1299 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1299 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright (C) 2014       Panasonic Corporation
 | |
|  * Copyright (C) 2013-2014, Altera Corporation <www.altera.com>
 | |
|  * Copyright (C) 2009-2010, Intel Corporation and its suppliers.
 | |
|  *
 | |
|  * SPDX-License-Identifier:	GPL-2.0+
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <malloc.h>
 | |
| #include <nand.h>
 | |
| #include <linux/errno.h>
 | |
| #include <asm/io.h>
 | |
| 
 | |
| #include "denali.h"
 | |
| 
 | |
| #define NAND_DEFAULT_TIMINGS	-1
 | |
| 
 | |
| static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
 | |
| 
 | |
| /*
 | |
|  * We define a macro here that combines all interrupts this driver uses into
 | |
|  * a single constant value, for convenience.
 | |
|  */
 | |
| #define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
 | |
| 			INTR_STATUS__ECC_TRANSACTION_DONE | \
 | |
| 			INTR_STATUS__ECC_ERR | \
 | |
| 			INTR_STATUS__PROGRAM_FAIL | \
 | |
| 			INTR_STATUS__LOAD_COMP | \
 | |
| 			INTR_STATUS__PROGRAM_COMP | \
 | |
| 			INTR_STATUS__TIME_OUT | \
 | |
| 			INTR_STATUS__ERASE_FAIL | \
 | |
| 			INTR_STATUS__RST_COMP | \
 | |
| 			INTR_STATUS__ERASE_COMP | \
 | |
| 			INTR_STATUS__ECC_UNCOR_ERR | \
 | |
| 			INTR_STATUS__INT_ACT | \
 | |
| 			INTR_STATUS__LOCKED_BLK)
 | |
| 
 | |
| /*
 | |
|  * indicates whether or not the internal value for the flash bank is
 | |
|  * valid or not
 | |
|  */
 | |
| #define CHIP_SELECT_INVALID	-1
 | |
| 
 | |
| #define SUPPORT_8BITECC		1
 | |
| 
 | |
| /*
 | |
|  * this macro allows us to convert from an MTD structure to our own
 | |
|  * device context (denali) structure.
 | |
|  */
 | |
| static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
 | |
| {
 | |
| 	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These constants are defined by the driver to enable common driver
 | |
|  * configuration options.
 | |
|  */
 | |
| #define SPARE_ACCESS		0x41
 | |
| #define MAIN_ACCESS		0x42
 | |
| #define MAIN_SPARE_ACCESS	0x43
 | |
| #define PIPELINE_ACCESS		0x2000
 | |
| 
 | |
| #define DENALI_UNLOCK_START	0x10
 | |
| #define DENALI_UNLOCK_END	0x11
 | |
| #define DENALI_LOCK		0x21
 | |
| #define DENALI_LOCK_TIGHT	0x31
 | |
| #define DENALI_BUFFER_LOAD	0x60
 | |
| #define DENALI_BUFFER_WRITE	0x62
 | |
| 
 | |
| #define DENALI_READ	0
 | |
| #define DENALI_WRITE	0x100
 | |
| 
 | |
| /* types of device accesses. We can issue commands and get status */
 | |
| #define COMMAND_CYCLE	0
 | |
| #define ADDR_CYCLE	1
 | |
| #define STATUS_CYCLE	2
 | |
| 
 | |
| /*
 | |
|  * this is a helper macro that allows us to
 | |
|  * format the bank into the proper bits for the controller
 | |
|  */
 | |
| #define BANK(x) ((x) << 24)
 | |
| 
 | |
| /* Interrupts are cleared by writing a 1 to the appropriate status bit */
 | |
| static inline void clear_interrupt(struct denali_nand_info *denali,
 | |
| 							uint32_t irq_mask)
 | |
| {
 | |
| 	uint32_t intr_status_reg;
 | |
| 
 | |
| 	intr_status_reg = INTR_STATUS(denali->flash_bank);
 | |
| 
 | |
| 	writel(irq_mask, denali->flash_reg + intr_status_reg);
 | |
| }
 | |
| 
 | |
| static uint32_t read_interrupt_status(struct denali_nand_info *denali)
 | |
| {
 | |
| 	uint32_t intr_status_reg;
 | |
| 
 | |
| 	intr_status_reg = INTR_STATUS(denali->flash_bank);
 | |
| 
 | |
| 	return readl(denali->flash_reg + intr_status_reg);
 | |
| }
 | |
| 
 | |
| static void clear_interrupts(struct denali_nand_info *denali)
 | |
| {
 | |
| 	uint32_t status;
 | |
| 
 | |
| 	status = read_interrupt_status(denali);
 | |
| 	clear_interrupt(denali, status);
 | |
| 
 | |
| 	denali->irq_status = 0;
 | |
| }
 | |
| 
 | |
| static void denali_irq_enable(struct denali_nand_info *denali,
 | |
| 							uint32_t int_mask)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < denali->max_banks; ++i)
 | |
| 		writel(int_mask, denali->flash_reg + INTR_EN(i));
 | |
| }
 | |
| 
 | |
| static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
 | |
| {
 | |
| 	unsigned long timeout = 1000000;
 | |
| 	uint32_t intr_status;
 | |
| 
 | |
| 	do {
 | |
| 		intr_status = read_interrupt_status(denali) & DENALI_IRQ_ALL;
 | |
| 		if (intr_status & irq_mask) {
 | |
| 			denali->irq_status &= ~irq_mask;
 | |
| 			/* our interrupt was detected */
 | |
| 			break;
 | |
| 		}
 | |
| 		udelay(1);
 | |
| 		timeout--;
 | |
| 	} while (timeout != 0);
 | |
| 
 | |
| 	if (timeout == 0) {
 | |
| 		/* timeout */
 | |
| 		printf("Denali timeout with interrupt status %08x\n",
 | |
| 		       read_interrupt_status(denali));
 | |
| 		intr_status = 0;
 | |
| 	}
 | |
| 	return intr_status;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Certain operations for the denali NAND controller use an indexed mode to
 | |
|  * read/write data. The operation is performed by writing the address value
 | |
|  * of the command to the device memory followed by the data. This function
 | |
|  * abstracts this common operation.
 | |
|  */
 | |
| static void index_addr(struct denali_nand_info *denali,
 | |
| 				uint32_t address, uint32_t data)
 | |
| {
 | |
| 	writel(address, denali->flash_mem + INDEX_CTRL_REG);
 | |
| 	writel(data, denali->flash_mem + INDEX_DATA_REG);
 | |
| }
 | |
| 
 | |
| /* Perform an indexed read of the device */
 | |
| static void index_addr_read_data(struct denali_nand_info *denali,
 | |
| 				 uint32_t address, uint32_t *pdata)
 | |
| {
 | |
| 	writel(address, denali->flash_mem + INDEX_CTRL_REG);
 | |
| 	*pdata = readl(denali->flash_mem + INDEX_DATA_REG);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We need to buffer some data for some of the NAND core routines.
