3149 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			3149 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * This file is part of UBIFS.
 | |
|  *
 | |
|  * Copyright (C) 2006-2008 Nokia Corporation
 | |
|  *
 | |
|  * SPDX-License-Identifier:	GPL-2.0+
 | |
|  *
 | |
|  * Authors: Artem Bityutskiy (Битюцкий Артём)
 | |
|  *          Adrian Hunter
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file implements most of the debugging stuff which is compiled in only
 | |
|  * when it is enabled. But some debugging check functions are implemented in
 | |
|  * corresponding subsystem, just because they are closely related and utilize
 | |
|  * various local functions of those subsystems.
 | |
|  */
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| #include <linux/module.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/random.h>
 | |
| #else
 | |
| #include <linux/compat.h>
 | |
| #include <linux/err.h>
 | |
| #endif
 | |
| #include "ubifs.h"
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| static DEFINE_SPINLOCK(dbg_lock);
 | |
| #endif
 | |
| 
 | |
| static const char *get_key_fmt(int fmt)
 | |
| {
 | |
| 	switch (fmt) {
 | |
| 	case UBIFS_SIMPLE_KEY_FMT:
 | |
| 		return "simple";
 | |
| 	default:
 | |
| 		return "unknown/invalid format";
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const char *get_key_hash(int hash)
 | |
| {
 | |
| 	switch (hash) {
 | |
| 	case UBIFS_KEY_HASH_R5:
 | |
| 		return "R5";
 | |
| 	case UBIFS_KEY_HASH_TEST:
 | |
| 		return "test";
 | |
| 	default:
 | |
| 		return "unknown/invalid name hash";
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const char *get_key_type(int type)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case UBIFS_INO_KEY:
 | |
| 		return "inode";
 | |
| 	case UBIFS_DENT_KEY:
 | |
| 		return "direntry";
 | |
| 	case UBIFS_XENT_KEY:
 | |
| 		return "xentry";
 | |
| 	case UBIFS_DATA_KEY:
 | |
| 		return "data";
 | |
| 	case UBIFS_TRUN_KEY:
 | |
| 		return "truncate";
 | |
| 	default:
 | |
| 		return "unknown/invalid key";
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| static const char *get_dent_type(int type)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case UBIFS_ITYPE_REG:
 | |
| 		return "file";
 | |
| 	case UBIFS_ITYPE_DIR:
 | |
| 		return "dir";
 | |
| 	case UBIFS_ITYPE_LNK:
 | |
| 		return "symlink";
 | |
| 	case UBIFS_ITYPE_BLK:
 | |
| 		return "blkdev";
 | |
| 	case UBIFS_ITYPE_CHR:
 | |
| 		return "char dev";
 | |
| 	case UBIFS_ITYPE_FIFO:
 | |
| 		return "fifo";
 | |
| 	case UBIFS_ITYPE_SOCK:
 | |
| 		return "socket";
 | |
| 	default:
 | |
| 		return "unknown/invalid type";
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| const char *dbg_snprintf_key(const struct ubifs_info *c,
 | |
| 			     const union ubifs_key *key, char *buffer, int len)
 | |
| {
 | |
| 	char *p = buffer;
 | |
| 	int type = key_type(c, key);
 | |
| 
 | |
| 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
 | |
| 		switch (type) {
 | |
| 		case UBIFS_INO_KEY:
 | |
| 			len -= snprintf(p, len, "(%lu, %s)",
 | |
| 					(unsigned long)key_inum(c, key),
 | |
| 					get_key_type(type));
 | |
| 			break;
 | |
| 		case UBIFS_DENT_KEY:
 | |
| 		case UBIFS_XENT_KEY:
 | |
| 			len -= snprintf(p, len, "(%lu, %s, %#08x)",
 | |
| 					(unsigned long)key_inum(c, key),
 | |
| 					get_key_type(type), key_hash(c, key));
 | |
| 			break;
 | |
| 		case UBIFS_DATA_KEY:
 | |
| 			len -= snprintf(p, len, "(%lu, %s, %u)",
 | |
| 					(unsigned long)key_inum(c, key),
 | |
| 					get_key_type(type), key_block(c, key));
 | |
| 			break;
 | |
| 		case UBIFS_TRUN_KEY:
 | |
| 			len -= snprintf(p, len, "(%lu, %s)",
 | |
| 					(unsigned long)key_inum(c, key),
 | |
| 					get_key_type(type));
 | |
| 			break;
 | |
| 		default:
 | |
| 			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 | |
| 					key->u32[0], key->u32[1]);
 | |
| 		}
 | |
| 	} else
 | |
| 		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 | |
| 	ubifs_assert(len > 0);
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| const char *dbg_ntype(int type)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case UBIFS_PAD_NODE:
 | |
| 		return "padding node";
 | |
| 	case UBIFS_SB_NODE:
 | |
| 		return "superblock node";
 | |
| 	case UBIFS_MST_NODE:
 | |
| 		return "master node";
 | |
| 	case UBIFS_REF_NODE:
 | |
| 		return "reference node";
 | |
| 	case UBIFS_INO_NODE:
 | |
| 		return "inode node";
 | |
| 	case UBIFS_DENT_NODE:
 | |
| 		return "direntry node";
 | |
| 	case UBIFS_XENT_NODE:
 | |
| 		return "xentry node";
 | |
| 	case UBIFS_DATA_NODE:
 | |
| 		return "data node";
 | |
| 	case UBIFS_TRUN_NODE:
 | |
| 		return "truncate node";
 | |
| 	case UBIFS_IDX_NODE:
 | |
| 		return "indexing node";
 | |
| 	case UBIFS_CS_NODE:
 | |
| 		return "commit start node";
 | |
| 	case UBIFS_ORPH_NODE:
 | |
| 		return "orphan node";
 | |
| 	default:
 | |
| 		return "unknown node";
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const char *dbg_gtype(int type)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case UBIFS_NO_NODE_GROUP:
 | |
| 		return "no node group";
 | |
| 	case UBIFS_IN_NODE_GROUP:
 | |
| 		return "in node group";
 | |
| 	case UBIFS_LAST_OF_NODE_GROUP:
 | |
| 		return "last of node group";
 | |
| 	default:
 | |
| 		return "unknown";
 | |
| 	}
 | |
| }
 | |
| 
 | |
| const char *dbg_cstate(int cmt_state)
 | |
| {
 | |
| 	switch (cmt_state) {
 | |
| 	case COMMIT_RESTING:
 | |
| 		return "commit resting";
 | |
| 	case COMMIT_BACKGROUND:
 | |
| 		return "background commit requested";
 | |
| 	case COMMIT_REQUIRED:
 | |
| 		return "commit required";
 | |
| 	case COMMIT_RUNNING_BACKGROUND:
 | |
| 		return "BACKGROUND commit running";
 | |
| 	case COMMIT_RUNNING_REQUIRED:
 | |
| 		return "commit running and required";
 | |
| 	case COMMIT_BROKEN:
 | |
| 		return "broken commit";
 | |
| 	default:
 | |
| 		return "unknown commit state";
 | |
| 	}
 | |
| }
 | |
| 
 | |
| const char *dbg_jhead(int jhead)
 | |
| {
 | |
| 	switch (jhead) {
 | |
| 	case GCHD:
 | |
| 		return "0 (GC)";
 | |
| 	case BASEHD:
 | |
| 		return "1 (base)";
 | |
| 	case DATAHD:
 | |
| 		return "2 (data)";
 | |
| 	default:
 | |
| 		return "unknown journal head";
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void dump_ch(const struct ubifs_ch *ch)
 | |
| {
 | |
| 	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
 | |
| 	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
 | |
| 	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
 | |
| 	       dbg_ntype(ch->node_type));
 | |
| 	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
