568 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			568 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * Copyright (C) 2018 Exceet Electronics GmbH
 | |
|  * Copyright (C) 2018 Bootlin
 | |
|  *
 | |
|  * Author: Boris Brezillon <boris.brezillon@bootlin.com>
 | |
|  */
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| #include <log.h>
 | |
| #include <dm/devres.h>
 | |
| #include <linux/dmaengine.h>
 | |
| #include <linux/pm_runtime.h>
 | |
| #include "internals.h"
 | |
| #else
 | |
| #include <common.h>
 | |
| #include <dm.h>
 | |
| #include <errno.h>
 | |
| #include <malloc.h>
 | |
| #include <spi.h>
 | |
| #include <spi.h>
 | |
| #include <spi-mem.h>
 | |
| #include <dm/device_compat.h>
 | |
| #endif
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| /**
 | |
|  * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
 | |
|  *					  memory operation
 | |
|  * @ctlr: the SPI controller requesting this dma_map()
 | |
|  * @op: the memory operation containing the buffer to map
 | |
|  * @sgt: a pointer to a non-initialized sg_table that will be filled by this
 | |
|  *	 function
 | |
|  *
 | |
|  * Some controllers might want to do DMA on the data buffer embedded in @op.
 | |
|  * This helper prepares everything for you and provides a ready-to-use
 | |
|  * sg_table. This function is not intended to be called from spi drivers.
 | |
|  * Only SPI controller drivers should use it.
 | |
|  * Note that the caller must ensure the memory region pointed by
 | |
|  * op->data.buf.{in,out} is DMA-able before calling this function.
 | |
|  *
 | |
|  * Return: 0 in case of success, a negative error code otherwise.
 | |
|  */
 | |
| int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
 | |
| 				       const struct spi_mem_op *op,
 | |
| 				       struct sg_table *sgt)
 | |
| {
 | |
| 	struct device *dmadev;
 | |
| 
 | |
| 	if (!op->data.nbytes)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
 | |
| 		dmadev = ctlr->dma_tx->device->dev;
 | |
| 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
 | |
| 		dmadev = ctlr->dma_rx->device->dev;
 | |
| 	else
 | |
| 		dmadev = ctlr->dev.parent;
 | |
| 
 | |
| 	if (!dmadev)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
 | |
| 			   op->data.dir == SPI_MEM_DATA_IN ?
 | |
| 			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
 | |
| 
 | |
| /**
 | |
|  * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
 | |
|  *					    memory operation
 | |
|  * @ctlr: the SPI controller requesting this dma_unmap()
 | |
|  * @op: the memory operation containing the buffer to unmap
 | |
|  * @sgt: a pointer to an sg_table previously initialized by
 | |
|  *	 spi_controller_dma_map_mem_op_data()
 | |
|  *
 | |
|  * Some controllers might want to do DMA on the data buffer embedded in @op.
 | |
|  * This helper prepares things so that the CPU can access the
 | |
|  * op->data.buf.{in,out} buffer again.
 | |
|  *
 | |
|  * This function is not intended to be called from SPI drivers. Only SPI
 | |
|  * controller drivers should use it.
 | |
|  *
 | |
|  * This function should be called after the DMA operation has finished and is
 | |
|  * only valid if the previous spi_controller_dma_map_mem_op_data() call
 | |
|  * returned 0.
 | |
|  *
 | |
|  * Return: 0 in case of success, a negative error code otherwise.
 | |
|  */
 | |
| void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
 | |
| 					  const struct spi_mem_op *op,
 | |
| 					  struct sg_table *sgt)
 | |
| {
 | |
| 	struct device *dmadev;
 | |
| 
 | |
| 	if (!op->data.nbytes)
 | |
| 		return;
 | |
| 
 | |
| 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
 | |
| 		dmadev = ctlr->dma_tx->device->dev;
 | |
| 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
 | |
| 		dmadev = ctlr->dma_rx->device->dev;
 | |
| 	else
 | |
| 		dmadev = ctlr->dev.parent;
 | |
| 
 | |
| 	spi_unmap_buf(ctlr, dmadev, sgt,
 | |
| 		      op->data.dir == SPI_MEM_DATA_IN ?