 | |
|  * The operations manage buffering that data.
 | |
|  */
 | |
| static void reset_buf(struct denali_nand_info *denali)
 | |
| {
 | |
| 	denali->buf.head = 0;
 | |
| 	denali->buf.tail = 0;
 | |
| }
 | |
| 
 | |
| static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
 | |
| {
 | |
| 	denali->buf.buf[denali->buf.tail++] = byte;
 | |
| }
 | |
| 
 | |
| /* resets a specific device connected to the core */
 | |
| static void reset_bank(struct denali_nand_info *denali)
 | |
| {
 | |
| 	uint32_t irq_status;
 | |
| 	uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT;
 | |
| 
 | |
| 	clear_interrupts(denali);
 | |
| 
 | |
| 	writel(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
 | |
| 
 | |
| 	irq_status = wait_for_irq(denali, irq_mask);
 | |
| 	if (irq_status & INTR_STATUS__TIME_OUT)
 | |
| 		debug("reset bank failed.\n");
 | |
| }
 | |
| 
 | |
| /* Reset the flash controller */
 | |
| static uint32_t denali_nand_reset(struct denali_nand_info *denali)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < denali->max_banks; i++)
 | |
| 		writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
 | |
| 		       denali->flash_reg + INTR_STATUS(i));
 | |
| 
 | |
| 	for (i = 0; i < denali->max_banks; i++) {
 | |
| 		writel(1 << i, denali->flash_reg + DEVICE_RESET);
 | |
| 		while (!(readl(denali->flash_reg + INTR_STATUS(i)) &
 | |
| 			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
 | |
| 			if (readl(denali->flash_reg + INTR_STATUS(i)) &
 | |
| 				INTR_STATUS__TIME_OUT)
 | |
| 				debug("NAND Reset operation timed out on bank"
 | |
| 				      " %d\n", i);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < denali->max_banks; i++)
 | |
| 		writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
 | |
| 		       denali->flash_reg + INTR_STATUS(i));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this routine calculates the ONFI timing values for a given mode and
 | |
|  * programs the clocking register accordingly. The mode is determined by
 | |
|  * the get_onfi_nand_para routine.
 | |
|  */
 | |
| static void nand_onfi_timing_set(struct denali_nand_info *denali,
 | |
| 								uint16_t mode)
 | |
| {
 | |
| 	uint32_t trea[6] = {40, 30, 25, 20, 20, 16};
 | |
| 	uint32_t trp[6] = {50, 25, 17, 15, 12, 10};
 | |
| 	uint32_t treh[6] = {30, 15, 15, 10, 10, 7};
 | |
| 	uint32_t trc[6] = {100, 50, 35, 30, 25, 20};
 | |
| 	uint32_t trhoh[6] = {0, 15, 15, 15, 15, 15};
 | |
| 	uint32_t trloh[6] = {0, 0, 0, 0, 5, 5};
 | |
| 	uint32_t tcea[6] = {100, 45, 30, 25, 25, 25};
 | |
| 	uint32_t tadl[6] = {200, 100, 100, 100, 70, 70};
 | |
| 	uint32_t trhw[6] = {200, 100, 100, 100, 100, 100};
 | |
| 	uint32_t trhz[6] = {200, 100, 100, 100, 100, 100};
 | |
| 	uint32_t twhr[6] = {120, 80, 80, 60, 60, 60};
 | |
| 	uint32_t tcs[6] = {70, 35, 25, 25, 20, 15};
 | |
| 
 | |
| 	uint32_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
 | |
| 	uint32_t dv_window = 0;
 | |
| 	uint32_t en_lo, en_hi;
 | |
| 	uint32_t acc_clks;
 | |
| 	uint32_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
 | |
| 
 | |
| 	en_lo = DIV_ROUND_UP(trp[mode], CLK_X);
 | |
| 	en_hi = DIV_ROUND_UP(treh[mode], CLK_X);
 | |
| 	if ((en_hi * CLK_X) < (treh[mode] + 2))
 | |
| 		en_hi++;
 | |
| 
 | |
| 	if ((en_lo + en_hi) * CLK_X < trc[mode])
 | |
| 		en_lo += DIV_ROUND_UP((trc[mode] - (en_lo + en_hi) * CLK_X),
 | |
| 				      CLK_X);
 | |
| 
 | |
| 	if ((en_lo + en_hi) < CLK_MULTI)
 | |
| 		en_lo += CLK_MULTI - en_lo - en_hi;
 | |
| 
 | |
| 	while (dv_window < 8) {
 | |
| 		data_invalid_rhoh = en_lo * CLK_X + trhoh[mode];
 | |
| 
 | |
| 		data_invalid_rloh = (en_lo + en_hi) * CLK_X + trloh[mode];
 | |
| 
 | |
| 		data_invalid = data_invalid_rhoh < data_invalid_rloh ?