 | |
| 	       dbg_gtype(ch->group_type));
 | |
| 	pr_err("\tsqnum          %llu\n",
 | |
| 	       (unsigned long long)le64_to_cpu(ch->sqnum));
 | |
| 	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
 | |
| }
 | |
| 
 | |
| void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 | |
| {
 | |
| #ifndef __UBOOT__
 | |
| 	const struct ubifs_inode *ui = ubifs_inode(inode);
 | |
| 	struct qstr nm = { .name = NULL };
 | |
| 	union ubifs_key key;
 | |
| 	struct ubifs_dent_node *dent, *pdent = NULL;
 | |
| 	int count = 2;
 | |
| 
 | |
| 	pr_err("Dump in-memory inode:");
 | |
| 	pr_err("\tinode          %lu\n", inode->i_ino);
 | |
| 	pr_err("\tsize           %llu\n",
 | |
| 	       (unsigned long long)i_size_read(inode));
 | |
| 	pr_err("\tnlink          %u\n", inode->i_nlink);
 | |
| 	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
 | |
| 	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
 | |
| 	pr_err("\tatime          %u.%u\n",
 | |
| 	       (unsigned int)inode->i_atime.tv_sec,
 | |
| 	       (unsigned int)inode->i_atime.tv_nsec);
 | |
| 	pr_err("\tmtime          %u.%u\n",
 | |
| 	       (unsigned int)inode->i_mtime.tv_sec,
 | |
| 	       (unsigned int)inode->i_mtime.tv_nsec);
 | |
| 	pr_err("\tctime          %u.%u\n",
 | |
| 	       (unsigned int)inode->i_ctime.tv_sec,
 | |
| 	       (unsigned int)inode->i_ctime.tv_nsec);
 | |
| 	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 | |
| 	pr_err("\txattr_size     %u\n", ui->xattr_size);
 | |
| 	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
 | |
| 	pr_err("\txattr_names    %u\n", ui->xattr_names);
 | |
| 	pr_err("\tdirty          %u\n", ui->dirty);
 | |
| 	pr_err("\txattr          %u\n", ui->xattr);
 | |
| 	pr_err("\tbulk_read      %u\n", ui->xattr);
 | |
| 	pr_err("\tsynced_i_size  %llu\n",
 | |
| 	       (unsigned long long)ui->synced_i_size);
 | |
| 	pr_err("\tui_size        %llu\n",
 | |
| 	       (unsigned long long)ui->ui_size);
 | |
| 	pr_err("\tflags          %d\n", ui->flags);
 | |
| 	pr_err("\tcompr_type     %d\n", ui->compr_type);
 | |
| 	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
 | |
| 	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
 | |
| 	pr_err("\tdata_len       %d\n", ui->data_len);
 | |
| 
 | |
| 	if (!S_ISDIR(inode->i_mode))
 | |
| 		return;
 | |
| 
 | |
| 	pr_err("List of directory entries:\n");
 | |
| 	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
 | |
| 
 | |
| 	lowest_dent_key(c, &key, inode->i_ino);
 | |
| 	while (1) {
 | |
| 		dent = ubifs_tnc_next_ent(c, &key, &nm);
 | |
| 		if (IS_ERR(dent)) {
 | |
| 			if (PTR_ERR(dent) != -ENOENT)
 | |
| 				pr_err("error %ld\n", PTR_ERR(dent));
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		pr_err("\t%d: %s (%s)\n",
 | |
| 		       count++, dent->name, get_dent_type(dent->type));
 | |
| 
 | |
| 		nm.name = dent->name;
 | |
| 		nm.len = le16_to_cpu(dent->nlen);
 | |
| 		kfree(pdent);
 | |
| 		pdent = dent;
 | |
| 		key_read(c, &dent->key, &key);
 | |
| 	}
 | |
| 	kfree(pdent);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void ubifs_dump_node(const struct ubifs_info *c, const void *node)
 | |
| {
 | |
| 	int i, n;
 | |
| 	union ubifs_key key;
 | |
| 	const struct ubifs_ch *ch = node;
 | |
| 	char key_buf[DBG_KEY_BUF_LEN];
 | |
| 
 | |
| 	/* If the magic is incorrect, just hexdump the first bytes */
 | |
| 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 | |
| 		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
 | |
| 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 | |
| 			       (void *)node, UBIFS_CH_SZ, 1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&dbg_lock);
 | |
| 	dump_ch(node);
 | |
| 
 | |
| 	switch (ch->node_type) {
 | |
| 	case UBIFS_PAD_NODE:
 | |
| 	{
 | |
| 		const struct ubifs_pad_node *pad = node;
 | |
| 
 | |
| 		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
 | |
| 		break;
 | |
| 	}
 | |
| 	case UBIFS_SB_NODE:
 | |
| 	{
 | |
| 		const struct ubifs_sb_node *sup = node;
 | |
| 		unsigned int sup_flags = le32_to_cpu(sup->flags);
 | |
| 
 | |
| 		pr_err("\tkey_hash       %d (%s)\n",
 | |
| 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
 | |
| 		pr_err("\tkey_fmt        %d (%s)\n",
 | |
| 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 | |
| 		pr_err("\tflags          %#x\n", sup_flags);
 | |
| 		pr_err("\tbig_lpt        %u\n",
 | |
| 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
 | |
| 		pr_err("\tspace_fixup    %u\n",
 | |
| 		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 | |
| 		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
 | |
| 		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
 | |
| 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
 | |
| 		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
 | |
| 		pr_err("\tmax_bud_bytes  %llu\n",
 | |
| 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 | |
| 		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
 | |
| 		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
 | |
| 		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
 | |
| 		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
 | |
| 		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
 | |
| 		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
 | |
| 		pr_err("\tdefault_compr  %u\n",
 | |
| 		       (int)le16_to_cpu(sup->default_compr));
 | |
| 		pr_err("\trp_size        %llu\n",
 | |
| 		       (unsigned long long)le64_to_cpu(sup->rp_size));
 | |
| 		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
 | |
| 		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
 | |
| 		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
 | |
| 		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
 | |
| 		pr_err("\tUUID           %pUB\n", sup->uuid);
 | |
| 		break;
 | |
| 	}
 | |
| 	case UBIFS_MST_NODE:
 | |
| 	{
 | |
| 		const struct ubifs_mst_node *mst = node;
 | |
| 
 | |
| 		pr_err("\thighest_inum   %llu\n",
 | |
| 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
 | |
| 		pr_err("\tcommit number  %llu\n",
 | |
| 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
 | |
| 		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
 | |
| 		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
 | |
| 		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
 | |
| 		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
 | |
| 		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
 | |
| 		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
 | |
| 		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
 | |
| 		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
 | |
