTL[INIT_START] = 1).
 | ||
| 			 * 5) Poll on SEQ_CTL[SEQ_COMPLETE] for completion.
 | ||
| 			 */
 | ||
| 			oct3_ddr3_seq(priv, prank, if_num, 14);
 | ||
| 
 | ||
| 			/*
 | ||
| 			 * 6) Read MPR_DATA0 and MPR_DATA1 for results.
 | ||
| 			 * a. MPR_DATA0[MPR_DATA<63:0>] – comparison results
 | ||
| 			 *    for DQ63:DQ0. (1 means MATCH, 0 means FAIL).
 | ||
| 			 * b. MPR_DATA1[MPR_DATA<7:0>] – comparison results
 | ||
| 			 *    for ECC bit7:0.
 | ||
| 			 */
 | ||
| 			mpr_data0 = lmc_rd(priv, CVMX_LMCX_MPR_DATA0(if_num));
 | ||
| 			mpr_data1 = lmc_rd(priv, CVMX_LMCX_MPR_DATA1(if_num));
 | ||
| 
 | ||
| 			/*
 | ||
| 			 * 7) Set PHY_CTL[PHY_RESET] = 1 (LMC automatically
 | ||
| 			 * clears this as it’s a one-shot operation).
 | ||
| 			 * This is to get into the habit of resetting PHY’s
 | ||
| 			 * SILO to the original 0 location.
 | ||
| 			 */
 | ||
| 			phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
 | ||
| 			phy_ctl.s.phy_reset = 1;
 | ||
| 			lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
 | ||
| 
 | ||
| 			// bypass any error checking or updating when DBI mode
 | ||
| 			if (mode == DBTRAIN_DBI)
 | ||
| 				continue;
 | ||
| 
 | ||
| 			// data bytes
 | ||
| 			if (~mpr_data0) {
 | ||
| 				for (byte = 0; byte < 8; byte++) {
 | ||
| 					if ((~mpr_data0 >> (8 * byte)) & 0xffUL)
 | ||
| 						biter_errs |= (1 << byte);
 | ||
| 				}
 | ||
| 				// accumulate bad bits
 | ||
| 				bad_bits[0] |= ~mpr_data0;
 | ||
| 			}
 | ||
| 
 | ||
| 			// include ECC byte errors
 | ||
| 			if (~mpr_data1 & 0xffUL) {
 | ||
| 				biter_errs |= (1 << 8);
 | ||
| 				bad_bits[1] |= ~mpr_data1 & 0xffUL;
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		errors |= biter_errs;
 | ||
| 	}			/* end for (k=...) */
 | ||
| 
 | ||
| 	rlevel_ctl.s.or_dis = save_or_dis;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_RLEVEL_CTL(if_num), rlevel_ctl.u64);
 | ||
| 
 | ||
| 	// send the bad bits back...
 | ||
| 	if (mode != DBTRAIN_DBI && xor_data) {
 | ||
| 		xor_data[0] = bad_bits[0];
 | ||
| 		xor_data[1] = bad_bits[1];
 | ||
| 	}
 | ||
| 
 | ||
| 	return errors;
 | ||
| }
 | ||
| 
 | ||
| // setup default for byte test pattern array
 | ||
| // take these from the HRM section 6.9.13
 | ||
| static const u64 byte_pattern_0[] = {
 | ||
| 	0xFFAAFFFFFF55FFFFULL,	// GP0
 | ||
| 	0x55555555AAAAAAAAULL,	// GP1
 | ||
| 	0xAA55AAAAULL,		// GP2
 | ||
| };
 | ||
| 
 | ||
| static const u64 byte_pattern_1[] = {
 | ||
| 	0xFBF7EFDFBF7FFEFDULL,	// GP0
 | ||
| 	0x0F1E3C78F0E1C387ULL,	// GP1
 | ||
| 	0xF0E1BF7FULL,		// GP2
 | ||
| };
 | ||
| 
 | ||
| // this is from Andrew via LFSR with PRBS=0xFFFFAAAA
 | ||
| static const u64 byte_pattern_2[] = {
 | ||
| 	0xEE55AADDEE55AADDULL,	// GP0
 | ||
| 	0x55AADDEE55AADDEEULL,	// GP1
 | ||
| 	0x55EEULL,		// GP2
 | ||
| };
 | ||
| 
 | ||
| // this is from Mike via LFSR with PRBS=0x4A519909
 | ||
| static const u64 byte_pattern_3[] = {
 | ||
| 	0x0088CCEE0088CCEEULL,	// GP0
 | ||
| 	0xBB552211BB552211ULL,	// GP1
 | ||
| 	0xBB00ULL,		// GP2
 | ||
| };
 | ||
| 
 | ||
| static const u64 *byte_patterns[4] = {
 | ||
| 	byte_pattern_0, byte_pattern_1, byte_pattern_2, byte_pattern_3
 | ||
| };
 | ||
| 
 | ||
| static const u32 lfsr_patterns[4] = {
 | ||
| 	0xFFFFAAAAUL, 0x06000000UL, 0xAAAAFFFFUL, 0x4A519909UL
 | ||
| };
 | ||
| 
 | ||
| #define NUM_BYTE_PATTERNS 4
 | ||
| 
 | ||
| #define DEFAULT_BYTE_BURSTS 32	// compromise between time and rigor
 | ||
| 
 | ||
| static void setup_hw_pattern(struct ddr_priv *priv, int lmc,
 | ||
| 			     const u64 *pattern_p)
 | ||
| {
 | ||
| 	/*
 | ||
| 	 * 3) Setup GENERAL_PURPOSE[0-2] registers with the data pattern
 | ||
| 	 * of choice.
 | ||
| 	 * a. GENERAL_PURPOSE0[DATA<63:0>] â sets the initial lower
 | ||
| 	 *    (rising edge) 64 bits of data.
 | ||
| 	 * b. GENERAL_PURPOSE1[DATA<63:0>] â sets the initial upper
 | ||
| 	 *    (falling edge) 64 bits of data.
 | ||
| 	 * c. GENERAL_PURPOSE2[DATA<15:0>] â sets the initial lower
 | ||
| 	 *    (rising edge <7:0>) and upper
 | ||
| 	 * (falling edge <15:8>) ECC data.