 | |
| 		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
 | |
| #endif /* __UBOOT__ */
 | |
| 
 | |
| static int spi_check_buswidth_req(struct spi_slave *slave, u8 buswidth, bool tx)
 | |
| {
 | |
| 	u32 mode = slave->mode;
 | |
| 
 | |
| 	switch (buswidth) {
 | |
| 	case 1:
 | |
| 		return 0;
 | |
| 
 | |
| 	case 2:
 | |
| 		if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
 | |
| 		    (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
 | |
| 			return 0;
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case 4:
 | |
| 		if ((tx && (mode & SPI_TX_QUAD)) ||
 | |
| 		    (!tx && (mode & SPI_RX_QUAD)))
 | |
| 			return 0;
 | |
| 
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		if ((tx && (mode & SPI_TX_OCTAL)) ||
 | |
| 		    (!tx && (mode & SPI_RX_OCTAL)))
 | |
| 			return 0;
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return -ENOTSUPP;
 | |
| }
 | |
| 
 | |
| static bool spi_mem_check_buswidth(struct spi_slave *slave,
 | |
| 				   const struct spi_mem_op *op)
 | |
| {
 | |
| 	if (spi_check_buswidth_req(slave, op->cmd.buswidth, true))
 | |
| 		return false;
 | |
| 
 | |
| 	if (op->addr.nbytes &&
 | |
| 	    spi_check_buswidth_req(slave, op->addr.buswidth, true))
 | |
| 		return false;
 | |
| 
 | |
| 	if (op->dummy.nbytes &&
 | |
| 	    spi_check_buswidth_req(slave, op->dummy.buswidth, true))
 | |
| 		return false;
 | |
| 
 | |
| 	if (op->data.dir != SPI_MEM_NO_DATA &&
 | |
| 	    spi_check_buswidth_req(slave, op->data.buswidth,
 | |
| 				   op->data.dir == SPI_MEM_DATA_OUT))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| bool spi_mem_dtr_supports_op(struct spi_slave *slave,
 | |
| 			     const struct spi_mem_op *op)
 | |
| {
 | |
| 	if (op->cmd.buswidth == 8 && op->cmd.nbytes % 2)
 | |
| 		return false;
 | |
| 
 | |
| 	if (op->addr.nbytes && op->addr.buswidth == 8 && op->addr.nbytes % 2)
 | |
| 		return false;
 | |
| 
 | |
| 	if (op->dummy.nbytes && op->dummy.buswidth == 8 && op->dummy.nbytes % 2)
 | |
| 		return false;
 | |
| 
 | |
| 	if (op->data.dir != SPI_MEM_NO_DATA &&
 | |
| 	    op->dummy.buswidth == 8 && op->data.nbytes % 2)
 | |
| 		return false;
 | |
| 
 | |
| 	return spi_mem_check_buswidth(slave, op);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_mem_dtr_supports_op);
 | |
| 
 | |
| bool spi_mem_default_supports_op(struct spi_slave *slave,
 | |
| 				 const struct spi_mem_op *op)
 | |
| {
 | |
| 	if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
 | |
| 		return false;
 | |
| 
 | |
| 	if (op->cmd.nbytes != 1)
 | |
| 		return false;
 | |
| 
 | |
| 	return spi_mem_check_buswidth(slave, op);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
 | |
| 
 | |
| /**
 | |
|  * spi_mem_supports_op() - Check if a memory device and the controller it is
 | |
|  *			   connected to support a specific memory operation
 | |
|  * @slave: the SPI device
 | |
|  * @op: the memory operation to check
 | |
|  *
 | |
|  * Some controllers are only supporting Single or Dual IOs, others might only
 | |
|  * support specific opcodes, or it can even be that the controller and device
 | |
|  * both support Quad IOs but the hardware prevents you from using it because
 | |
|  * only 2 IO lines are connected.
 | |
|  *
 | |
|  * This function checks whether a specific operation is supported.
 | |
|  *
 | |
|  * Return: true if @op is supported, false otherwise.
 | |
|  */
 | |
| bool spi_mem_supports_op(struct spi_slave *slave,
 | |
| 			 const struct spi_mem_op *op)
 | |
| {
 | |
| 	struct udevice *bus = slave->dev->parent;
 | |
| 	struct dm_spi_ops *ops = spi_get_ops(bus);
 | |
| 
 | |
| 	if (ops->mem_ops && ops->mem_ops->supports_op)
 | |
| 		return ops->mem_ops->supports_op(slave, op);
 | |
| 
 | |
| 	return spi_mem_default_supports_op(slave, op);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_mem_supports_op);
 | |
| 
 | |
| /**
 | |
|  * spi_mem_exec_op() - Execute a memory operation
 | |
|  * @slave: the SPI device
 | |
|  * @op: the memory operation to execute
 | |
|  *
 | |
|  * Executes a memory operation.