| 		pr_err("\tindex_size     %llu\n",
 | |
| 		       (unsigned long long)le64_to_cpu(mst->index_size));
 | |
| 		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
 | |
| 		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
 | |
| 		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
 | |
| 		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
 | |
| 		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
 | |
| 		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
 | |
| 		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
 | |
| 		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
 | |
| 		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
 | |
| 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
 | |
| 		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
 | |
| 		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
 | |
| 		pr_err("\ttotal_free     %llu\n",
 | |
| 		       (unsigned long long)le64_to_cpu(mst->total_free));
 | |
| 		pr_err("\ttotal_dirty    %llu\n",
 | |
| 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
 | |
| 		pr_err("\ttotal_used     %llu\n",
 | |
| 		       (unsigned long long)le64_to_cpu(mst->total_used));
 | |
| 		pr_err("\ttotal_dead     %llu\n",
 | |
| 		       (unsigned long long)le64_to_cpu(mst->total_dead));
 | |
| 		pr_err("\ttotal_dark     %llu\n",
 | |
| 		       (unsigned long long)le64_to_cpu(mst->total_dark));
 | |
| 		break;
 | |
| 	}
 | |
| 	case UBIFS_REF_NODE:
 | |
| 	{
 | |
| 		const struct ubifs_ref_node *ref = node;
 | |
| 
 | |
| 		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
 | |
| 		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
 | |
| 		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
 | |
| 		break;
 | |
| 	}
 | |
| 	case UBIFS_INO_NODE:
 | |
| 	{
 | |
| 		const struct ubifs_ino_node *ino = node;
 | |
| 
 | |
| 		key_read(c, &ino->key, &key);
 | |
| 		pr_err("\tkey            %s\n",
 | |
| 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 | |
| 		pr_err("\tcreat_sqnum    %llu\n",
 | |
| 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 | |
| 		pr_err("\tsize           %llu\n",
 | |
| 		       (unsigned long long)le64_to_cpu(ino->size));
 | |
| 		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
 | |
| 		pr_err("\tatime          %lld.%u\n",
 | |
| 		       (long long)le64_to_cpu(ino->atime_sec),
 | |
| 		       le32_to_cpu(ino->atime_nsec));
 | |
| 		pr_err("\tmtime          %lld.%u\n",
 | |
| 		       (long long)le64_to_cpu(ino->mtime_sec),
 | |
| 		       le32_to_cpu(ino->mtime_nsec));
 | |
| 		pr_err("\tctime          %lld.%u\n",
 | |
| 		       (long long)le64_to_cpu(ino->ctime_sec),
 | |
| 		       le32_to_cpu(ino->ctime_nsec));
 | |
| 		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
 | |
| 		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
 | |
| 		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
 | |
| 		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
 | |
| 		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
 | |
| 		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
 | |
| 		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
 | |
| 		pr_err("\tcompr_type     %#x\n",
 | |
| 		       (int)le16_to_cpu(ino->compr_type));
 | |
| 		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
 | |
| 		break;
 | |
| 	}
 | |
| 	case UBIFS_DENT_NODE:
 | |
| 	case UBIFS_XENT_NODE:
 | |
| 	{
 | |
| 		const struct ubifs_dent_node *dent = node;
 | |
| 		int nlen = le16_to_cpu(dent->nlen);
 | |
| 
 | |
| 		key_read(c, &dent->key, &key);
 | |
| 		pr_err("\tkey            %s\n",
 | |
| 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 | |
| 		pr_err("\tinum           %llu\n",
 | |
| 		       (unsigned long long)le64_to_cpu(dent->inum));
 | |
| 		pr_err("\ttype           %d\n", (int)dent->type);
 | |
| 		pr_err("\tnlen           %d\n", nlen);
 | |
| 		pr_err("\tname           ");
 | |
| 
 | |
| 		if (nlen > UBIFS_MAX_NLEN)
 | |
| 			pr_err("(bad name length, not printing, bad or corrupted node)");
 | |
| 		else {
 | |
| 			for (i = 0; i < nlen && dent->name[i]; i++)
 | |
| 				pr_cont("%c", dent->name[i]);
 | |
| 		}
 | |
| 		pr_cont("\n");
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 	case UBIFS_DATA_NODE:
 | |
| 	{
 | |
| 		const struct ubifs_data_node *dn = node;
 | |
| 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
 | |
| 
 | |
| 		key_read(c, &dn->key, &key);
 | |
| 		pr_err("\tkey            %s\n",
 | |
| 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 | |
| 		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
 | |
| 		pr_err("\tcompr_typ      %d\n",
 | |
| 		       (int)le16_to_cpu(dn->compr_type));
 | |
| 		pr_err("\tdata size      %d\n", dlen);
 | |
| 		pr_err("\tdata:\n");
 | |
| 		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 | |
| 			       (void *)&dn->data, dlen, 0);
 | |
| 		break;
 | |
| 	}
 | |
| 	case UBIFS_TRUN_NODE:
 | |
| 	{
 | |
| 		const struct ubifs_trun_node *trun = node;
 | |
| 
 | |
| 		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
 | |
| 		pr_err("\told_size       %llu\n",
 | |
| 		       (unsigned long long)le64_to_cpu(trun->old_size));
 | |
| 		pr_err("\tnew_size       %llu\n",
 | |
| 		       (unsigned long long)le64_to_cpu(trun->new_size));
 | |
| 		break;
 | |
| 	}
 | |
| 	case UBIFS_IDX_NODE:
 | |
| 	{
 | |
| 		const struct ubifs_idx_node *idx = node;
 | |
| 
 | |
| 		n = le16_to_cpu(idx->child_cnt);
 | |
| 		pr_err("\tchild_cnt      %d\n", n);
 | |
| 		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
 | |
| 		pr_err("\tBranches:\n");
 | |
| 
 | |
| 		for (i = 0; i < n && i < c->fanout - 1; i++) {
 | |
| 			const struct ubifs_branch *br;
 | |
| 
 | |
| 			br = ubifs_idx_branch(c, idx, i);
 | |
| 			key_read(c, &br->key, &key);
 | |
| 			pr_err("\t%d: LEB %d:%d len %d key %s\n",
 | |
| 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 | |
| 			       le32_to_cpu(br->len),
 | |
| 			       dbg_snprintf_key(c, &key, key_buf,
 | |
| 						DBG_KEY_BUF_LEN));
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	case UBIFS_CS_NODE:
 | |
| 		break;
 | |
| 	case UBIFS_ORPH_NODE:
 | |
| 	{
 | |
| 		const struct ubifs_orph_node *orph = node;
 | |
| 
 | |
| 		pr_err("\tcommit number  %llu\n",
 | |
| 		       (unsigned long long)
 | |
| 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 | |
| 		pr_err("\tlast node flag %llu\n",
 | |
| 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 | |
| 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
 | |
| 		pr_err("\t%d orphan inode numbers:\n", n);
 | |
| 		for (i = 0; i < n; i++)
 | |
| 			pr_err("\t  ino %llu\n",