 | |
| 					data_invalid_rhoh : data_invalid_rloh;
 | |
| 
 | |
| 		dv_window = data_invalid - trea[mode];
 | |
| 
 | |
| 		if (dv_window < 8)
 | |
| 			en_lo++;
 | |
| 	}
 | |
| 
 | |
| 	acc_clks = DIV_ROUND_UP(trea[mode], CLK_X);
 | |
| 
 | |
| 	while (acc_clks * CLK_X - trea[mode] < 3)
 | |
| 		acc_clks++;
 | |
| 
 | |
| 	if (data_invalid - acc_clks * CLK_X < 2)
 | |
| 		debug("%s, Line %d: Warning!\n", __FILE__, __LINE__);
 | |
| 
 | |
| 	addr_2_data = DIV_ROUND_UP(tadl[mode], CLK_X);
 | |
| 	re_2_we = DIV_ROUND_UP(trhw[mode], CLK_X);
 | |
| 	re_2_re = DIV_ROUND_UP(trhz[mode], CLK_X);
 | |
| 	we_2_re = DIV_ROUND_UP(twhr[mode], CLK_X);
 | |
| 	cs_cnt = DIV_ROUND_UP((tcs[mode] - trp[mode]), CLK_X);
 | |
| 	if (cs_cnt == 0)
 | |
| 		cs_cnt = 1;
 | |
| 
 | |
| 	if (tcea[mode]) {
 | |
| 		while (cs_cnt * CLK_X + trea[mode] < tcea[mode])
 | |
| 			cs_cnt++;
 | |
| 	}
 | |
| 
 | |
| 	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
 | |
| 	if (readl(denali->flash_reg + MANUFACTURER_ID) == 0 &&
 | |
| 	    readl(denali->flash_reg + DEVICE_ID) == 0x88)
 | |
| 		acc_clks = 6;
 | |
| 
 | |
| 	writel(acc_clks, denali->flash_reg + ACC_CLKS);
 | |
| 	writel(re_2_we, denali->flash_reg + RE_2_WE);
 | |
| 	writel(re_2_re, denali->flash_reg + RE_2_RE);
 | |
| 	writel(we_2_re, denali->flash_reg + WE_2_RE);
 | |
| 	writel(addr_2_data, denali->flash_reg + ADDR_2_DATA);
 | |
| 	writel(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
 | |
| 	writel(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
 | |
| 	writel(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
 | |
| }
 | |
| 
 | |
| /* queries the NAND device to see what ONFI modes it supports. */
 | |
| static uint32_t get_onfi_nand_para(struct denali_nand_info *denali)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * we needn't to do a reset here because driver has already
 | |
| 	 * reset all the banks before
 | |
| 	 */
 | |
| 	if (!(readl(denali->flash_reg + ONFI_TIMING_MODE) &
 | |
| 	    ONFI_TIMING_MODE__VALUE))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	for (i = 5; i > 0; i--) {
 | |
| 		if (readl(denali->flash_reg + ONFI_TIMING_MODE) &
 | |
| 			(0x01 << i))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	nand_onfi_timing_set(denali, i);
 | |
| 
 | |
| 	/*
 | |
| 	 * By now, all the ONFI devices we know support the page cache
 | |
| 	 * rw feature. So here we enable the pipeline_rw_ahead feature
 | |
| 	 */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void get_samsung_nand_para(struct denali_nand_info *denali,
 | |
| 							uint8_t device_id)
 | |
| {
 | |
| 	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
 | |
| 		/* Set timing register values according to datasheet */
 | |
| 		writel(5, denali->flash_reg + ACC_CLKS);
 | |
| 		writel(20, denali->flash_reg + RE_2_WE);
 | |
| 		writel(12, denali->flash_reg + WE_2_RE);
 | |
| 		writel(14, denali->flash_reg + ADDR_2_DATA);
 | |
| 		writel(3, denali->flash_reg + RDWR_EN_LO_CNT);
 | |
| 		writel(2, denali->flash_reg + RDWR_EN_HI_CNT);
 | |
| 		writel(2, denali->flash_reg + CS_SETUP_CNT);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void get_toshiba_nand_para(struct denali_nand_info *denali)
 | |
| {
 | |
| 	uint32_t tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Workaround to fix a controller bug which reports a wrong
 | |
| 	 * spare area size for some kind of Toshiba NAND device
 | |
| 	 */
 | |
| 	if ((readl(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
 | |
| 	    (readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
 | |
| 		writel(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
 | |
| 		tmp = readl(denali->flash_reg + DEVICES_CONNECTED) *
 | |
| 			readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
 | |
| 		writel(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void get_hynix_nand_para(struct denali_nand_info *denali,
 | |
| 							uint8_t device_id)
 | |
| {
 | |
| 	uint32_t main_size, spare_size;
 | |
| 
 | |
| 	switch (device_id) {
 | |
| 	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
 | |
| 	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
 | |
| 		writel(128, denali->flash_reg + PAGES_PER_BLOCK);
 | |
| 		writel(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
 | |
| 		writel(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
 | |
| 		main_size = 4096 *
 | |
| 			readl(denali->flash_reg + DEVICES_CONNECTED);
 | |
| 		spare_size = 224 *
 | |
| 			readl(denali->flash_reg + DEVICES_CONNECTED);
 | |
| 		writel(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
 | |
| 		writel(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
 | |
| 		writel(0, denali->flash_reg + DEVICE_WIDTH);
 | |
| 		break;
 | |
| 	default:
 | |
| 		debug("Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n"
 | |
| 		      "Will use default parameter values instead.\n",
 | |
| 		      device_id);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * determines how many NAND chips are connected to the controller. Note for
 | |
|  * Intel CE4100 devices we don't support more than one device.
 | |
|  */
 | |
| static void find_valid_banks(struct denali_nand_info *denali)
 | |
| {
 | |
| 	uint32_t id[denali->max_banks];
 | |
| 	int i;
 | |
| 
 | |
| 	denali->total_used_banks = 1;
 | |
| 	for (i = 0; i < denali->max_banks; i++) {
 | |
| 		index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
 | |
| 		index_addr(denali, MODE_11 | (i << 24) | 1, 0);
 | |
| 		index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
 | |
| 
 | |
| 		if (i == 0) {
 | |
| 			if (!(id[i] & 0x0ff))
 | |
| 				break;
 | |
| 		} else {
 | |
| 			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
 | |
| 				denali->total_used_banks++;
 | |
| 			else
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use the configuration feature register to determine the maximum number of
 | |
|  * banks that the hardware supports.
 | |
|  */
 | |
| static void detect_max_banks(struct denali_nand_info *denali)
 | |
| {
 | |
| 	uint32_t features = readl(denali->flash_reg + FEATURES);
 | |
| 	/*
 | |
| 	 * Read the revision register, so we can calculate the max_banks
 | |
| 	 * properly: the encoding changed from rev 5.0 to 5.1
 | |
| 	 */
 | |
| 	u32 revision = MAKE_COMPARABLE_REVISION(
 | |
| 				readl(denali->flash_reg + REVISION));
 | |
| 	if (revision < REVISION_5_1)
 | |
| 		denali->max_banks = 2 << (features & FEATURES__N_BANKS);
 | |
| 	else
 | |
| 		denali->max_banks = 1 << (features & FEATURES__N_BANKS);
 | |
| }
 | |
| 
 | |
| static void detect_partition_feature(struct denali_nand_info *denali)
 | |
| {
 | |
| 	/*
 | |
| 	 * For MRST platform, denali->fwblks represent the
 | |
| 	 * number of blocks firmware is taken,
 | |
| 	 * FW is in protect partition and MTD driver has no
 | |
| 	 * permission to access it. So let driver know how many
 | |
| 	 * blocks it can't touch.
 | |
| 	 */
 | |
| 	if (readl(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
 | |
| 		if ((readl(denali->flash_reg + PERM_SRC_ID(1)) &
 | |
| 			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
 | |
| 			denali->fwblks =
 | |
| 			    ((readl(denali->flash_reg + MIN_MAX_BANK(1)) &
 | |
| 			      MIN_MAX_BANK__MIN_VALUE) *
 | |
| 			     denali->blksperchip)
 | |
| 			    +
 | |
| 			    (readl(denali->flash_reg + MIN_BLK_ADDR(1)) &
 | |
| 			    MIN_BLK_ADDR__VALUE);
 | |
| 		} else {
 | |
| 			denali->fwblks = SPECTRA_START_BLOCK;
 | |
| 		}
 | |
| 	} else {
 | |
| 		denali->fwblks = SPECTRA_START_BLOCK;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static uint32_t denali_nand_timing_set(struct denali_nand_info *denali)
 | |
| {
 | |
| 	uint32_t id_bytes[8], addr;
 | |
| 	uint8_t maf_id, device_id;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use read id method to get device ID and other params.