 | ||
| 	 */
 | ||
| 	lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE0(lmc), pattern_p[0]);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE1(lmc), pattern_p[1]);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE2(lmc), pattern_p[2]);
 | ||
| }
 | ||
| 
 | ||
| static void setup_lfsr_pattern(struct ddr_priv *priv, int lmc, u32 data)
 | ||
| {
 | ||
| 	union cvmx_lmcx_char_ctl char_ctl;
 | ||
| 	u32 prbs;
 | ||
| 	const char *s;
 | ||
| 
 | ||
| 	s = env_get("ddr_lfsr_prbs");
 | ||
| 	if (s)
 | ||
| 		prbs = simple_strtoul(s, NULL, 0);
 | ||
| 	else
 | ||
| 		prbs = data;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 2) DBTRAIN_CTL[LFSR_PATTERN_SEL] = 1
 | ||
| 	 * here data comes from the LFSR generating a PRBS pattern
 | ||
| 	 * CHAR_CTL.EN = 0
 | ||
| 	 * CHAR_CTL.SEL = 0; // for PRBS
 | ||
| 	 * CHAR_CTL.DR = 1;
 | ||
| 	 * CHAR_CTL.PRBS = setup for whatever type of PRBS to send
 | ||
| 	 * CHAR_CTL.SKEW_ON = 1;
 | ||
| 	 */
 | ||
| 	char_ctl.u64 = lmc_rd(priv, CVMX_LMCX_CHAR_CTL(lmc));
 | ||
| 	char_ctl.s.en = 0;
 | ||
| 	char_ctl.s.sel = 0;
 | ||
| 	char_ctl.s.dr = 1;
 | ||
| 	char_ctl.s.prbs = prbs;
 | ||
| 	char_ctl.s.skew_on = 1;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_CHAR_CTL(lmc), char_ctl.u64);
 | ||
| }
 | ||
| 
 | ||
| static int choose_best_hw_patterns(int lmc, int mode)
 | ||
| {
 | ||
| 	int new_mode = mode;
 | ||
| 	const char *s;
 | ||
| 
 | ||
| 	switch (mode) {
 | ||
| 	case DBTRAIN_TEST:	// always choose LFSR if chip supports it
 | ||
| 		if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X)) {
 | ||
| 			int lfsr_enable = 1;
 | ||
| 
 | ||
| 			s = env_get("ddr_allow_lfsr");
 | ||
| 			if (s) {
 | ||
| 				// override?
 | ||
| 				lfsr_enable = !!strtoul(s, NULL, 0);
 | ||
| 			}
 | ||
| 
 | ||
| 			if (lfsr_enable)
 | ||
| 				new_mode = DBTRAIN_LFSR;
 | ||
| 		}
 | ||
| 		break;
 | ||
| 
 | ||
| 	case DBTRAIN_DBI:	// possibly can allow LFSR use?
 | ||
| 		break;
 | ||
| 
 | ||
| 	case DBTRAIN_LFSR:	// forced already
 | ||
| 		if (!octeon_is_cpuid(OCTEON_CN78XX_PASS2_X)) {
 | ||
| 			debug("ERROR: illegal HW assist mode %d\n", mode);
 | ||
| 			new_mode = DBTRAIN_TEST;
 | ||
| 		}
 | ||
| 		break;
 | ||
| 
 | ||
| 	default:
 | ||
| 		debug("ERROR: unknown HW assist mode %d\n", mode);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (new_mode != mode)
 | ||
| 		debug("%s: changing mode %d to %d\n", __func__, mode, new_mode);
 | ||
| 
 | ||
| 	return new_mode;
 | ||
| }
 | ||
| 
 | ||
| int run_best_hw_patterns(struct ddr_priv *priv, int lmc, u64 phys_addr,
 | ||
| 			 int mode, u64 *xor_data)
 | ||
| {
 | ||
| 	int pattern;
 | ||
| 	const u64 *pattern_p;
 | ||
| 	int errs, errors = 0;
 | ||
| 
 | ||
| 	// FIXME? always choose LFSR if chip supports it???
 | ||
| 	mode = choose_best_hw_patterns(lmc, mode);
 | ||
| 
 | ||
| 	for (pattern = 0; pattern < NUM_BYTE_PATTERNS; pattern++) {
 | ||
| 		if (mode == DBTRAIN_LFSR) {
 | ||
| 			setup_lfsr_pattern(priv, lmc, lfsr_patterns[pattern]);
 | ||
| 		} else {
 | ||
| 			pattern_p = byte_patterns[pattern];
 | ||
| 			setup_hw_pattern(priv, lmc, pattern_p);
 | ||
| 		}
 | ||
| 		errs = test_dram_byte_hw(priv, lmc, phys_addr, mode, xor_data);
 | ||
| 
 | ||
| 		debug("%s: PATTERN %d at A:0x%012llx errors 0x%x\n",
 | ||
| 		      __func__, pattern, phys_addr, errs);
 | ||
| 
 | ||
| 		errors |= errs;
 | ||
| 	}
 | ||
| 
 | ||
| 	return errors;
 | ||
| }
 | ||
| 
 | ||
| static void hw_assist_test_dll_offset(struct ddr_priv *priv,
 | ||
| 				      int dll_offset_mode, int lmc,
 | ||
| 				      int bytelane,
 | ||
| 				      int if_64b,
 | ||
| 				      u64 dram_tune_rank_offset,
 | ||
| 				      int dram_tune_byte_bursts)
 | ||
| {
 | ||
| 	int byte_offset, new_best_offset[9];
 | ||
| 	int rank_delay_start[4][9];
 | ||
| 	int rank_delay_count[4][9];
 | ||
| 	int rank_delay_best_start[4][9];
 | ||
| 	int rank_delay_best_count[4][9];
 | ||
| 	int errors[4], off_errors, tot_errors;
 | ||
| 	int rank_mask, rankx, active_ranks;
 | ||
| 	int pattern;
 | ||
| 	const u64 *pattern_p;
 | ||
| 	int byte;
 | ||
| 	char *mode_str = (dll_offset_mode == 2) ? "Read" : "Write";
 | ||
| 	int pat_best_offset[9];
 | ||
| 	u64 phys_addr;
 | ||
| 	int pat_beg, pat_end;
 | ||
| 	int rank_beg, rank_end;
 | ||
| 	int byte_lo, byte_hi;
 | ||
| 	union cvmx_lmcx_config lmcx_config;
 | ||
| 	u64 hw_rank_offset;
 | ||
| 	int num_lmcs = cvmx_dram_get_num_lmc(priv);
 | ||
| 	// FIXME? always choose LFSR if chip supports it???