 | |
| 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		pr_err("node type %d was not recognized\n",
 | |
| 		       (int)ch->node_type);
 | |
| 	}
 | |
| 	spin_unlock(&dbg_lock);
 | |
| }
 | |
| 
 | |
| void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 | |
| {
 | |
| 	spin_lock(&dbg_lock);
 | |
| 	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
 | |
| 	       req->new_ino, req->dirtied_ino);
 | |
| 	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
 | |
| 	       req->new_ino_d, req->dirtied_ino_d);
 | |
| 	pr_err("\tnew_page    %d, dirtied_page %d\n",
 | |
| 	       req->new_page, req->dirtied_page);
 | |
| 	pr_err("\tnew_dent    %d, mod_dent     %d\n",
 | |
| 	       req->new_dent, req->mod_dent);
 | |
| 	pr_err("\tidx_growth  %d\n", req->idx_growth);
 | |
| 	pr_err("\tdata_growth %d dd_growth     %d\n",
 | |
| 	       req->data_growth, req->dd_growth);
 | |
| 	spin_unlock(&dbg_lock);
 | |
| }
 | |
| 
 | |
| void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 | |
| {
 | |
| 	spin_lock(&dbg_lock);
 | |
| 	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
 | |
| 	       current->pid, lst->empty_lebs, lst->idx_lebs);
 | |
| 	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
 | |
| 	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
 | |
| 	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
 | |
| 	       lst->total_used, lst->total_dark, lst->total_dead);
 | |
| 	spin_unlock(&dbg_lock);
 | |
| }
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 | |
| {
 | |
| 	int i;
 | |
| 	struct rb_node *rb;
 | |
| 	struct ubifs_bud *bud;
 | |
| 	struct ubifs_gced_idx_leb *idx_gc;
 | |
| 	long long available, outstanding, free;
 | |
| 
 | |
| 	spin_lock(&c->space_lock);
 | |
| 	spin_lock(&dbg_lock);
 | |
| 	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
 | |
| 	       current->pid, bi->data_growth + bi->dd_growth,
 | |
| 	       bi->data_growth + bi->dd_growth + bi->idx_growth);
 | |
| 	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
 | |
| 	       bi->data_growth, bi->dd_growth, bi->idx_growth);
 | |
| 	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
 | |
| 	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
 | |
| 	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 | |
| 	       bi->page_budget, bi->inode_budget, bi->dent_budget);
 | |
| 	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
 | |
| 	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 | |
| 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 | |
| 
 | |
| 	if (bi != &c->bi)
 | |
| 		/*
 | |
| 		 * If we are dumping saved budgeting data, do not print
 | |
| 		 * additional information which is about the current state, not
 | |
| 		 * the old one which corresponded to the saved budgeting data.
 | |
| 		 */
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 | |
| 	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 | |
| 	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
 | |
| 	       atomic_long_read(&c->dirty_pg_cnt),
 | |
| 	       atomic_long_read(&c->dirty_zn_cnt),
 | |
| 	       atomic_long_read(&c->clean_zn_cnt));
 | |
| 	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
 | |
| 
 | |
| 	/* If we are in R/O mode, journal heads do not exist */
 | |
| 	if (c->jheads)
 | |
| 		for (i = 0; i < c->jhead_cnt; i++)
 | |
| 			pr_err("\tjhead %s\t LEB %d\n",
 | |
| 			       dbg_jhead(c->jheads[i].wbuf.jhead),
 | |
| 			       c->jheads[i].wbuf.lnum);
 | |
| 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 | |
| 		bud = rb_entry(rb, struct ubifs_bud, rb);
 | |
| 		pr_err("\tbud LEB %d\n", bud->lnum);
 | |
| 	}
 | |
| 	list_for_each_entry(bud, &c->old_buds, list)
 | |
| 		pr_err("\told bud LEB %d\n", bud->lnum);
 | |
| 	list_for_each_entry(idx_gc, &c->idx_gc, list)
 | |
| 		pr_err("\tGC'ed idx LEB %d unmap %d\n",
 | |
| 		       idx_gc->lnum, idx_gc->unmap);
 | |
| 	pr_err("\tcommit state %d\n", c->cmt_state);
 | |
| 
 | |
| 	/* Print budgeting predictions */
 | |
| 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 | |
| 	outstanding = c->bi.data_growth + c->bi.dd_growth;
 | |
| 	free = ubifs_get_free_space_nolock(c);
 | |
| 	pr_err("Budgeting predictions:\n");
 | |
| 	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
 | |
| 	       available, outstanding, free);
 | |
| out_unlock:
 | |
| 	spin_unlock(&dbg_lock);
 | |
| 	spin_unlock(&c->space_lock);
 | |
| }
 | |
| #else
 | |
| void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 | |
| {
 | |
| 	int i, spc, dark = 0, dead = 0;
 | |
| 	struct rb_node *rb;
 | |
| 	struct ubifs_bud *bud;
 | |
| 
 | |
| 	spc = lp->free + lp->dirty;
 | |
| 	if (spc < c->dead_wm)
 | |
| 		dead = spc;
 | |
| 	else
 | |
| 		dark = ubifs_calc_dark(c, spc);
 | |
| 
 | |
| 	if (lp->flags & LPROPS_INDEX)
 | |
| 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
 | |
| 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 | |
| 		       lp->flags);
 | |
| 	else
 | |
| 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
 | |
| 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 | |
| 		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 | |
| 
 | |
| 	if (lp->flags & LPROPS_TAKEN) {
 | |
| 		if (lp->flags & LPROPS_INDEX)
 | |
| 			pr_cont("index, taken");
 | |
| 		else
 | |
| 			pr_cont("taken");
 | |
| 	} else {
 | |
| 		const char *s;
 | |
| 
 | |
| 		if (lp->flags & LPROPS_INDEX) {
 | |
| 			switch (lp->flags & LPROPS_CAT_MASK) {
 | |
| 			case LPROPS_DIRTY_IDX:
 | |
| 				s = "dirty index";
 | |
| 				break;
 | |
| 			case LPROPS_FRDI_IDX:
 | |
| 				s = "freeable index";
 | |
| 				break;
 | |
| 			default:
 | |
| 				s = "index";
 | |
| 			}
 | |
| 		} else {
 | |
| 			switch (lp->flags & LPROPS_CAT_MASK) {
 | |
| 			case LPROPS_UNCAT:
 | |
| 				s = "not categorized";
 | |
| 				break;
 | |
| 			case LPROPS_DIRTY:
 | |
| 				s = "dirty";
 | |
| 				break;
 | |
| 			case LPROPS_FREE:
 | |
| 				s = "free";
 | |
| 				break;
 | |
| 			case LPROPS_EMPTY:
 | |
| 				s = "empty";
 | |
| 				break;
 | |
| 			case LPROPS_FREEABLE:
 | |
| 				s = "freeable";
 | |
| 				break;
 | |
| 			default:
 | |
| 				s = NULL;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		pr_cont("%s", s);
 | |
| 	}
 | |
| 
 | |
| 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 | |
| 		bud = rb_entry(rb, struct ubifs_bud, rb);
 | |
| 		if (bud->lnum == lp->lnum) {
 | |
| 			int head = 0;
 | |
| 			for (i = 0; i < c->jhead_cnt; i++) {
 | |
| 				/*
 | |
| 				 * Note, if we are in R/O mode or in the middle
 | |
| 				 * of mounting/re-mounting, the write-buffers do
 | |
| 				 * not exist.