 | |
|  *
 | |
|  * This function first checks that @op is supported and then tries to execute
 | |
|  * it.
 | |
|  *
 | |
|  * Return: 0 in case of success, a negative error code otherwise.
 | |
|  */
 | |
| int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
 | |
| {
 | |
| 	struct udevice *bus = slave->dev->parent;
 | |
| 	struct dm_spi_ops *ops = spi_get_ops(bus);
 | |
| 	unsigned int pos = 0;
 | |
| 	const u8 *tx_buf = NULL;
 | |
| 	u8 *rx_buf = NULL;
 | |
| 	int op_len;
 | |
| 	u32 flag;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!spi_mem_supports_op(slave, op))
 | |
| 		return -ENOTSUPP;
 | |
| 
 | |
| 	ret = spi_claim_bus(slave);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (ops->mem_ops && ops->mem_ops->exec_op) {
 | |
| #ifndef __UBOOT__
 | |
| 		/*
 | |
| 		 * Flush the message queue before executing our SPI memory
 | |
| 		 * operation to prevent preemption of regular SPI transfers.
 | |
| 		 */
 | |
| 		spi_flush_queue(ctlr);
 | |
| 
 | |
| 		if (ctlr->auto_runtime_pm) {
 | |
| 			ret = pm_runtime_get_sync(ctlr->dev.parent);
 | |
| 			if (ret < 0) {
 | |
| 				dev_err(&ctlr->dev,
 | |
| 					"Failed to power device: %d\n",
 | |
| 					ret);
 | |
| 				return ret;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		mutex_lock(&ctlr->bus_lock_mutex);
 | |
| 		mutex_lock(&ctlr->io_mutex);
 | |
| #endif
 | |
| 		ret = ops->mem_ops->exec_op(slave, op);
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| 		mutex_unlock(&ctlr->io_mutex);
 | |
| 		mutex_unlock(&ctlr->bus_lock_mutex);
 | |
| 
 | |
| 		if (ctlr->auto_runtime_pm)
 | |
| 			pm_runtime_put(ctlr->dev.parent);
 | |
| #endif
 | |
| 
 | |
| 		/*
 | |
| 		 * Some controllers only optimize specific paths (typically the
 | |
| 		 * read path) and expect the core to use the regular SPI
 | |
| 		 * interface in other cases.
 | |
| 		 */
 | |
| 		if (!ret || ret != -ENOTSUPP) {
 | |
| 			spi_release_bus(slave);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| 	tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
 | |
| 	 * we're guaranteed that this buffer is DMA-able, as required by the
 | |
| 	 * SPI layer.
 | |
| 	 */
 | |
| 	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
 | |
| 	if (!tmpbuf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spi_message_init(&msg);
 | |
| 
 | |
| 	tmpbuf[0] = op->cmd.opcode;
 | |
| 	xfers[xferpos].tx_buf = tmpbuf;
 | |
| 	xfers[xferpos].len = op->cmd.nbytes;
 | |
| 	xfers[xferpos].tx_nbits = op->cmd.buswidth;
 | |
| 	spi_message_add_tail(&xfers[xferpos], &msg);
 | |
| 	xferpos++;
 | |
| 	totalxferlen++;
 | |
| 
 | |
| 	if (op->addr.nbytes) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < op->addr.nbytes; i++)
 | |
| 			tmpbuf[i + 1] = op->addr.val >>
 | |
| 					(8 * (op->addr.nbytes - i - 1));
 | |
| 
 | |
| 		xfers[xferpos].tx_buf = tmpbuf + 1;
 | |
| 		xfers[xferpos].len = op->addr.nbytes;
 | |
| 		xfers[xferpos].tx_nbits = op->addr.buswidth;
 | |
| 		spi_message_add_tail(&xfers[xferpos], &msg);
 | |
| 		xferpos++;
 | |
| 		totalxferlen += op->addr.nbytes;
 | |
| 	}
 | |
| 
 | |
| 	if (op->dummy.nbytes) {
 | |
| 		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
 | |
| 		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
 | |
| 		xfers[xferpos].len = op->dummy.nbytes;
 | |
| 		xfers[xferpos].tx_nbits = op->dummy.buswidth;
 | |
| 		spi_message_add_tail(&xfers[xferpos], &msg);
 | |
| 		xferpos++;
 | |
| 		totalxferlen += op->dummy.nbytes;
 | |
| 	}