 | ||
| 	int mode = choose_best_hw_patterns(lmc, DBTRAIN_TEST);
 | ||
| 	int node = 0;
 | ||
| 
 | ||
| 	if (bytelane == 0x0A) {	// all bytelanes
 | ||
| 		byte_lo = 0;
 | ||
| 		byte_hi = 8;
 | ||
| 	} else {		// just 1
 | ||
| 		byte_lo = bytelane;
 | ||
| 		byte_hi = bytelane;
 | ||
| 	}
 | ||
| 
 | ||
| 	lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
 | ||
| 	rank_mask = lmcx_config.s.init_status;
 | ||
| 
 | ||
| 	// this should be correct for 1 or 2 ranks, 1 or 2 DIMMs
 | ||
| 	hw_rank_offset =
 | ||
| 	    1ull << (28 + lmcx_config.s.pbank_lsb - lmcx_config.s.rank_ena +
 | ||
| 		     (num_lmcs / 2));
 | ||
| 
 | ||
| 	debug("N%d: %s: starting LMC%d with rank offset 0x%016llx\n",
 | ||
| 	      node, __func__, lmc, (unsigned long long)hw_rank_offset);
 | ||
| 
 | ||
| 	// start of pattern loop
 | ||
| 	// we do the set of tests for each pattern supplied...
 | ||
| 
 | ||
| 	memset(new_best_offset, 0, sizeof(new_best_offset));
 | ||
| 	for (pattern = 0; pattern < NUM_BYTE_PATTERNS; pattern++) {
 | ||
| 		memset(pat_best_offset, 0, sizeof(pat_best_offset));
 | ||
| 
 | ||
| 		if (mode == DBTRAIN_TEST) {
 | ||
| 			pattern_p = byte_patterns[pattern];
 | ||
| 			setup_hw_pattern(priv, lmc, pattern_p);
 | ||
| 		} else {
 | ||
| 			setup_lfsr_pattern(priv, lmc, lfsr_patterns[pattern]);
 | ||
| 		}
 | ||
| 
 | ||
| 		// now loop through all legal values for the DLL byte offset...
 | ||
| 
 | ||
| #define BYTE_OFFSET_INCR 3	// FIXME: make this tunable?
 | ||
| 
 | ||
| 		tot_errors = 0;
 | ||
| 
 | ||
| 		memset(rank_delay_count, 0, sizeof(rank_delay_count));
 | ||
| 		memset(rank_delay_start, 0, sizeof(rank_delay_start));
 | ||
| 		memset(rank_delay_best_count, 0, sizeof(rank_delay_best_count));
 | ||
| 		memset(rank_delay_best_start, 0, sizeof(rank_delay_best_start));
 | ||
| 
 | ||
| 		for (byte_offset = -63; byte_offset < 64;
 | ||
| 		     byte_offset += BYTE_OFFSET_INCR) {
 | ||
| 			// do the setup on the active LMC
 | ||
| 			// set the bytelanes DLL offsets
 | ||
| 			change_dll_offset_enable(priv, lmc, 0);
 | ||
| 			// FIXME? bytelane?
 | ||
| 			load_dll_offset(priv, lmc, dll_offset_mode,
 | ||
| 					byte_offset, bytelane);
 | ||
| 			change_dll_offset_enable(priv, lmc, 1);
 | ||
| 
 | ||
| 			//bdk_watchdog_poke();
 | ||
| 
 | ||
| 			// run the test on each rank
 | ||
| 			// only 1 call per rank should be enough, let the
 | ||
| 			// bursts, loops, etc, control the load...
 | ||
| 
 | ||
| 			// errors for this byte_offset, all ranks
 | ||
| 			off_errors = 0;
 | ||
| 
 | ||
| 			active_ranks = 0;
 | ||
| 
 | ||
| 			for (rankx = 0; rankx < 4; rankx++) {
 | ||
| 				if (!(rank_mask & (1 << rankx)))
 | ||
| 					continue;
 | ||
| 
 | ||
| 				phys_addr = hw_rank_offset * active_ranks;
 | ||
| 				// FIXME: now done by test_dram_byte_hw()
 | ||
| 				//phys_addr |= (lmc << 7);
 | ||
| 				//phys_addr |= (u64)node << CVMX_NODE_MEM_SHIFT;
 | ||
| 
 | ||
| 				active_ranks++;
 | ||
| 
 | ||
| 				// NOTE: return is a now a bitmask of the
 | ||
| 				// erroring bytelanes.
 | ||
| 				errors[rankx] =
 | ||
| 				    test_dram_byte_hw(priv, lmc, phys_addr,
 | ||
| 						      mode, NULL);
 | ||
| 
 | ||
| 				// process any errors in the bytelane(s) that
 | ||
| 				// are being tested
 | ||
| 				for (byte = byte_lo; byte <= byte_hi; byte++) {
 | ||
| 					// check errors
 | ||
| 					// yes, an error in the byte lane in
 | ||
| 					// this rank
 | ||
| 					if (errors[rankx] & (1 << byte)) {
 | ||
| 						off_errors |= (1 << byte);
 | ||
| 
 | ||
| 						debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: Address 0x%012llx errors\n",
 | ||
| 						      node, lmc, rankx, byte,
 | ||
| 						      mode_str, byte_offset,
 | ||
| 						      phys_addr);
 | ||
| 
 | ||
| 						// had started run
 | ||
| 						if (rank_delay_count
 | ||
| 						    [rankx][byte] > 0) {
 | ||
| 							debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: stopping a run here\n",
 | ||
| 							      node, lmc, rankx,
 | ||
| 							      byte, mode_str,
 | ||
| 							      byte_offset);
 | ||
| 							// stop now
 | ||
| 							rank_delay_count
 | ||
| 								[rankx][byte] =
 | ||
| 								0;
 | ||
| 						}
 | ||
| 						// FIXME: else had not started
 | ||
| 						// run - nothing else to do?
 | ||
| 					} else {
 | ||
| 						// no error in the byte lane
 | ||
| 						// first success, set run start
 | ||
| 						if (rank_delay_count[rankx]
 | ||
| 						    [byte] == 0) {
 | ||
| 							debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: starting a run here\n",
 | ||
| 							      node, lmc, rankx,
 | ||
| 							      byte, mode_str,
 | ||
| 							      byte_offset);
 | ||
| 							rank_delay_start[rankx]
 | ||
| 								[byte] =
 | ||
| 								byte_offset;
 | ||
| 						}
 | ||
| 						// bump run length
 | ||
| 						rank_delay_count[rankx][byte]
 | ||
| 							+= BYTE_OFFSET_INCR;
 | ||
| 
 | ||
| 						// is this now the biggest
 | ||
| 						// window?