 | |
| 				 */
 | |
| 				if (c->jheads &&
 | |
| 				    lp->lnum == c->jheads[i].wbuf.lnum) {
 | |
| 					pr_cont(", jhead %s", dbg_jhead(i));
 | |
| 					head = 1;
 | |
| 				}
 | |
| 			}
 | |
| 			if (!head)
 | |
| 				pr_cont(", bud of jhead %s",
 | |
| 				       dbg_jhead(bud->jhead));
 | |
| 		}
 | |
| 	}
 | |
| 	if (lp->lnum == c->gc_lnum)
 | |
| 		pr_cont(", GC LEB");
 | |
| 	pr_cont(")\n");
 | |
| }
 | |
| 
 | |
| void ubifs_dump_lprops(struct ubifs_info *c)
 | |
| {
 | |
| 	int lnum, err;
 | |
| 	struct ubifs_lprops lp;
 | |
| 	struct ubifs_lp_stats lst;
 | |
| 
 | |
| 	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
 | |
| 	ubifs_get_lp_stats(c, &lst);
 | |
| 	ubifs_dump_lstats(&lst);
 | |
| 
 | |
| 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 | |
| 		err = ubifs_read_one_lp(c, lnum, &lp);
 | |
| 		if (err) {
 | |
| 			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ubifs_dump_lprop(c, &lp);
 | |
| 	}
 | |
| 	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
 | |
| }
 | |
| 
 | |
| void ubifs_dump_lpt_info(struct ubifs_info *c)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock(&dbg_lock);
 | |
| 	pr_err("(pid %d) dumping LPT information\n", current->pid);
 | |
| 	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
 | |
| 	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
 | |
| 	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
 | |
| 	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
 | |
| 	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
 | |
| 	pr_err("\tbig_lpt:       %d\n", c->big_lpt);
 | |
| 	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
 | |
| 	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
 | |
| 	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
 | |
| 	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 | |
| 	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 | |
| 	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
 | |
| 	pr_err("\tspace_bits:    %d\n", c->space_bits);
 | |
| 	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 | |
| 	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 | |
| 	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 | |
| 	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
 | |
| 	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
 | |
| 	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 | |
| 	pr_err("\tLPT head is at %d:%d\n",
 | |
| 	       c->nhead_lnum, c->nhead_offs);
 | |
| 	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
 | |
| 	if (c->big_lpt)
 | |
| 		pr_err("\tLPT lsave is at %d:%d\n",
 | |
| 		       c->lsave_lnum, c->lsave_offs);
 | |
| 	for (i = 0; i < c->lpt_lebs; i++)
 | |
| 		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
 | |
| 		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
 | |
| 		       c->ltab[i].tgc, c->ltab[i].cmt);
 | |
| 	spin_unlock(&dbg_lock);
 | |
| }
 | |
| 
 | |
| void ubifs_dump_sleb(const struct ubifs_info *c,
 | |
| 		     const struct ubifs_scan_leb *sleb, int offs)
 | |
| {
 | |
| 	struct ubifs_scan_node *snod;
 | |
| 
 | |
| 	pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
 | |
| 	       current->pid, sleb->lnum, offs);
 | |
| 
 | |
| 	list_for_each_entry(snod, &sleb->nodes, list) {
 | |
| 		cond_resched();
 | |
| 		pr_err("Dumping node at LEB %d:%d len %d\n",
 | |
| 		       sleb->lnum, snod->offs, snod->len);
 | |
| 		ubifs_dump_node(c, snod->node);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 | |
| {
 | |
| 	struct ubifs_scan_leb *sleb;
 | |
| 	struct ubifs_scan_node *snod;
 | |
| 	void *buf;
 | |
| 
 | |
| 	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
 | |
| 
 | |
| 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
 | |
| 	if (!buf) {
 | |
| 		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
 | |
| 	if (IS_ERR(sleb)) {
 | |
| 		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
 | |
| 	       sleb->nodes_cnt, sleb->endpt);
 | |
| 
 | |
| 	list_for_each_entry(snod, &sleb->nodes, list) {
 | |
| 		cond_resched();
 | |
| 		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
 | |
| 		       snod->offs, snod->len);
 | |
| 		ubifs_dump_node(c, snod->node);
 | |
| 	}
 | |
| 
 | |
| 	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
 | |
| 	ubifs_scan_destroy(sleb);
 | |
| 
 | |
| out:
 | |
| 	vfree(buf);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| void ubifs_dump_znode(const struct ubifs_info *c,
 | |
| 		      const struct ubifs_znode *znode)
 | |
| {
 | |
| 	int n;
 | |
| 	const struct ubifs_zbranch *zbr;
 | |
| 	char key_buf[DBG_KEY_BUF_LEN];
 | |
| 
 | |
| 	spin_lock(&dbg_lock);
 | |
| 	if (znode->parent)
 | |
| 		zbr = &znode->parent->zbranch[znode->iip];
 | |
| 	else
 | |
| 		zbr = &c->zroot;
 | |
| 
 | |
| 	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
 | |
| 	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
 | |
| 	       znode->level, znode->child_cnt, znode->flags);
 | |
| 
 | |
| 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 | |
| 		spin_unlock(&dbg_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pr_err("zbranches:\n");
 | |
| 	for (n = 0; n < znode->child_cnt; n++) {
 | |
| 		zbr = &znode->zbranch[n];
 | |
| 		if (znode->level > 0)
 | |
| 			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
 | |
| 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 | |
| 			       dbg_snprintf_key(c, &zbr->key, key_buf,
 | |
| 						DBG_KEY_BUF_LEN));
 | |
| 		else
 | |
| 			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
 | |
| 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 | |
| 			       dbg_snprintf_key(c, &zbr->key, key_buf,
 | |
| 						DBG_KEY_BUF_LEN));
 | |
| 	}
 | |
| 	spin_unlock(&dbg_lock);
 | |
| }
 | |
| 
 | |
| void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
 | |
| 	       current->pid, cat, heap->cnt);
 | |
| 	for (i = 0; i < heap->cnt; i++) {
 | |
| 		struct ubifs_lprops *lprops = heap->arr[i];
 | |
| 
 | |
| 		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
 | |
| 		       i, lprops->lnum, lprops->hpos, lprops->free,
 | |
| 		       lprops->dirty, lprops->flags);
 | |
| 	}
 | |
| 	pr_err("(pid %d) finish dumping heap\n", current->pid);
 | |
| }
 | |
| 
 | |
| void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 | |
| 		      struct ubifs_nnode *parent, int iip)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	pr_err("(pid %d) dumping pnode:\n", current->pid);
 | |
| 	pr_err("\taddress %zx parent %zx cnext %zx\n",
 | |
| 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 | |
| 	pr_err("\tflags %lu iip %d level %d num %d\n",
 | |
| 	       pnode->flags, iip, pnode->level, pnode->num);
 | |
| 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 | |
| 		struct ubifs_lprops *lp = &pnode->lprops[i];
 | |
| 
 | |
| 		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
 | |
| 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void ubifs_dump_tnc(struct ubifs_info *c)
 | |
| {
 | |
| 	struct ubifs_znode *znode;
 | |
| 	int level;
 | |
| 
 | |
| 	pr_err("\n");
 | |
| 	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
 | |
| 	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
 | |
| 	level = znode->level;
 | |
| 	pr_err("== Level %d ==\n", level);
 | |
| 	while (znode) {
 | |
| 		if (level != znode->level) {
 | |
| 			level = znode->level;
 | |
| 			pr_err("== Level %d ==\n", level);
 | |
| 		}
 | |
| 		ubifs_dump_znode(c, znode);
 | |
| 		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
 | |
| 	}
 | |
| 	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
 | |
| }
 | |
| 
 | |
| static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
 | |
| 		      void *priv)
 | |
| {
 | |
| 	ubifs_dump_znode(c, znode);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_dump_index - dump the on-flash index.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
 | |
|  * which dumps only in-memory znodes and does not read znodes which from flash.