 | |
| 	 * For some NAND chips, controller can't report the correct
 | |
| 	 * device ID by reading from DEVICE_ID register
 | |
| 	 */
 | |
| 	addr = MODE_11 | BANK(denali->flash_bank);
 | |
| 	index_addr(denali, addr | 0, 0x90);
 | |
| 	index_addr(denali, addr | 1, 0);
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
 | |
| 	maf_id = id_bytes[0];
 | |
| 	device_id = id_bytes[1];
 | |
| 
 | |
| 	if (readl(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
 | |
| 		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
 | |
| 		if (get_onfi_nand_para(denali))
 | |
| 			return -EIO;
 | |
| 	} else if (maf_id == 0xEC) { /* Samsung NAND */
 | |
| 		get_samsung_nand_para(denali, device_id);
 | |
| 	} else if (maf_id == 0x98) { /* Toshiba NAND */
 | |
| 		get_toshiba_nand_para(denali);
 | |
| 	} else if (maf_id == 0xAD) { /* Hynix NAND */
 | |
| 		get_hynix_nand_para(denali, device_id);
 | |
| 	}
 | |
| 
 | |
| 	find_valid_banks(denali);
 | |
| 
 | |
| 	detect_partition_feature(denali);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the user specified to override the default timings
 | |
| 	 * with a specific ONFI mode, we apply those changes here.
 | |
| 	 */
 | |
| 	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
 | |
| 		nand_onfi_timing_set(denali, onfi_timing_mode);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * validation function to verify that the controlling software is making
 | |
|  * a valid request
 | |
|  */
 | |
| static inline bool is_flash_bank_valid(int flash_bank)
 | |
| {
 | |
| 	return flash_bank >= 0 && flash_bank < 4;
 | |
| }
 | |
| 
 | |
| static void denali_irq_init(struct denali_nand_info *denali)
 | |
| {
 | |
| 	uint32_t int_mask;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Disable global interrupts */
 | |
| 	writel(0, denali->flash_reg + GLOBAL_INT_ENABLE);
 | |
| 
 | |
| 	int_mask = DENALI_IRQ_ALL;
 | |
| 
 | |
| 	/* Clear all status bits */
 | |
| 	for (i = 0; i < denali->max_banks; ++i)
 | |
| 		writel(0xFFFF, denali->flash_reg + INTR_STATUS(i));
 | |
| 
 | |
| 	denali_irq_enable(denali, int_mask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This helper function setups the registers for ECC and whether or not
 | |
|  * the spare area will be transferred.
 | |
|  */
 | |
| static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
 | |
| 				bool transfer_spare)
 | |
| {
 | |
| 	int ecc_en_flag, transfer_spare_flag;
 | |
| 
 | |
| 	/* set ECC, transfer spare bits if needed */
 | |
| 	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
 | |
| 	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
 | |
| 
 | |
| 	/* Enable spare area/ECC per user's request. */
 | |
| 	writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
 | |
| 	/* applicable for MAP01 only */
 | |
| 	writel(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sends a pipeline command operation to the controller. See the Denali NAND
 | |
|  * controller's user guide for more information (section 4.2.3.6).
 | |
|  */
 | |
| static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
 | |
| 				    bool ecc_en, bool transfer_spare,
 | |
| 				    int access_type, int op)
 | |
| {
 | |
| 	uint32_t addr, cmd, irq_status;
 | |
| 	static uint32_t page_count = 1;
 | |
| 
 | |
| 	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
 | |
| 
 | |
| 	clear_interrupts(denali);
 | |
| 
 | |
| 	addr = BANK(denali->flash_bank) | denali->page;
 | |
| 
 | |
| 	/* setup the acccess type */
 | |
| 	cmd = MODE_10 | addr;
 | |
| 	index_addr(denali, cmd, access_type);
 | |
| 
 | |
| 	/* setup the pipeline command */
 | |
| 	index_addr(denali, cmd, 0x2000 | op | page_count);
 | |
| 
 | |
| 	cmd = MODE_01 | addr;
 | |
| 	writel(cmd, denali->flash_mem + INDEX_CTRL_REG);
 | |
| 
 | |
| 	if (op == DENALI_READ) {
 | |
| 		/* wait for command to be accepted */
 | |
| 		irq_status = wait_for_irq(denali, INTR_STATUS__LOAD_COMP);
 | |
| 
 | |
| 		if (irq_status == 0)
 | |
| 			return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* helper function that simply writes a buffer to the flash */
 | |
| static int write_data_to_flash_mem(struct denali_nand_info *denali,
 | |
| 				   const uint8_t *buf, int len)
 | |
| {
 | |
| 	uint32_t *buf32;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * verify that the len is a multiple of 4.
 | |
| 	 * see comment in read_data_from_flash_mem()
 | |
| 	 */
 | |
| 	BUG_ON((len % 4) != 0);
 | |
| 
 | |
| 	/* write the data to the flash memory */
 | |
| 	buf32 = (uint32_t *)buf;
 | |
| 	for (i = 0; i < len / 4; i++)
 | |
| 		writel(*buf32++, denali->flash_mem + INDEX_DATA_REG);
 | |
| 	return i * 4; /* intent is to return the number of bytes read */
 | |
| }
 | |
| 
 | |
| /* helper function that simply reads a buffer from the flash */
 | |
| static int read_data_from_flash_mem(struct denali_nand_info *denali,
 | |
| 				    uint8_t *buf, int len)
 | |
| {
 | |
| 	uint32_t *buf32;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * we assume that len will be a multiple of 4, if not it would be nice
 | |
| 	 * to know about it ASAP rather than have random failures...
 | |
| 	 * This assumption is based on the fact that this function is designed
 | |
| 	 * to be used to read flash pages, which are typically multiples of 4.