 | ||
| 						if (rank_delay_count[rankx]
 | ||
| 						    [byte] >
 | ||
| 						    rank_delay_best_count[rankx]
 | ||
| 						    [byte]) {
 | ||
| 							rank_delay_best_count
 | ||
| 							    [rankx][byte] =
 | ||
| 							    rank_delay_count
 | ||
| 							    [rankx][byte];
 | ||
| 							rank_delay_best_start
 | ||
| 							    [rankx][byte] =
 | ||
| 							    rank_delay_start
 | ||
| 							    [rankx][byte];
 | ||
| 							debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: updating best to %d/%d\n",
 | ||
| 							      node, lmc, rankx,
 | ||
| 							      byte, mode_str,
 | ||
| 							      byte_offset,
 | ||
| 							      rank_delay_best_start
 | ||
| 							      [rankx][byte],
 | ||
| 							      rank_delay_best_count
 | ||
| 							      [rankx][byte]);
 | ||
| 						}
 | ||
| 					}
 | ||
| 				}
 | ||
| 			} /* for (rankx = 0; rankx < 4; rankx++) */
 | ||
| 
 | ||
| 			tot_errors |= off_errors;
 | ||
| 		}
 | ||
| 
 | ||
| 		// set the bytelanes DLL offsets all back to 0
 | ||
| 		change_dll_offset_enable(priv, lmc, 0);
 | ||
| 		load_dll_offset(priv, lmc, dll_offset_mode, 0, bytelane);
 | ||
| 		change_dll_offset_enable(priv, lmc, 1);
 | ||
| 
 | ||
| 		// now choose the best byte_offsets for this pattern
 | ||
| 		// according to the best windows of the tested ranks
 | ||
| 		// calculate offset by constructing an average window
 | ||
| 		// from the rank windows
 | ||
| 		for (byte = byte_lo; byte <= byte_hi; byte++) {
 | ||
| 			pat_beg = -999;
 | ||
| 			pat_end = 999;
 | ||
| 
 | ||
| 			for (rankx = 0; rankx < 4; rankx++) {
 | ||
| 				if (!(rank_mask & (1 << rankx)))
 | ||
| 					continue;
 | ||
| 
 | ||
| 				rank_beg = rank_delay_best_start[rankx][byte];
 | ||
| 				pat_beg = max(pat_beg, rank_beg);
 | ||
| 				rank_end = rank_beg +
 | ||
| 					rank_delay_best_count[rankx][byte] -
 | ||
| 					BYTE_OFFSET_INCR;
 | ||
| 				pat_end = min(pat_end, rank_end);
 | ||
| 
 | ||
| 				debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test:  Rank Window %3d:%3d\n",
 | ||
| 				      node, lmc, rankx, byte, mode_str,
 | ||
| 				      rank_beg, rank_end);
 | ||
| 
 | ||
| 			}	/* for (rankx = 0; rankx < 4; rankx++) */
 | ||
| 
 | ||
| 			pat_best_offset[byte] = (pat_end + pat_beg) / 2;
 | ||
| 
 | ||
| 			// sum the pattern averages
 | ||
| 			new_best_offset[byte] += pat_best_offset[byte];
 | ||
| 		}
 | ||
| 
 | ||
| 		// now print them on 1 line, descending order...
 | ||
| 		debug("N%d.LMC%d: HW DLL %s Offset Pattern %d :",
 | ||
| 		      node, lmc, mode_str, pattern);
 | ||
| 		for (byte = byte_hi; byte >= byte_lo; --byte)
 | ||
| 			debug(" %4d", pat_best_offset[byte]);
 | ||
| 		debug("\n");
 | ||
| 	}
 | ||
| 	// end of pattern loop
 | ||
| 
 | ||
| 	debug("N%d.LMC%d: HW DLL %s Offset Average  : ", node, lmc, mode_str);
 | ||
| 
 | ||
| 	// print in decending byte index order
 | ||
| 	for (byte = byte_hi; byte >= byte_lo; --byte) {
 | ||
| 		// create the new average NINT
 | ||
| 		new_best_offset[byte] = divide_nint(new_best_offset[byte],
 | ||
| 						    NUM_BYTE_PATTERNS);
 | ||
| 
 | ||
| 		// print the best offsets from all patterns
 | ||
| 
 | ||
| 		// print just the offset of all the bytes
 | ||
| 		if (bytelane == 0x0A)
 | ||
| 			debug("%4d ", new_best_offset[byte]);
 | ||
| 		else		// print the bytelanes also
 | ||
| 			debug("(byte %d) %4d ", byte, new_best_offset[byte]);
 | ||
| 
 | ||
| 		// done with testing, load up the best offsets we found...
 | ||
| 		// disable offsets while we load...
 | ||
| 		change_dll_offset_enable(priv, lmc, 0);
 | ||
| 		load_dll_offset(priv, lmc, dll_offset_mode,
 | ||
| 				new_best_offset[byte], byte);
 | ||
| 		// re-enable the offsets now that we are done loading
 | ||
| 		change_dll_offset_enable(priv, lmc, 1);
 | ||
| 	}
 | ||
| 
 | ||
| 	debug("\n");
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Automatically adjust the DLL offset for the selected bytelane using
 | ||
|  * hardware-assist
 | ||
|  */
 | ||
| static int perform_HW_dll_offset_tuning(struct ddr_priv *priv,
 | ||
| 					int dll_offset_mode, int bytelane)
 | ||
| {
 | ||
| 	int if_64b;
 | ||
| 	int save_ecc_ena[4];
 | ||
| 	union cvmx_lmcx_config lmc_config;
 | ||
| 	int lmc, num_lmcs = cvmx_dram_get_num_lmc(priv);
 | ||
| 	const char *s;
 | ||
| 	int loops = 1, loop;
 | ||
| 	int by;
 | ||
| 	u64 dram_tune_rank_offset;
 | ||
| 	int dram_tune_byte_bursts = DEFAULT_BYTE_BURSTS;
 | ||
| 	int node = 0;
 | ||
| 
 | ||
| 	// see if we want to do the tuning more than once per LMC...