 | |
| 
 | |
| 	if (op->data.nbytes) {
 | |
| 		if (op->data.dir == SPI_MEM_DATA_IN) {
 | |
| 			xfers[xferpos].rx_buf = op->data.buf.in;
 | |
| 			xfers[xferpos].rx_nbits = op->data.buswidth;
 | |
| 		} else {
 | |
| 			xfers[xferpos].tx_buf = op->data.buf.out;
 | |
| 			xfers[xferpos].tx_nbits = op->data.buswidth;
 | |
| 		}
 | |
| 
 | |
| 		xfers[xferpos].len = op->data.nbytes;
 | |
| 		spi_message_add_tail(&xfers[xferpos], &msg);
 | |
| 		xferpos++;
 | |
| 		totalxferlen += op->data.nbytes;
 | |
| 	}
 | |
| 
 | |
| 	ret = spi_sync(slave, &msg);
 | |
| 
 | |
| 	kfree(tmpbuf);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (msg.actual_length != totalxferlen)
 | |
| 		return -EIO;
 | |
| #else
 | |
| 
 | |
| 	if (op->data.nbytes) {
 | |
| 		if (op->data.dir == SPI_MEM_DATA_IN)
 | |
| 			rx_buf = op->data.buf.in;
 | |
| 		else
 | |
| 			tx_buf = op->data.buf.out;
 | |
| 	}
 | |
| 
 | |
| 	op_len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid using malloc() here so that we can use this code in SPL where
 | |
| 	 * simple malloc may be used. That implementation does not allow free()
 | |
| 	 * so repeated calls to this code can exhaust the space.
 | |
| 	 *
 | |
| 	 * The value of op_len is small, since it does not include the actual
 | |
| 	 * data being sent, only the op-code and address. In fact, it should be
 | |
| 	 * possible to just use a small fixed value here instead of op_len.
 | |
| 	 */
 | |
| 	u8 op_buf[op_len];
 | |
| 
 | |
| 	op_buf[pos++] = op->cmd.opcode;
 | |
| 
 | |
| 	if (op->addr.nbytes) {
 | |
| 		for (i = 0; i < op->addr.nbytes; i++)
 | |
| 			op_buf[pos + i] = op->addr.val >>
 | |
| 				(8 * (op->addr.nbytes - i - 1));
 | |
| 
 | |
| 		pos += op->addr.nbytes;
 | |
| 	}
 | |
| 
 | |
| 	if (op->dummy.nbytes)
 | |
| 		memset(op_buf + pos, 0xff, op->dummy.nbytes);
 | |
| 
 | |
| 	/* 1st transfer: opcode + address + dummy cycles */
 | |
| 	flag = SPI_XFER_BEGIN;
 | |
| 	/* Make sure to set END bit if no tx or rx data messages follow */
 | |
| 	if (!tx_buf && !rx_buf)
 | |
| 		flag |= SPI_XFER_END;
 | |
| 
 | |
| 	ret = spi_xfer(slave, op_len * 8, op_buf, NULL, flag);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* 2nd transfer: rx or tx data path */
 | |
| 	if (tx_buf || rx_buf) {
 | |
| 		ret = spi_xfer(slave, op->data.nbytes * 8, tx_buf,
 | |
| 			       rx_buf, SPI_XFER_END);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	spi_release_bus(slave);
 | |
| 
 | |
| 	for (i = 0; i < pos; i++)
 | |
| 		debug("%02x ", op_buf[i]);
 | |
| 	debug("| [%dB %s] ",
 | |
| 	      tx_buf || rx_buf ? op->data.nbytes : 0,
 | |
| 	      tx_buf || rx_buf ? (tx_buf ? "out" : "in") : "-");
 | |
| 	for (i = 0; i < op->data.nbytes; i++)
 | |
| 		debug("%02x ", tx_buf ? tx_buf[i] : rx_buf[i]);
 | |
| 	debug("[ret %d]\n", ret);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| #endif /* __UBOOT__ */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_mem_exec_op);
 | |
| 
 | |
| /**
 | |
|  * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
 | |
|  *				 match controller limitations
 | |
|  * @slave: the SPI device
 | |
|  * @op: the operation to adjust
 | |
|  *
 | |
|  * Some controllers have FIFO limitations and must split a data transfer
 | |
|  * operation into multiple ones, others require a specific alignment for
 | |
|  * optimized accesses. This function allows SPI mem drivers to split a single
 | |
|  * operation into multiple sub-operations when required.