 | |
| 	 */
 | |
| 	BUG_ON((len % 4) != 0);
 | |
| 
 | |
| 	/* transfer the data from the flash */
 | |
| 	buf32 = (uint32_t *)buf;
 | |
| 	for (i = 0; i < len / 4; i++)
 | |
| 		*buf32++ = readl(denali->flash_mem + INDEX_DATA_REG);
 | |
| 
 | |
| 	return i * 4; /* intent is to return the number of bytes read */
 | |
| }
 | |
| 
 | |
| static void denali_mode_main_access(struct denali_nand_info *denali)
 | |
| {
 | |
| 	uint32_t addr, cmd;
 | |
| 
 | |
| 	addr = BANK(denali->flash_bank) | denali->page;
 | |
| 	cmd = MODE_10 | addr;
 | |
| 	index_addr(denali, cmd, MAIN_ACCESS);
 | |
| }
 | |
| 
 | |
| static void denali_mode_main_spare_access(struct denali_nand_info *denali)
 | |
| {
 | |
| 	uint32_t addr, cmd;
 | |
| 
 | |
| 	addr = BANK(denali->flash_bank) | denali->page;
 | |
| 	cmd = MODE_10 | addr;
 | |
| 	index_addr(denali, cmd, MAIN_SPARE_ACCESS);
 | |
| }
 | |
| 
 | |
| /* writes OOB data to the device */
 | |
| static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
 | |
| {
 | |
| 	struct denali_nand_info *denali = mtd_to_denali(mtd);
 | |
| 	uint32_t irq_status;
 | |
| 	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
 | |
| 						INTR_STATUS__PROGRAM_FAIL;
 | |
| 	int status = 0;
 | |
| 
 | |
| 	denali->page = page;
 | |
| 
 | |
| 	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
 | |
| 				     DENALI_WRITE) == 0) {
 | |
| 		write_data_to_flash_mem(denali, buf, mtd->oobsize);
 | |
| 
 | |
| 		/* wait for operation to complete */
 | |
| 		irq_status = wait_for_irq(denali, irq_mask);
 | |
| 
 | |
| 		if (irq_status == 0) {
 | |
| 			dev_err(denali->dev, "OOB write failed\n");
 | |
| 			status = -EIO;
 | |
| 		}
 | |
| 	} else {
 | |
| 		printf("unable to send pipeline command\n");
 | |
| 		status = -EIO;
 | |
| 	}
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /* reads OOB data from the device */
 | |
| static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
 | |
| {
 | |
| 	struct denali_nand_info *denali = mtd_to_denali(mtd);
 | |
| 	uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
 | |
| 	uint32_t irq_status, addr, cmd;
 | |
| 
 | |
| 	denali->page = page;
 | |
| 
 | |
| 	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
 | |
| 				     DENALI_READ) == 0) {
 | |
| 		read_data_from_flash_mem(denali, buf, mtd->oobsize);
 | |
| 
 | |
| 		/*
 | |
| 		 * wait for command to be accepted
 | |
| 		 * can always use status0 bit as the
 | |
| 		 * mask is identical for each bank.
 | |
| 		 */
 | |
| 		irq_status = wait_for_irq(denali, irq_mask);
 | |
| 
 | |
| 		if (irq_status == 0)
 | |
| 			printf("page on OOB timeout %d\n", denali->page);
 | |
| 
 | |
| 		/*
 | |
| 		 * We set the device back to MAIN_ACCESS here as I observed
 | |
| 		 * instability with the controller if you do a block erase
 | |
| 		 * and the last transaction was a SPARE_ACCESS. Block erase
 | |
| 		 * is reliable (according to the MTD test infrastructure)
 | |
| 		 * if you are in MAIN_ACCESS.
 | |
| 		 */
 | |
| 		addr = BANK(denali->flash_bank) | denali->page;
 | |
| 		cmd = MODE_10 | addr;
 | |
| 		index_addr(denali, cmd, MAIN_ACCESS);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this function examines buffers to see if they contain data that
 | |
|  * indicate that the buffer is part of an erased region of flash.
 | |
|  */
 | |
| static bool is_erased(uint8_t *buf, int len)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < len; i++)
 | |
| 		if (buf[i] != 0xFF)
 | |
| 			return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* programs the controller to either enable/disable DMA transfers */
 | |
| static void denali_enable_dma(struct denali_nand_info *denali, bool en)
 | |
| {
 | |
| 	writel(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
 | |
| 	readl(denali->flash_reg + DMA_ENABLE);
 | |
| }
 | |
| 
 | |
| /* setups the HW to perform the data DMA */
 | |
| static void denali_setup_dma(struct denali_nand_info *denali, int op)
 | |
| {
 | |
| 	uint32_t mode;
 | |
| 	const int page_count = 1;
 | |
| 	uint64_t addr = (unsigned long)denali->buf.dma_buf;
 | |
| 
 | |
| 	flush_dcache_range(addr, addr + sizeof(denali->buf.dma_buf));
 | |
| 
 | |
| /* For Denali controller that is 64 bit bus IP core */
 | |
| #ifdef CONFIG_SYS_NAND_DENALI_64BIT
 | |
| 	mode = MODE_10 | BANK(denali->flash_bank) | denali->page;
 | |
| 
 | |
| 	/* DMA is a three step process */
 | |
| 
 | |
| 	/* 1. setup transfer type, interrupt when complete,
 | |
| 	      burst len = 64 bytes, the number of pages */
 | |
| 	index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count);
 | |
| 
 | |
| 	/* 2. set memory low address bits 31:0 */
 | |
| 	index_addr(denali, mode, addr);
 | |
| 
 | |
| 	/* 3. set memory high address bits 64:32 */
 | |
| 	index_addr(denali, mode, addr >> 32);
 | |
| #else
 | |
| 	mode = MODE_10 | BANK(denali->flash_bank);
 | |
| 
 | |
| 	/* DMA is a four step process */
 | |
| 
 | |
| 	/* 1. setup transfer type and # of pages */
 | |
| 	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
 | |
| 
 | |
| 	/* 2. set memory high address bits 23:8 */
 | |
| 	index_addr(denali, mode | (((addr >> 16) & 0xffff) << 8), 0x2200);
 | |
| 
 | |
| 	/* 3. set memory low address bits 23:8 */
 | |
| 	index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
 | |
| 
 | |
| 	/* 4. interrupt when complete, burst len = 64 bytes */
 | |
| 	index_addr(denali, mode | 0x14000, 0x2400);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Common DMA function */
 | |
| static uint32_t denali_dma_configuration(struct denali_nand_info *denali,
 | |
| 					 uint32_t ops, bool raw_xfer,
 | |
| 					 uint32_t irq_mask, int oob_required)
 | |
| {
 | |
| 	uint32_t irq_status = 0;
 | |
| 	/* setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) */
 | |
| 	setup_ecc_for_xfer(denali, !raw_xfer, oob_required);
 | |
| 
 | |
| 	/* clear any previous interrupt flags */
 | |
| 	clear_interrupts(denali);
 | |
| 
 | |
| 	/* enable the DMA */
 | |
| 	denali_enable_dma(denali, true);
 | |
| 
 | |
| 	/* setup the DMA */
 | |
| 	denali_setup_dma(denali, ops);
 | |
| 
 | |
| 	/* wait for operation to complete */
 | |
| 	irq_status = wait_for_irq(denali, irq_mask);
 | |
| 
 | |
| 	/* if ECC fault happen, seems we need delay before turning off DMA.