 | ||
| 	s = env_get("ddr_tune_ecc_loops");
 | ||
| 	if (s)
 | ||
| 		loops = strtoul(s, NULL, 0);
 | ||
| 
 | ||
| 	// allow override of the test repeats (bursts)
 | ||
| 	s = env_get("ddr_tune_byte_bursts");
 | ||
| 	if (s)
 | ||
| 		dram_tune_byte_bursts = strtoul(s, NULL, 10);
 | ||
| 
 | ||
| 	// print current working values
 | ||
| 	debug("N%d: H/W Tuning for bytelane %d will use %d loops, %d bursts, and %d patterns.\n",
 | ||
| 	      node, bytelane, loops, dram_tune_byte_bursts, NUM_BYTE_PATTERNS);
 | ||
| 
 | ||
| 	// FIXME? get flag from LMC0 only
 | ||
| 	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(0));
 | ||
| 	if_64b = !lmc_config.s.mode32b;
 | ||
| 
 | ||
| 	// this should be correct for 1 or 2 ranks, 1 or 2 DIMMs
 | ||
| 	dram_tune_rank_offset =
 | ||
| 	    1ull << (28 + lmc_config.s.pbank_lsb - lmc_config.s.rank_ena +
 | ||
| 		     (num_lmcs / 2));
 | ||
| 
 | ||
| 	// do once for each active LMC
 | ||
| 
 | ||
| 	for (lmc = 0; lmc < num_lmcs; lmc++) {
 | ||
| 		debug("N%d: H/W Tuning: starting LMC%d bytelane %d tune.\n",
 | ||
| 		      node, lmc, bytelane);
 | ||
| 
 | ||
| 		/* Enable ECC for the HW tests */
 | ||
| 		// NOTE: we do enable ECC, but the HW tests used will not
 | ||
| 		// generate "visible" errors
 | ||
| 		lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
 | ||
| 		save_ecc_ena[lmc] = lmc_config.s.ecc_ena;
 | ||
| 		lmc_config.s.ecc_ena = 1;
 | ||
| 		lmc_wr(priv, CVMX_LMCX_CONFIG(lmc), lmc_config.u64);
 | ||
| 		lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
 | ||
| 
 | ||
| 		// testing is done on a single LMC at a time
 | ||
| 		// FIXME: for now, loop here to show what happens multiple times
 | ||
| 		for (loop = 0; loop < loops; loop++) {
 | ||
| 			/* Perform DLL offset tuning */
 | ||
| 			hw_assist_test_dll_offset(priv, 2 /* 2=read */, lmc,
 | ||
| 						  bytelane,
 | ||
| 						  if_64b, dram_tune_rank_offset,
 | ||
| 						  dram_tune_byte_bursts);
 | ||
| 		}
 | ||
| 
 | ||
| 		// perform cleanup on active LMC
 | ||
| 		debug("N%d: H/W Tuning: finishing LMC%d bytelane %d tune.\n",
 | ||
| 		      node, lmc, bytelane);
 | ||
| 
 | ||
| 		/* Restore ECC for DRAM tests */
 | ||
| 		lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
 | ||
| 		lmc_config.s.ecc_ena = save_ecc_ena[lmc];
 | ||
| 		lmc_wr(priv, CVMX_LMCX_CONFIG(lmc), lmc_config.u64);
 | ||
| 		lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
 | ||
| 
 | ||
| 		// finally, see if there are any read offset overrides
 | ||
| 		// after tuning
 | ||
| 		for (by = 0; by < 9; by++) {
 | ||
| 			s = lookup_env(priv, "ddr%d_tune_byte%d", lmc, by);
 | ||
| 			if (s) {
 | ||
| 				int dllro = strtoul(s, NULL, 10);
 | ||
| 
 | ||
| 				change_dll_offset_enable(priv, lmc, 0);
 | ||
| 				load_dll_offset(priv, lmc, 2, dllro, by);
 | ||
| 				change_dll_offset_enable(priv, lmc, 1);
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 	}			/* for (lmc = 0; lmc < num_lmcs; lmc++) */
 | ||
| 
 | ||
| 	// finish up...
 | ||
| 
 | ||
| 	return 0;
 | ||
| 
 | ||
| }				/* perform_HW_dll_offset_tuning */
 | ||
| 
 | ||
| // this routine simply makes the calls to the tuning routine and returns
 | ||
| // any errors
 | ||
| static int cvmx_tune_node(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	int errs, tot_errs;
 | ||
| 	int do_dllwo = 0;	// default to NO
 | ||
| 	const char *str;
 | ||
| 	int node = 0;
 | ||
| 
 | ||
| 	// Automatically tune the data and ECC byte DLL read offsets
 | ||
| 	debug("N%d: Starting DLL Read Offset Tuning for LMCs\n", node);
 | ||
| 	errs = perform_HW_dll_offset_tuning(priv, 2, 0x0A /* all bytelanes */);
 | ||
| 	debug("N%d: Finished DLL Read Offset Tuning for LMCs, %d errors\n",
 | ||
| 	      node, errs);
 | ||
| 	tot_errs = errs;
 | ||
| 
 | ||
| 	// disabled by default for now, does not seem to be needed?
 | ||
| 	// Automatically tune the data and ECC byte DLL write offsets
 | ||
| 	// allow override of default setting
 | ||
| 	str = env_get("ddr_tune_write_offsets");
 | ||
| 	if (str)
 | ||
| 		do_dllwo = !!strtoul(str, NULL, 0);
 | ||
| 	if (do_dllwo) {
 | ||
| 		debug("N%d: Starting DLL Write Offset Tuning for LMCs\n", node);
 | ||
| 		errs =
 | ||
| 		    perform_HW_dll_offset_tuning(priv, 1,
 | ||
| 						 0x0A /* all bytelanes */);
 | ||
| 		debug("N%d: Finished DLL Write Offset Tuning for LMCs, %d errors\n",
 | ||
| 		      node, errs);
 | ||
| 		tot_errs += errs;
 | ||
| 	}
 | ||
| 
 | ||
| 	return tot_errs;
 | ||
| }
 | ||
| 
 | ||
| // this routine makes the calls to the tuning routines when criteria are met
 | ||
| // intended to be called for automated tuning, to apply filtering...