 | |
|  *
 | |
|  * Return: a negative error code if the controller can't properly adjust @op,
 | |
|  *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
 | |
|  *	   can't be handled in a single step.
 | |
|  */
 | |
| int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op)
 | |
| {
 | |
| 	struct udevice *bus = slave->dev->parent;
 | |
| 	struct dm_spi_ops *ops = spi_get_ops(bus);
 | |
| 
 | |
| 	if (ops->mem_ops && ops->mem_ops->adjust_op_size)
 | |
| 		return ops->mem_ops->adjust_op_size(slave, op);
 | |
| 
 | |
| 	if (!ops->mem_ops || !ops->mem_ops->exec_op) {
 | |
| 		unsigned int len;
 | |
| 
 | |
| 		len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
 | |
| 		if (slave->max_write_size && len > slave->max_write_size)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (op->data.dir == SPI_MEM_DATA_IN) {
 | |
| 			if (slave->max_read_size)
 | |
| 				op->data.nbytes = min(op->data.nbytes,
 | |
| 					      slave->max_read_size);
 | |
| 		} else if (slave->max_write_size) {
 | |
| 			op->data.nbytes = min(op->data.nbytes,
 | |
| 					      slave->max_write_size - len);
 | |
| 		}
 | |
| 
 | |
| 		if (!op->data.nbytes)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
 | |
| {
 | |
| 	return container_of(drv, struct spi_mem_driver, spidrv.driver);
 | |
| }
 | |
| 
 | |
| static int spi_mem_probe(struct spi_device *spi)
 | |
| {
 | |
| 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
 | |
| 	struct spi_mem *mem;
 | |
| 
 | |
| 	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
 | |
| 	if (!mem)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mem->spi = spi;
 | |
| 	spi_set_drvdata(spi, mem);
 | |
| 
 | |
| 	return memdrv->probe(mem);
 | |
| }
 | |
| 
 | |
| static int spi_mem_remove(struct spi_device *spi)
 | |
| {
 | |
| 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
 | |
| 	struct spi_mem *mem = spi_get_drvdata(spi);
 | |
| 
 | |
| 	if (memdrv->remove)
 | |
| 		return memdrv->remove(mem);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void spi_mem_shutdown(struct spi_device *spi)
 | |
| {
 | |
| 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
 | |
| 	struct spi_mem *mem = spi_get_drvdata(spi);
 | |
| 
 | |
| 	if (memdrv->shutdown)
 | |
| 		memdrv->shutdown(mem);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spi_mem_driver_register_with_owner() - Register a SPI memory driver
 | |
|  * @memdrv: the SPI memory driver to register
 | |
|  * @owner: the owner of this driver
 | |
|  *
 | |
|  * Registers a SPI memory driver.
 | |
|  *
 | |
|  * Return: 0 in case of success, a negative error core otherwise.
 | |
|  */
 | |
| 
 | |
| int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
 | |
| 				       struct module *owner)
 | |
| {
 | |
| 	memdrv->spidrv.probe = spi_mem_probe;
 | |
| 	memdrv->spidrv.remove = spi_mem_remove;
 | |
| 	memdrv->spidrv.shutdown = spi_mem_shutdown;
 | |
| 
 | |
| 	return __spi_register_driver(owner, &memdrv->spidrv);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
 | |
| 
 | |
| /**
 | |
|  * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
 | |
|  * @memdrv: the SPI memory driver to unregister
 | |
|  *
 | |
|  * Unregisters a SPI memory driver.
 | |
|  */
 | |
| void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
 | |
| {
 | |
| 	spi_unregister_driver(&memdrv->spidrv);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
 | |
| #endif /* __UBOOT__ */
 |