 | |
|  */
 | |
| void ubifs_dump_index(struct ubifs_info *c)
 | |
| {
 | |
| 	dbg_walk_index(c, NULL, dump_znode, NULL);
 | |
| }
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| /**
 | |
|  * dbg_save_space_info - save information about flash space.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function saves information about UBIFS free space, dirty space, etc, in
 | |
|  * order to check it later.
 | |
|  */
 | |
| void dbg_save_space_info(struct ubifs_info *c)
 | |
| {
 | |
| 	struct ubifs_debug_info *d = c->dbg;
 | |
| 	int freeable_cnt;
 | |
| 
 | |
| 	spin_lock(&c->space_lock);
 | |
| 	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
 | |
| 	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
 | |
| 	d->saved_idx_gc_cnt = c->idx_gc_cnt;
 | |
| 
 | |
| 	/*
 | |
| 	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
 | |
| 	 * affects the free space calculations, and UBIFS might not know about
 | |
| 	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
 | |
| 	 * only when we read their lprops, and we do this only lazily, upon the
 | |
| 	 * need. So at any given point of time @c->freeable_cnt might be not
 | |
| 	 * exactly accurate.
 | |
| 	 *
 | |
| 	 * Just one example about the issue we hit when we did not zero
 | |
| 	 * @c->freeable_cnt.
 | |
| 	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
 | |
| 	 *    amount of free space in @d->saved_free
 | |
| 	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
 | |
| 	 *    information from flash, where we cache LEBs from various
 | |
| 	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
 | |
| 	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
 | |
| 	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
 | |
| 	 *    -> 'ubifs_add_to_cat()').
 | |
| 	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
 | |
| 	 *    becomes %1.
 | |
| 	 * 4. We calculate the amount of free space when the re-mount is
 | |
| 	 *    finished in 'dbg_check_space_info()' and it does not match
 | |
| 	 *    @d->saved_free.
 | |
| 	 */
 | |
| 	freeable_cnt = c->freeable_cnt;
 | |
| 	c->freeable_cnt = 0;
 | |
| 	d->saved_free = ubifs_get_free_space_nolock(c);
 | |
| 	c->freeable_cnt = freeable_cnt;
 | |
| 	spin_unlock(&c->space_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dbg_check_space_info - check flash space information.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function compares current flash space information with the information
 | |
|  * which was saved when the 'dbg_save_space_info()' function was called.
 | |
|  * Returns zero if the information has not changed, and %-EINVAL it it has
 | |
|  * changed.
 | |
|  */
 | |
| int dbg_check_space_info(struct ubifs_info *c)
 | |
| {
 | |
| 	struct ubifs_debug_info *d = c->dbg;
 | |
| 	struct ubifs_lp_stats lst;
 | |
| 	long long free;
 | |
| 	int freeable_cnt;
 | |
| 
 | |
| 	spin_lock(&c->space_lock);
 | |
| 	freeable_cnt = c->freeable_cnt;
 | |
| 	c->freeable_cnt = 0;
 | |
| 	free = ubifs_get_free_space_nolock(c);
 | |
| 	c->freeable_cnt = freeable_cnt;
 | |
| 	spin_unlock(&c->space_lock);
 | |
| 
 | |
| 	if (free != d->saved_free) {
 | |
| 		ubifs_err(c, "free space changed from %lld to %lld",
 | |
| 			  d->saved_free, free);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	ubifs_msg(c, "saved lprops statistics dump");
 | |
| 	ubifs_dump_lstats(&d->saved_lst);
 | |
| 	ubifs_msg(c, "saved budgeting info dump");
 | |
| 	ubifs_dump_budg(c, &d->saved_bi);
 | |
| 	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
 | |
| 	ubifs_msg(c, "current lprops statistics dump");
 | |
| 	ubifs_get_lp_stats(c, &lst);
 | |
| 	ubifs_dump_lstats(&lst);
 | |
| 	ubifs_msg(c, "current budgeting info dump");
 | |
| 	ubifs_dump_budg(c, &c->bi);
 | |
| 	dump_stack();
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dbg_check_synced_i_size - check synchronized inode size.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @inode: inode to check
 | |
|  *
 | |
|  * If inode is clean, synchronized inode size has to be equivalent to current
 | |
|  * inode size. This function has to be called only for locked inodes (@i_mutex
 | |
|  * has to be locked). Returns %0 if synchronized inode size if correct, and
 | |
|  * %-EINVAL if not.
 | |
|  */
 | |
| int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	struct ubifs_inode *ui = ubifs_inode(inode);
 | |
| 
 | |
| 	if (!dbg_is_chk_gen(c))
 | |
| 		return 0;
 | |
| 	if (!S_ISREG(inode->i_mode))
 | |
| 		return 0;
 | |
| 
 | |
| 	mutex_lock(&ui->ui_mutex);
 | |
| 	spin_lock(&ui->ui_lock);
 | |
| 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
 | |
| 		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
 | |
| 			  ui->ui_size, ui->synced_i_size);
 | |
| 		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
 | |
| 			  inode->i_mode, i_size_read(inode));
 | |
| 		dump_stack();
 | |
| 		err = -EINVAL;
 | |
| 	}
 | |
| 	spin_unlock(&ui->ui_lock);
 | |
| 	mutex_unlock(&ui->ui_mutex);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * dbg_check_dir - check directory inode size and link count.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @dir: the directory to calculate size for
 | |
|  * @size: the result is returned here
 | |
|  *
 | |
|  * This function makes sure that directory size and link count are correct.