 | |
| 	 * If not, the controller will go into non responsive condition */
 | |
| 	if (irq_status & INTR_STATUS__ECC_UNCOR_ERR)
 | |
| 		udelay(100);
 | |
| 
 | |
| 	/* disable the DMA */
 | |
| 	denali_enable_dma(denali, false);
 | |
| 
 | |
| 	return irq_status;
 | |
| }
 | |
| 
 | |
| static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
 | |
| 			const uint8_t *buf, bool raw_xfer, int oob_required)
 | |
| {
 | |
| 	struct denali_nand_info *denali = mtd_to_denali(mtd);
 | |
| 
 | |
| 	uint32_t irq_status = 0;
 | |
| 	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
 | |
| 
 | |
| 	denali->status = 0;
 | |
| 
 | |
| 	/* copy buffer into DMA buffer */
 | |
| 	memcpy(denali->buf.dma_buf, buf, mtd->writesize);
 | |
| 
 | |
| 	/* need extra memcpy for raw transfer */
 | |
| 	if (raw_xfer)
 | |
| 		memcpy(denali->buf.dma_buf + mtd->writesize,
 | |
| 		       chip->oob_poi, mtd->oobsize);
 | |
| 
 | |
| 	/* setting up DMA */
 | |
| 	irq_status = denali_dma_configuration(denali, DENALI_WRITE, raw_xfer,
 | |
| 					      irq_mask, oob_required);
 | |
| 
 | |
| 	/* if timeout happen, error out */
 | |
| 	if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
 | |
| 		debug("DMA timeout for denali write_page\n");
 | |
| 		denali->status = NAND_STATUS_FAIL;
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (irq_status & INTR_STATUS__LOCKED_BLK) {
 | |
| 		debug("Failed as write to locked block\n");
 | |
| 		denali->status = NAND_STATUS_FAIL;
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* NAND core entry points */
 | |
| 
 | |
| /*
 | |
|  * this is the callback that the NAND core calls to write a page. Since
 | |
|  * writing a page with ECC or without is similar, all the work is done
 | |
|  * by write_page above.
 | |
|  */
 | |
| static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
 | |
| 				const uint8_t *buf, int oob_required, int page)
 | |
| {
 | |
| 	struct denali_nand_info *denali = mtd_to_denali(mtd);
 | |
| 
 | |
| 	/*
 | |
| 	 * for regular page writes, we let HW handle all the ECC
 | |
| 	 * data written to the device.
 | |
| 	 */
 | |
| 	if (oob_required)
 | |
| 		/* switch to main + spare access */
 | |
| 		denali_mode_main_spare_access(denali);
 | |
| 	else
 | |
| 		/* switch to main access only */
 | |
| 		denali_mode_main_access(denali);
 | |
| 
 | |
| 	return write_page(mtd, chip, buf, false, oob_required);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the callback that the NAND core calls to write a page without ECC.
 | |
|  * raw access is similar to ECC page writes, so all the work is done in the
 | |
|  * write_page() function above.
 | |
|  */
 | |
| static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
 | |
| 				 const uint8_t *buf, int oob_required,
 | |
| 				 int page)
 | |
| {
 | |
| 	struct denali_nand_info *denali = mtd_to_denali(mtd);
 | |
| 
 | |
| 	/*
 | |
| 	 * for raw page writes, we want to disable ECC and simply write
 | |
| 	 * whatever data is in the buffer.
 | |
| 	 */
 | |
| 
 | |
| 	if (oob_required)
 | |
| 		/* switch to main + spare access */
 | |
| 		denali_mode_main_spare_access(denali);
 | |
| 	else
 | |
| 		/* switch to main access only */
 | |
| 		denali_mode_main_access(denali);
 | |
| 
 | |
| 	return write_page(mtd, chip, buf, true, oob_required);
 | |
| }
 | |
| 
 | |
| static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
 | |
| 				int page)
 | |
| {
 | |
| 	return write_oob_data(mtd, chip->oob_poi, page);
 | |
| }
 | |
| 
 | |
| /* raw include ECC value and all the spare area */
 | |
| static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
 | |
| 				uint8_t *buf, int oob_required, int page)
 | |
| {
 | |
| 	struct denali_nand_info *denali = mtd_to_denali(mtd);
 | |
| 
 | |
| 	uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
 | |
| 
 | |
| 	if (denali->page != page) {
 | |
| 		debug("Missing NAND_CMD_READ0 command\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (oob_required)
 | |
| 		/* switch to main + spare access */
 | |
| 		denali_mode_main_spare_access(denali);
 | |
| 	else
 | |
| 		/* switch to main access only */
 | |
| 		denali_mode_main_access(denali);
 | |
| 
 | |
| 	/* setting up the DMA where ecc_enable is false */
 | |
| 	irq_status = denali_dma_configuration(denali, DENALI_READ, true,
 | |
| 					      irq_mask, oob_required);
 | |
| 
 | |
| 	/* if timeout happen, error out */
 | |
| 	if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
 | |
| 		debug("DMA timeout for denali_read_page_raw\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* splitting the content to destination buffer holder */
 | |
| 	memcpy(chip->oob_poi, (denali->buf.dma_buf + mtd->writesize),
 | |
| 	       mtd->oobsize);
 | |
| 	memcpy(buf, denali->buf.dma_buf, mtd->writesize);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 | |
| 				uint8_t *buf, int oob_required, int page)
 | |
| {
 | |
| 	struct denali_nand_info *denali = mtd_to_denali(mtd);
 | |
| 	uint32_t irq_status, irq_mask =	INTR_STATUS__DMA_CMD_COMP;
 | |
| 
 | |
| 	if (denali->page != page) {
 | |
| 		debug("Missing NAND_CMD_READ0 command\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (oob_required)
 | |
| 		/* switch to main + spare access */
 | |
| 		denali_mode_main_spare_access(denali);
 | |
| 	else
 | |
| 		/* switch to main access only */
 | |
| 		denali_mode_main_access(denali);
 | |
| 
 | |
| 	/* setting up the DMA where ecc_enable is true */
 | |
| 	irq_status = denali_dma_configuration(denali, DENALI_READ, false,
 | |
| 					      irq_mask, oob_required);
 | |