 | ||
| 
 | ||
| #define IS_DDR4  1
 | ||
| #define IS_DDR3  0
 | ||
| #define IS_RDIMM 1
 | ||
| #define IS_UDIMM 0
 | ||
| #define IS_1SLOT 1
 | ||
| #define IS_2SLOT 0
 | ||
| 
 | ||
| // FIXME: DDR3 is not tuned
 | ||
| static const u32 ddr_speed_filter[2][2][2] = {
 | ||
| 	[IS_DDR4] = {
 | ||
| 		     [IS_RDIMM] = {
 | ||
| 				   [IS_1SLOT] = 940,
 | ||
| 				   [IS_2SLOT] = 800},
 | ||
| 		     [IS_UDIMM] = {
 | ||
| 				   [IS_1SLOT] = 1050,
 | ||
| 				   [IS_2SLOT] = 940},
 | ||
| 		      },
 | ||
| 	[IS_DDR3] = {
 | ||
| 		     [IS_RDIMM] = {
 | ||
| 				   [IS_1SLOT] = 0,	// disabled
 | ||
| 				   [IS_2SLOT] = 0	// disabled
 | ||
| 				   },
 | ||
| 		     [IS_UDIMM] = {
 | ||
| 				   [IS_1SLOT] = 0,	// disabled
 | ||
| 				   [IS_2SLOT] = 0	// disabled
 | ||
| 				}
 | ||
| 		}
 | ||
| };
 | ||
| 
 | ||
| void cvmx_maybe_tune_node(struct ddr_priv *priv, u32 ddr_speed)
 | ||
| {
 | ||
| 	const char *s;
 | ||
| 	union cvmx_lmcx_config lmc_config;
 | ||
| 	union cvmx_lmcx_control lmc_control;
 | ||
| 	union cvmx_lmcx_ddr_pll_ctl lmc_ddr_pll_ctl;
 | ||
| 	int is_ddr4;
 | ||
| 	int is_rdimm;
 | ||
| 	int is_1slot;
 | ||
| 	int do_tune = 0;
 | ||
| 	u32 ddr_min_speed;
 | ||
| 	int node = 0;
 | ||
| 
 | ||
| 	// scale it down from Hz to MHz
 | ||
| 	ddr_speed = divide_nint(ddr_speed, 1000000);
 | ||
| 
 | ||
| 	// FIXME: allow an override here so that all configs can be tuned
 | ||
| 	// or none
 | ||
| 	// If the envvar is defined, always either force it or avoid it
 | ||
| 	// accordingly
 | ||
| 	s = env_get("ddr_tune_all_configs");
 | ||
| 	if (s) {
 | ||
| 		do_tune = !!strtoul(s, NULL, 0);
 | ||
| 		printf("N%d: DRAM auto-tuning %s.\n", node,
 | ||
| 		       (do_tune) ? "forced" : "disabled");
 | ||
| 		if (do_tune)
 | ||
| 			cvmx_tune_node(priv);
 | ||
| 
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	// filter the tuning calls here...
 | ||
| 	// determine if we should/can run automatically for this configuration
 | ||
| 	//
 | ||
| 	// FIXME: tune only when the configuration indicates it will help:
 | ||
| 	//    DDR type, RDIMM or UDIMM, 1-slot or 2-slot, and speed
 | ||
| 	//
 | ||
| 	lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(0));	// sample LMC0
 | ||
| 	lmc_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(0));	// sample LMC0
 | ||
| 	// sample LMC0
 | ||
| 	lmc_ddr_pll_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(0));
 | ||
| 
 | ||
| 	is_ddr4 = (lmc_ddr_pll_ctl.s.ddr4_mode != 0);
 | ||
| 	is_rdimm = (lmc_control.s.rdimm_ena != 0);
 | ||
| 	// HACK, should do better
 | ||
| 	is_1slot = (lmc_config.s.init_status < 4);
 | ||
| 
 | ||
| 	ddr_min_speed = ddr_speed_filter[is_ddr4][is_rdimm][is_1slot];
 | ||
| 	do_tune = ((ddr_min_speed != 0) && (ddr_speed > ddr_min_speed));
 | ||
| 
 | ||
| 	debug("N%d: DDR%d %cDIMM %d-slot at %d MHz %s eligible for auto-tuning.\n",
 | ||
| 	      node, (is_ddr4) ? 4 : 3, (is_rdimm) ? 'R' : 'U',
 | ||
| 	      (is_1slot) ? 1 : 2, ddr_speed, (do_tune) ? "is" : "is not");
 | ||
| 
 | ||
| 	// call the tuning routine, filtering is done...
 | ||
| 	if (do_tune)
 | ||
| 		cvmx_tune_node(priv);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * first pattern example:
 | ||
|  * GENERAL_PURPOSE0.DATA == 64'h00ff00ff00ff00ff;
 | ||
|  * GENERAL_PURPOSE1.DATA == 64'h00ff00ff00ff00ff;
 | ||
|  * GENERAL_PURPOSE0.DATA == 16'h0000;
 | ||
|  */
 | ||
| 
 | ||
| static const u64 dbi_pattern[3] = {
 | ||
| 	0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x0000ULL };
 | ||
| 
 | ||
| // Perform switchover to DBI
 | ||
| static void cvmx_dbi_switchover_interface(struct ddr_priv *priv, int lmc)
 | ||
| {
 | ||
| 	union cvmx_lmcx_modereg_params0 modereg_params0;
 | ||
| 	union cvmx_lmcx_modereg_params3 modereg_params3;
 | ||
| 	union cvmx_lmcx_phy_ctl phy_ctl;
 | ||
| 	union cvmx_lmcx_config lmcx_config;
 | ||
| 	union cvmx_lmcx_ddr_pll_ctl ddr_pll_ctl;
 | ||
| 	int rank_mask, rankx, active_ranks;
 | ||
| 	u64 phys_addr, rank_offset;
 | ||
| 	int num_lmcs, errors;
 | ||
| 	int dbi_settings[9], byte, unlocked, retries;
 | ||
| 	int ecc_ena;
 | ||
| 	int rank_max = 1;	// FIXME: make this 4 to try all the ranks
 | ||
| 	int node = 0;
 | ||
| 
 | ||
| 	ddr_pll_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(0));
 | ||
| 
 | ||
| 	lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
 | ||
| 	rank_mask = lmcx_config.s.init_status;
 | ||
| 	ecc_ena = lmcx_config.s.ecc_ena;
 | ||
| 
 | ||
| 	// FIXME: must filter out any non-supported configs
 | ||
| 	//        ie, no DDR3, no x4 devices
 | ||
| 	if (ddr_pll_ctl.s.ddr4_mode == 0 || lmcx_config.s.mode_x4dev == 1) {
 | ||
| 		debug("N%d.LMC%d: DBI switchover: inappropriate device; EXITING...\n",
 | ||
| 		      node, lmc);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	// this should be correct for 1 or 2 ranks, 1 or 2 DIMMs
 | ||
| 	num_lmcs = cvmx_dram_get_num_lmc(priv);
 | ||
| 	rank_offset = 1ull << (28 + lmcx_config.s.pbank_lsb -
 | ||
| 			       lmcx_config.s.rank_ena + (num_lmcs / 2));
 | ||
| 
 | ||
| 	debug("N%d.LMC%d: DBI switchover: rank mask 0x%x, rank size 0x%016llx.\n",
 | ||
| 	      node, lmc, rank_mask, (unsigned long long)rank_offset);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 1. conduct the current init sequence as usual all the way
 | ||
| 	 * after software write leveling.