 | |
|  * Returns zero in case of success and a negative error code in case of
 | |
|  * failure.
 | |
|  *
 | |
|  * Note, it is good idea to make sure the @dir->i_mutex is locked before
 | |
|  * calling this function.
 | |
|  */
 | |
| int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
 | |
| {
 | |
| 	unsigned int nlink = 2;
 | |
| 	union ubifs_key key;
 | |
| 	struct ubifs_dent_node *dent, *pdent = NULL;
 | |
| 	struct qstr nm = { .name = NULL };
 | |
| 	loff_t size = UBIFS_INO_NODE_SZ;
 | |
| 
 | |
| 	if (!dbg_is_chk_gen(c))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!S_ISDIR(dir->i_mode))
 | |
| 		return 0;
 | |
| 
 | |
| 	lowest_dent_key(c, &key, dir->i_ino);
 | |
| 	while (1) {
 | |
| 		int err;
 | |
| 
 | |
| 		dent = ubifs_tnc_next_ent(c, &key, &nm);
 | |
| 		if (IS_ERR(dent)) {
 | |
| 			err = PTR_ERR(dent);
 | |
| 			if (err == -ENOENT)
 | |
| 				break;
 | |
| 			return err;
 | |
| 		}
 | |
| 
 | |
| 		nm.name = dent->name;
 | |
| 		nm.len = le16_to_cpu(dent->nlen);
 | |
| 		size += CALC_DENT_SIZE(nm.len);
 | |
| 		if (dent->type == UBIFS_ITYPE_DIR)
 | |
| 			nlink += 1;
 | |
| 		kfree(pdent);
 | |
| 		pdent = dent;
 | |
| 		key_read(c, &dent->key, &key);
 | |
| 	}
 | |
| 	kfree(pdent);
 | |
| 
 | |
| 	if (i_size_read(dir) != size) {
 | |
| 		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
 | |
| 			  dir->i_ino, (unsigned long long)i_size_read(dir),
 | |
| 			  (unsigned long long)size);
 | |
| 		ubifs_dump_inode(c, dir);
 | |
| 		dump_stack();
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (dir->i_nlink != nlink) {
 | |
| 		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
 | |
| 			  dir->i_ino, dir->i_nlink, nlink);
 | |
| 		ubifs_dump_inode(c, dir);
 | |
| 		dump_stack();
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dbg_check_key_order - make sure that colliding keys are properly ordered.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @zbr1: first zbranch
 | |
|  * @zbr2: following zbranch
 | |
|  *
 | |
|  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
 | |
|  * names of the direntries/xentries which are referred by the keys. This
 | |
|  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
 | |
|  * sure the name of direntry/xentry referred by @zbr1 is less than
 | |
|  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
 | |
|  * and a negative error code in case of failure.
 | |
|  */
 | |
| static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
 | |
| 			       struct ubifs_zbranch *zbr2)
 | |
| {
 | |
| 	int err, nlen1, nlen2, cmp;
 | |
| 	struct ubifs_dent_node *dent1, *dent2;
 | |
| 	union ubifs_key key;
 | |
| 	char key_buf[DBG_KEY_BUF_LEN];
 | |
| 
 | |
| 	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
 | |
| 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
 | |
| 	if (!dent1)
 | |
| 		return -ENOMEM;
 | |
| 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
 | |
| 	if (!dent2) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	err = ubifs_tnc_read_node(c, zbr1, dent1);
 | |
| 	if (err)
 | |
| 		goto out_free;
 | |
| 	err = ubifs_validate_entry(c, dent1);
 | |
| 	if (err)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	err = ubifs_tnc_read_node(c, zbr2, dent2);
 | |
| 	if (err)
 | |
| 		goto out_free;
 | |
| 	err = ubifs_validate_entry(c, dent2);
 | |
| 	if (err)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	/* Make sure node keys are the same as in zbranch */
 | |
| 	err = 1;
 | |
| 	key_read(c, &dent1->key, &key);
 | |
| 	if (keys_cmp(c, &zbr1->key, &key)) {
 | |
| 		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
 | |
| 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
 | |
| 						       DBG_KEY_BUF_LEN));
 | |
| 		ubifs_err(c, "but it should have key %s according to tnc",
 | |
| 			  dbg_snprintf_key(c, &zbr1->key, key_buf,
 | |
| 					   DBG_KEY_BUF_LEN));
 | |
| 		ubifs_dump_node(c, dent1);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	key_read(c, &dent2->key, &key);
 | |
| 	if (keys_cmp(c, &zbr2->key, &key)) {
 | |
| 		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
 | |
| 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
 | |
| 						       DBG_KEY_BUF_LEN));
 | |
| 		ubifs_err(c, "but it should have key %s according to tnc",
 | |
| 			  dbg_snprintf_key(c, &zbr2->key, key_buf,
 | |
| 					   DBG_KEY_BUF_LEN));
 | |
| 		ubifs_dump_node(c, dent2);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	nlen1 = le16_to_cpu(dent1->nlen);
 | |
| 	nlen2 = le16_to_cpu(dent2->nlen);
 | |
| 
 | |
| 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
 | |
| 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
 | |
| 		err = 0;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 	if (cmp == 0 && nlen1 == nlen2)
 | |
| 		ubifs_err(c, "2 xent/dent nodes with the same name");
 | |
| 	else
 | |
| 		ubifs_err(c, "bad order of colliding key %s",
 | |
| 			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 | |
| 
 | |
| 	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
 | |
| 	ubifs_dump_node(c, dent1);
 | |
| 	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
 | |
| 	ubifs_dump_node(c, dent2);
 | |
| 
 | |
| out_free:
 | |
| 	kfree(dent2);
 | |
| 	kfree(dent1);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dbg_check_znode - check if znode is all right.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @zbr: zbranch which points to this znode
 | |
|  *
 | |
|  * This function makes sure that znode referred to by @zbr is all right.
 | |
|  * Returns zero if it is, and %-EINVAL if it is not.
 | |
|  */
 | |
| static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
 | |
| {
 | |
| 	struct ubifs_znode *znode = zbr->znode;
 | |
| 	struct ubifs_znode *zp = znode->parent;
 | |
| 	int n, err, cmp;
 | |
| 
 | |
| 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 | |
| 		err = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (znode->level < 0) {
 | |
| 		err = 2;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (znode->iip < 0 || znode->iip >= c->fanout) {
 | |
| 		err = 3;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (zbr->len == 0)
 | |
| 		/* Only dirty zbranch may have no on-flash nodes */
 | |
| 		if (!ubifs_zn_dirty(znode)) {
 | |
| 			err = 4;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 	if (ubifs_zn_dirty(znode)) {
 | |
| 		/*
 | |
| 		 * If znode is dirty, its parent has to be dirty as well. The
 | |
| 		 * order of the operation is important, so we have to have
 | |
| 		 * memory barriers.