| 
 | |
| 	memcpy(buf, denali->buf.dma_buf, mtd->writesize);
 | |
| 
 | |
| 	/* check whether any ECC error */
 | |
| 	if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) {
 | |
| 		/* is the ECC cause by erase page, check using read_page_raw */
 | |
| 		debug("  Uncorrected ECC detected\n");
 | |
| 		denali_read_page_raw(mtd, chip, buf, oob_required,
 | |
| 				     denali->page);
 | |
| 
 | |
| 		if (is_erased(buf, mtd->writesize) == true &&
 | |
| 		    is_erased(chip->oob_poi, mtd->oobsize) == true) {
 | |
| 			debug("  ECC error cause by erased block\n");
 | |
| 			/* false alarm, return the 0xFF */
 | |
| 		} else {
 | |
| 			return -EBADMSG;
 | |
| 		}
 | |
| 	}
 | |
| 	memcpy(buf, denali->buf.dma_buf, mtd->writesize);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
 | |
| 				int page)
 | |
| {
 | |
| 	read_oob_data(mtd, chip->oob_poi, page);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static uint8_t denali_read_byte(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct denali_nand_info *denali = mtd_to_denali(mtd);
 | |
| 	uint32_t addr, result;
 | |
| 
 | |
| 	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
 | |
| 	index_addr_read_data(denali, addr | 2, &result);
 | |
| 	return (uint8_t)result & 0xFF;
 | |
| }
 | |
| 
 | |
| static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 | |
| {
 | |
| 	struct denali_nand_info *denali = mtd_to_denali(mtd);
 | |
| 	uint32_t i, addr, result;
 | |
| 
 | |
| 	/* delay for tR (data transfer from Flash array to data register) */
 | |
| 	udelay(25);
 | |
| 
 | |
| 	/* ensure device completed else additional delay and polling */
 | |
| 	wait_for_irq(denali, INTR_STATUS__INT_ACT);
 | |
| 
 | |
| 	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
 | |
| 	for (i = 0; i < len; i++) {
 | |
| 		index_addr_read_data(denali, (uint32_t)addr | 2, &result);
 | |
| 		write_byte_to_buf(denali, result);
 | |
| 	}
 | |
| 	memcpy(buf, denali->buf.buf, len);
 | |
| }
 | |
| 
 | |
| static void denali_select_chip(struct mtd_info *mtd, int chip)
 | |
| {
 | |
| 	struct denali_nand_info *denali = mtd_to_denali(mtd);
 | |
| 
 | |
| 	denali->flash_bank = chip;
 | |
| }
 | |
| 
 | |
| static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
 | |
| {
 | |
| 	struct denali_nand_info *denali = mtd_to_denali(mtd);
 | |
| 	int status = denali->status;
 | |
| 
 | |
| 	denali->status = 0;
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int denali_erase(struct mtd_info *mtd, int page)
 | |
| {
 | |
| 	struct denali_nand_info *denali = mtd_to_denali(mtd);
 | |
| 
 | |
| 	uint32_t cmd, irq_status;
 | |
| 
 | |
| 	clear_interrupts(denali);
 | |
| 
 | |
| 	/* setup page read request for access type */
 | |
| 	cmd = MODE_10 | BANK(denali->flash_bank) | page;
 | |
| 	index_addr(denali, cmd, 0x1);
 | |
| 
 | |
| 	/* wait for erase to complete or failure to occur */
 | |
| 	irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
 | |
| 					INTR_STATUS__ERASE_FAIL);
 | |
| 
 | |
| 	if (irq_status & INTR_STATUS__ERASE_FAIL ||
 | |
| 	    irq_status & INTR_STATUS__LOCKED_BLK)
 | |
| 		return NAND_STATUS_FAIL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
 | |
| 			   int page)
 | |
| {
 | |
| 	struct denali_nand_info *denali = mtd_to_denali(mtd);
 | |
| 	uint32_t addr;
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case NAND_CMD_PAGEPROG:
 | |
| 		break;
 | |
| 	case NAND_CMD_STATUS:
 | |
| 		addr = MODE_11 | BANK(denali->flash_bank);
 | |
| 		index_addr(denali, addr | 0, cmd);
 | |
| 		break;
 | |
| 	case NAND_CMD_READID:
 | |
| 	case NAND_CMD_PARAM:
 | |
| 		reset_buf(denali);
 | |
| 		/*
 | |
| 		 * sometimes ManufactureId read from register is not right
 | |
| 		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
 | |
| 		 * So here we send READID cmd to NAND insteand
 | |
| 		 */
 | |
| 		addr = MODE_11 | BANK(denali->flash_bank);
 | |
| 		index_addr(denali, addr | 0, cmd);
 | |
| 		index_addr(denali, addr | 1, col & 0xFF);
 | |
| 		if (cmd == NAND_CMD_PARAM)
 | |
| 			udelay(50);
 | |
| 		break;
 | |
| 	case NAND_CMD_RNDOUT:
 | |
| 		addr = MODE_11 | BANK(denali->flash_bank);
 | |
| 		index_addr(denali, addr | 0, cmd);
 | |
| 		index_addr(denali, addr | 1, col & 0xFF);
 | |
| 		index_addr(denali, addr | 1, col >> 8);
 | |
| 		index_addr(denali, addr | 0, NAND_CMD_RNDOUTSTART);
 | |
| 		break;
 | |
| 	case NAND_CMD_READ0:
 | |
| 	case NAND_CMD_SEQIN:
 | |
| 		denali->page = page;
 | |
| 		break;
 | |
| 	case NAND_CMD_RESET:
 | |
| 		reset_bank(denali);
 | |
| 		break;
 | |
| 	case NAND_CMD_READOOB:
 | |
| 		/* TODO: Read OOB data */
 | |
| 		break;
 | |
| 	case NAND_CMD_ERASE1:
 | |
| 		/*
 | |
| 		 * supporting block erase only, not multiblock erase as
 | |
| 		 * it will cross plane and software need complex calculation
 | |
| 		 * to identify the block count for the cross plane
 | |
| 		 */
 | |
| 		denali_erase(mtd, page);
 | |
| 		break;
 | |
| 	case NAND_CMD_ERASE2:
 | |
| 		/* nothing to do here as it was done during NAND_CMD_ERASE1 */
 | |
| 		break;
 | |
| 	case NAND_CMD_UNLOCK1:
 | |
| 		addr = MODE_10 | BANK(denali->flash_bank) | page;
 | |
| 		index_addr(denali, addr | 0, DENALI_UNLOCK_START);
 | |
| 		break;
 | |
| 	case NAND_CMD_UNLOCK2:
 | |
| 		addr = MODE_10 | BANK(denali->flash_bank) | page;
 | |
| 		index_addr(denali, addr | 0, DENALI_UNLOCK_END);
 | |
| 		break;
 | |
| 	case NAND_CMD_LOCK:
 | |
| 		addr = MODE_10 | BANK(denali->flash_bank);
 | |
| 		index_addr(denali, addr | 0, DENALI_LOCK);
 | |
| 		break;
 | |
| 	default:
 | |