 | ||
| 	 */
 | ||
| 
 | ||
| 	read_dac_dbi_settings(priv, lmc, /*DBI*/ 0, dbi_settings);
 | ||
| 
 | ||
| 	display_dac_dbi_settings(lmc, /*DBI*/ 0, ecc_ena, dbi_settings,
 | ||
| 				 " INIT");
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 2. set DBI related CSRs as below and issue MR write.
 | ||
| 	 * MODEREG_PARAMS3.WR_DBI=1
 | ||
| 	 * MODEREG_PARAMS3.RD_DBI=1
 | ||
| 	 * PHY_CTL.DBI_MODE_ENA=1
 | ||
| 	 */
 | ||
| 	modereg_params0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(lmc));
 | ||
| 
 | ||
| 	modereg_params3.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS3(lmc));
 | ||
| 	modereg_params3.s.wr_dbi = 1;
 | ||
| 	modereg_params3.s.rd_dbi = 1;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS3(lmc), modereg_params3.u64);
 | ||
| 
 | ||
| 	phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(lmc));
 | ||
| 	phy_ctl.s.dbi_mode_ena = 1;
 | ||
| 	lmc_wr(priv, CVMX_LMCX_PHY_CTL(lmc), phy_ctl.u64);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * there are two options for data to send.  Lets start with (1)
 | ||
| 	 * and could move to (2) in the future:
 | ||
| 	 *
 | ||
| 	 * 1) DBTRAIN_CTL[LFSR_PATTERN_SEL] = 0 (or for older chips where
 | ||
| 	 * this does not exist) set data directly in these reigsters.
 | ||
| 	 * this will yield a clk/2 pattern:
 | ||
| 	 * GENERAL_PURPOSE0.DATA == 64'h00ff00ff00ff00ff;
 | ||
| 	 * GENERAL_PURPOSE1.DATA == 64'h00ff00ff00ff00ff;
 | ||
| 	 * GENERAL_PURPOSE0.DATA == 16'h0000;
 | ||
| 	 * 2) DBTRAIN_CTL[LFSR_PATTERN_SEL] = 1
 | ||
| 	 * here data comes from the LFSR generating a PRBS pattern
 | ||
| 	 * CHAR_CTL.EN = 0
 | ||
| 	 * CHAR_CTL.SEL = 0; // for PRBS
 | ||
| 	 * CHAR_CTL.DR = 1;
 | ||
| 	 * CHAR_CTL.PRBS = setup for whatever type of PRBS to send
 | ||
| 	 * CHAR_CTL.SKEW_ON = 1;
 | ||
| 	 */
 | ||
| 	lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE0(lmc), dbi_pattern[0]);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE1(lmc), dbi_pattern[1]);
 | ||
| 	lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE2(lmc), dbi_pattern[2]);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 3. adjust cas_latency (only necessary if RD_DBI is set).
 | ||
| 	 * here is my code for doing this:
 | ||
| 	 *
 | ||
| 	 * if (csr_model.MODEREG_PARAMS3.RD_DBI.value == 1) begin
 | ||
| 	 * case (csr_model.MODEREG_PARAMS0.CL.value)
 | ||
| 	 * 0,1,2,3,4: csr_model.MODEREG_PARAMS0.CL.value += 2;
 | ||
| 	 * // CL 9-13 -> 11-15
 | ||
| 	 * 5: begin
 | ||
| 	 * // CL=14, CWL=10,12 gets +2, CLW=11,14 gets +3
 | ||
| 	 * if((csr_model.MODEREG_PARAMS0.CWL.value==1 ||
 | ||
| 	 * csr_model.MODEREG_PARAMS0.CWL.value==3))
 | ||
| 	 * csr_model.MODEREG_PARAMS0.CL.value = 7; // 14->16
 | ||
| 	 * else
 | ||
| 	 * csr_model.MODEREG_PARAMS0.CL.value = 13; // 14->17
 | ||
| 	 * end
 | ||
| 	 * 6: csr_model.MODEREG_PARAMS0.CL.value = 8; // 15->18
 | ||
| 	 * 7: csr_model.MODEREG_PARAMS0.CL.value = 14; // 16->19
 | ||
| 	 * 8: csr_model.MODEREG_PARAMS0.CL.value = 15; // 18->21
 | ||
| 	 * default:
 | ||
| 	 * `cn_fatal(("Error mem_cfg (%s) CL (%d) with RD_DBI=1,
 | ||
| 	 * I am not sure what to do.",
 | ||
| 	 * mem_cfg, csr_model.MODEREG_PARAMS3.RD_DBI.value))
 | ||
| 	 * endcase
 | ||
| 	 * end
 | ||
| 	 */
 | ||
| 
 | ||
| 	if (modereg_params3.s.rd_dbi == 1) {
 | ||
| 		int old_cl, new_cl, old_cwl;
 | ||
| 
 | ||
| 		old_cl = modereg_params0.s.cl;
 | ||
| 		old_cwl = modereg_params0.s.cwl;
 | ||
| 
 | ||
| 		switch (old_cl) {
 | ||
| 		case 0:
 | ||
| 		case 1:
 | ||
| 		case 2:
 | ||
| 		case 3:
 | ||
| 		case 4:
 | ||
| 			new_cl = old_cl + 2;
 | ||
| 			break;	// 9-13->11-15
 | ||
| 			// CL=14, CWL=10,12 gets +2, CLW=11,14 gets +3
 | ||
| 		case 5:
 | ||
| 			new_cl = ((old_cwl == 1) || (old_cwl == 3)) ? 7 : 13;
 | ||
| 			break;
 | ||
| 		case 6:
 | ||
| 			new_cl = 8;
 | ||
| 			break;	// 15->18
 | ||
| 		case 7:
 | ||
| 			new_cl = 14;
 | ||
| 			break;	// 16->19
 | ||
| 		case 8:
 | ||
| 			new_cl = 15;
 | ||
| 			break;	// 18->21
 | ||
| 		default:
 | ||
| 			printf("ERROR: Bad CL value (%d) for DBI switchover.\n",
 | ||
| 			       old_cl);
 | ||
| 			// FIXME: need to error exit here...