| 		printf(": unsupported command received 0x%x\n", cmd);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| /* end NAND core entry points */
 | |
| 
 | |
| /* Initialization code to bring the device up to a known good state */
 | |
| static void denali_hw_init(struct denali_nand_info *denali)
 | |
| {
 | |
| 	/*
 | |
| 	 * tell driver how many bit controller will skip before writing
 | |
| 	 * ECC code in OOB. This is normally used for bad block marker
 | |
| 	 */
 | |
| 	writel(CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES,
 | |
| 	       denali->flash_reg + SPARE_AREA_SKIP_BYTES);
 | |
| 	detect_max_banks(denali);
 | |
| 	denali_nand_reset(denali);
 | |
| 	writel(0x0F, denali->flash_reg + RB_PIN_ENABLED);
 | |
| 	writel(CHIP_EN_DONT_CARE__FLAG,
 | |
| 	       denali->flash_reg + CHIP_ENABLE_DONT_CARE);
 | |
| 	writel(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
 | |
| 
 | |
| 	/* Should set value for these registers when init */
 | |
| 	writel(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
 | |
| 	writel(1, denali->flash_reg + ECC_ENABLE);
 | |
| 	denali_nand_timing_set(denali);
 | |
| 	denali_irq_init(denali);
 | |
| }
 | |
| 
 | |
| static struct nand_ecclayout nand_oob;
 | |
| 
 | |
| static int denali_init(struct denali_nand_info *denali)
 | |
| {
 | |
| 	struct mtd_info *mtd = nand_to_mtd(&denali->nand);
 | |
| 	int ret;
 | |
| 
 | |
| 	denali_hw_init(denali);
 | |
| 
 | |
| 	mtd->name = "denali-nand";
 | |
| 	mtd->owner = THIS_MODULE;
 | |
| 
 | |
| 	/* register the driver with the NAND core subsystem */
 | |
| 	denali->nand.select_chip = denali_select_chip;
 | |
| 	denali->nand.cmdfunc = denali_cmdfunc;
 | |
| 	denali->nand.read_byte = denali_read_byte;
 | |
| 	denali->nand.read_buf = denali_read_buf;
 | |
| 	denali->nand.waitfunc = denali_waitfunc;
 | |
| 
 | |
| 	/*
 | |
| 	 * scan for NAND devices attached to the controller
 | |
| 	 * this is the first stage in a two step process to register
 | |
| 	 * with the nand subsystem
 | |
| 	 */
 | |
| 	if (nand_scan_ident(mtd, denali->max_banks, NULL)) {
 | |
| 		ret = -ENXIO;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
 | |
| 	/* check whether flash got BBT table (located at end of flash). As we
 | |
| 	 * use NAND_BBT_NO_OOB, the BBT page will start with
 | |
| 	 * bbt_pattern. We will have mirror pattern too */
 | |
| 	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
 | |
| 	/*
 | |
| 	 * We are using main + spare with ECC support. As BBT need ECC support,
 | |
| 	 * we need to ensure BBT code don't write to OOB for the BBT pattern.
 | |
| 	 * All BBT info will be stored into data area with ECC support.
 | |
| 	 */
 | |
| 	denali->nand.bbt_options |= NAND_BBT_NO_OOB;
 | |
| #endif
 | |
| 
 | |
| 	denali->nand.ecc.mode = NAND_ECC_HW;
 | |
| 	denali->nand.ecc.size = CONFIG_NAND_DENALI_ECC_SIZE;
 | |
| 
 | |
| 	/* no subpage writes on denali */
 | |
| 	denali->nand.options |= NAND_NO_SUBPAGE_WRITE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Tell driver the ecc strength. This register may be already set
 | |
| 	 * correctly. So we read this value out.
 | |
| 	 */
 | |
| 	denali->nand.ecc.strength = readl(denali->flash_reg + ECC_CORRECTION);
 | |
| 	switch (denali->nand.ecc.size) {
 | |
| 	case 512:
 | |
| 		denali->nand.ecc.bytes =
 | |
| 			(denali->nand.ecc.strength * 13 + 15) / 16 * 2;
 | |
| 		break;
 | |
| 	case 1024:
 | |
| 		denali->nand.ecc.bytes =
 | |
| 			(denali->nand.ecc.strength * 14 + 15) / 16 * 2;
 | |
| 		break;
 | |
| 	default:
 | |
| 		pr_err("Unsupported ECC size\n");
 | |
| 		ret = -EINVAL;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	nand_oob.eccbytes = denali->nand.ecc.bytes;
 | |
| 	denali->nand.ecc.layout = &nand_oob;
 | |
| 
 | |
| 	writel(mtd->erasesize / mtd->writesize,
 | |
| 	       denali->flash_reg + PAGES_PER_BLOCK);
 | |
| 	writel(denali->nand.options & NAND_BUSWIDTH_16 ? 1 : 0,
 | |
| 	       denali->flash_reg + DEVICE_WIDTH);
 | |
| 	writel(mtd->writesize,
 | |
| 	       denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
 | |
| 	writel(mtd->oobsize,
 | |
| 	       denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
 | |
| 	if (readl(denali->flash_reg + DEVICES_CONNECTED) == 0)
 | |
| 		writel(1, denali->flash_reg + DEVICES_CONNECTED);
 | |
| 
 | |
| 	/* override the default operations */
 | |
| 	denali->nand.ecc.read_page = denali_read_page;
 | |
| 	denali->nand.ecc.read_page_raw = denali_read_page_raw;
 | |
| 	denali->nand.ecc.write_page = denali_write_page;
 | |
| 	denali->nand.ecc.write_page_raw = denali_write_page_raw;
 | |
| 	denali->nand.ecc.read_oob = denali_read_oob;
 | |
| 	denali->nand.ecc.write_oob = denali_write_oob;
 | |
| 
 | |
| 	if (nand_scan_tail(mtd)) {
 | |
| 		ret = -ENXIO;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	ret = nand_register(0, mtd);
 | |
| 
 | |
| fail:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __board_nand_init(void)
 | |
| {
 | |
| 	struct denali_nand_info *denali;
 | |
| 
 | |
| 	denali = kzalloc(sizeof(*denali), GFP_KERNEL);
 | |
| 	if (!denali)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * In the future, these base addresses should be taken from
 | |
| 	 * Device Tree or platform data.
 | |
| 	 */
 | |
| 	denali->flash_reg = (void  __iomem *)CONFIG_SYS_NAND_REGS_BASE;
 | |
| 	denali->flash_mem = (void  __iomem *)CONFIG_SYS_NAND_DATA_BASE;
 | |
| 
 | |
| 	return denali_init(denali);
 | |
| }
 | |
| 
 | |
| void board_nand_init(void)
 | |
| {
 | |
| 	if (__board_nand_init() < 0)
 | |
| 		pr_warn("Failed to initialize Denali NAND controller.\n");
 | |
| }
 |