 | ||
| 			old_cl = -1;
 | ||
| 			new_cl = -1;
 | ||
| 			break;
 | ||
| 		}
 | ||
| 		debug("N%d.LMC%d: DBI switchover: CL ADJ: old_cl 0x%x, old_cwl 0x%x, new_cl 0x%x.\n",
 | ||
| 		      node, lmc, old_cl, old_cwl, new_cl);
 | ||
| 		modereg_params0.s.cl = new_cl;
 | ||
| 		lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(lmc),
 | ||
| 		       modereg_params0.u64);
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 4. issue MRW to MR0 (CL) and MR5 (DBI), using LMC sequence
 | ||
| 	 * SEQ_CTL[SEQ_SEL] = MRW.
 | ||
| 	 */
 | ||
| 	// Use the default values, from the CSRs fields
 | ||
| 	// also, do B-sides for RDIMMs...
 | ||
| 
 | ||
| 	for (rankx = 0; rankx < 4; rankx++) {
 | ||
| 		if (!(rank_mask & (1 << rankx)))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		// for RDIMMs, B-side writes should get done automatically
 | ||
| 		// when the A-side is written
 | ||
| 		ddr4_mrw(priv, lmc, rankx, -1 /* use_default */,
 | ||
| 			 0 /*MRreg */, 0 /*A-side */);	/* MR0 */
 | ||
| 		ddr4_mrw(priv, lmc, rankx, -1 /* use_default */,
 | ||
| 			 5 /*MRreg */, 0 /*A-side */);	/* MR5 */
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * 5. conduct DBI bit deskew training via the General Purpose
 | ||
| 	 * R/W sequence (dbtrain). may need to run this over and over to get
 | ||
| 	 * a lock (I need up to 5 in simulation):
 | ||
| 	 * SEQ_CTL[SEQ_SEL] = RW_TRAINING (15)
 | ||
| 	 * DBTRAIN_CTL.CMD_COUNT_EXT = all 1's
 | ||
| 	 * DBTRAIN_CTL.READ_CMD_COUNT = all 1's
 | ||
| 	 * DBTRAIN_CTL.TCCD_SEL = set according to MODEREG_PARAMS3[TCCD_L]
 | ||
| 	 * DBTRAIN_CTL.RW_TRAIN = 1
 | ||
| 	 * DBTRAIN_CTL.READ_DQ_COUNT = dont care
 | ||
| 	 * DBTRAIN_CTL.WRITE_ENA = 1;
 | ||
| 	 * DBTRAIN_CTL.ACTIVATE = 1;
 | ||
| 	 * DBTRAIN_CTL LRANK, PRANK, ROW_A, BG, BA, COLUMN_A = set to a
 | ||
| 	 * valid address
 | ||
| 	 */
 | ||
| 
 | ||
| 	// NOW - do the training
 | ||
| 	debug("N%d.LMC%d: DBI switchover: TRAINING begins...\n", node, lmc);
 | ||
| 
 | ||
| 	active_ranks = 0;
 | ||
| 	for (rankx = 0; rankx < rank_max; rankx++) {
 | ||
| 		if (!(rank_mask & (1 << rankx)))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		phys_addr = rank_offset * active_ranks;
 | ||
| 		// FIXME: now done by test_dram_byte_hw()
 | ||
| 
 | ||
| 		active_ranks++;
 | ||
| 
 | ||
| 		retries = 0;
 | ||
| 
 | ||
| restart_training:
 | ||
| 
 | ||
| 		// NOTE: return is a bitmask of the erroring bytelanes -
 | ||
| 		// we only print it
 | ||
| 		errors =
 | ||
| 		    test_dram_byte_hw(priv, lmc, phys_addr, DBTRAIN_DBI, NULL);
 | ||
| 
 | ||
| 		debug("N%d.LMC%d: DBI switchover: TEST: rank %d, phys_addr 0x%llx, errors 0x%x.\n",
 | ||
| 		      node, lmc, rankx, (unsigned long long)phys_addr, errors);
 | ||
| 
 | ||
| 		// NEXT - check for locking
 | ||
| 		unlocked = 0;
 | ||
| 		read_dac_dbi_settings(priv, lmc, /*DBI*/ 0, dbi_settings);
 | ||
| 
 | ||
| 		for (byte = 0; byte < (8 + ecc_ena); byte++)
 | ||
| 			unlocked += (dbi_settings[byte] & 1) ^ 1;
 | ||
| 
 | ||
| 		// FIXME: print out the DBI settings array after each rank?
 | ||
| 		if (rank_max > 1)	// only when doing more than 1 rank
 | ||
| 			display_dac_dbi_settings(lmc, /*DBI*/ 0, ecc_ena,
 | ||
| 						 dbi_settings, " RANK");
 | ||
| 
 | ||
| 		if (unlocked > 0) {
 | ||
| 			debug("N%d.LMC%d: DBI switchover: LOCK: %d still unlocked.\n",
 | ||
| 			      node, lmc, unlocked);
 | ||
| 			retries++;
 | ||
| 			if (retries < 10) {
 | ||
| 				goto restart_training;
 | ||
| 			} else {
 | ||
| 				debug("N%d.LMC%d: DBI switchover: LOCK: %d retries exhausted.\n",
 | ||
| 				      node, lmc, retries);
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}			/* for (rankx = 0; rankx < 4; rankx++) */
 | ||
| 
 | ||
| 	// print out the final DBI settings array
 | ||
| 	display_dac_dbi_settings(lmc, /*DBI*/ 0, ecc_ena, dbi_settings,
 | ||
| 				 "FINAL");
 | ||
| }
 | ||
| 
 | ||
| void cvmx_dbi_switchover(struct ddr_priv *priv)
 | ||
| {
 | ||
| 	int lmc;
 | ||
| 	int num_lmcs = cvmx_dram_get_num_lmc(priv);
 | ||
| 
 | ||
| 	for (lmc = 0; lmc < num_lmcs; lmc++)
 | ||
| 		cvmx_dbi_switchover_interface(priv, lmc);
 | ||
| }
 |