 | |
| 		 */
 | |
| 		smp_mb();
 | |
| 		if (zp && !ubifs_zn_dirty(zp)) {
 | |
| 			/*
 | |
| 			 * The dirty flag is atomic and is cleared outside the
 | |
| 			 * TNC mutex, so znode's dirty flag may now have
 | |
| 			 * been cleared. The child is always cleared before the
 | |
| 			 * parent, so we just need to check again.
 | |
| 			 */
 | |
| 			smp_mb();
 | |
| 			if (ubifs_zn_dirty(znode)) {
 | |
| 				err = 5;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (zp) {
 | |
| 		const union ubifs_key *min, *max;
 | |
| 
 | |
| 		if (znode->level != zp->level - 1) {
 | |
| 			err = 6;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* Make sure the 'parent' pointer in our znode is correct */
 | |
| 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
 | |
| 		if (!err) {
 | |
| 			/* This zbranch does not exist in the parent */
 | |
| 			err = 7;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (znode->iip >= zp->child_cnt) {
 | |
| 			err = 8;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (znode->iip != n) {
 | |
| 			/* This may happen only in case of collisions */
 | |
| 			if (keys_cmp(c, &zp->zbranch[n].key,
 | |
| 				     &zp->zbranch[znode->iip].key)) {
 | |
| 				err = 9;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			n = znode->iip;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure that the first key in our znode is greater than or
 | |
| 		 * equal to the key in the pointing zbranch.
 | |
| 		 */
 | |
| 		min = &zbr->key;
 | |
| 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
 | |
| 		if (cmp == 1) {
 | |
| 			err = 10;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (n + 1 < zp->child_cnt) {
 | |
| 			max = &zp->zbranch[n + 1].key;
 | |
| 
 | |
| 			/*
 | |
| 			 * Make sure the last key in our znode is less or
 | |
| 			 * equivalent than the key in the zbranch which goes
 | |
| 			 * after our pointing zbranch.
 | |
| 			 */
 | |
| 			cmp = keys_cmp(c, max,
 | |
| 				&znode->zbranch[znode->child_cnt - 1].key);
 | |
| 			if (cmp == -1) {
 | |
| 				err = 11;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* This may only be root znode */
 | |
| 		if (zbr != &c->zroot) {
 | |
| 			err = 12;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that next key is greater or equivalent then the previous
 | |
| 	 * one.
 | |
| 	 */
 | |
| 	for (n = 1; n < znode->child_cnt; n++) {
 | |
| 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
 | |
| 			       &znode->zbranch[n].key);
 | |
| 		if (cmp > 0) {
 | |
| 			err = 13;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (cmp == 0) {
 | |
| 			/* This can only be keys with colliding hash */
 | |
| 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
 | |
| 				err = 14;
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			if (znode->level != 0 || c->replaying)
 | |
| 				continue;
 | |
| 
 | |
| 			/*
 | |
| 			 * Colliding keys should follow binary order of
 | |
| 			 * corresponding xentry/dentry names.
 | |
| 			 */
 | |
| 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
 | |
| 						  &znode->zbranch[n]);
 | |
| 			if (err < 0)
 | |
| 				return err;
 | |
| 			if (err) {
 | |
| 				err = 15;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (n = 0; n < znode->child_cnt; n++) {
 | |
| 		if (!znode->zbranch[n].znode &&
 | |
| 		    (znode->zbranch[n].lnum == 0 ||
 | |
| 		     znode->zbranch[n].len == 0)) {
 | |
| 			err = 16;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (znode->zbranch[n].lnum != 0 &&
 | |
| 		    znode->zbranch[n].len == 0) {
 | |
| 			err = 17;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (znode->zbranch[n].lnum == 0 &&
 | |
| 		    znode->zbranch[n].len != 0) {
 | |
| 			err = 18;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (znode->zbranch[n].lnum == 0 &&
 | |
| 		    znode->zbranch[n].offs != 0) {
 | |
| 			err = 19;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (znode->level != 0 && znode->zbranch[n].znode)
 | |
| 			if (znode->zbranch[n].znode->parent != znode) {
 | |
| 				err = 20;
 | |
| 				goto out;
 | |
| 			}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	ubifs_err(c, "failed, error %d", err);
 | |
| 	ubifs_msg(c, "dump of the znode");
 | |
| 	ubifs_dump_znode(c, znode);
 | |
| 	if (zp) {
 | |
| 		ubifs_msg(c, "dump of the parent znode");
 | |
| 		ubifs_dump_znode(c, zp);
 | |
| 	}
 | |
| 	dump_stack();
 | |
| 	return -EINVAL;
 | |
| }
 | |
| #else
 | |
| 
 | |
| int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void dbg_debugfs_exit_fs(struct ubifs_info *c)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| int ubifs_debugging_init(struct ubifs_info *c)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| void ubifs_debugging_exit(struct ubifs_info *c)
 | |
| {
 | |
| }
 | |
| int dbg_check_filesystem(struct ubifs_info *c)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| int dbg_debugfs_init_fs(struct ubifs_info *c)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| /**
 | |
|  * dbg_check_tnc - check TNC tree.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @extra: do extra checks that are possible at start commit
 | |
|  *
 | |
|  * This function traverses whole TNC tree and checks every znode. Returns zero
 | |
|  * if everything is all right and %-EINVAL if something is wrong with TNC.
 | |
|  */
 | |
| int dbg_check_tnc(struct ubifs_info *c, int extra)
 | |
| {
 | |
| 	struct ubifs_znode *znode;
 | |
| 	long clean_cnt = 0, dirty_cnt = 0;
 | |
| 	int err, last;
 | |
| 
 | |
| 	if (!dbg_is_chk_index(c))
 | |
| 		return 0;
 | |
| 
 | |
| 	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
 | |
| 	if (!c->zroot.znode)
 | |
| 		return 0;
 | |
| 
 | |
| 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
 | |
| 	while (1) {
 | |
| 		struct ubifs_znode *prev;
 | |
| 		struct ubifs_zbranch *zbr;
 | |
| 
 | |
| 		if (!znode->parent)
 | |
| 			zbr = &c->zroot;
 | |
| 		else
 | |
| 			zbr = &znode->parent->zbranch[znode->iip];
 | |
| 
 | |
| 		err = dbg_check_znode(c, zbr);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		if (extra) {
 | |
| 			if (ubifs_zn_dirty(znode))
 | |
| 				dirty_cnt += 1;
 | |
| 			else
 | |
| 				clean_cnt += 1;
 | |
| 		}
 | |
| 
 | |
| 		prev = znode;
 | |
| 		znode = ubifs_tnc_postorder_next(znode);
 | |
| 		if (!znode)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the last key of this znode is equivalent to the first key
 | |
| 		 * of the next znode (collision), then check order of the keys.
 | |
| 		 */
 | |
| 		last = prev->child_cnt - 1;
 | |
| 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
 | |
| 		    !keys_cmp(c, &prev->zbranch[last].key,
 | |
| 			      &znode->zbranch[0].key)) {
 | |
| 			err = dbg_check_key_order(c, &prev->zbranch[last],
 | |
| 						  &znode->zbranch[0]);
 | |
| 			if (err < 0)
 | |
| 				return err;
 | |
| 			if (err) {
 | |
| 				ubifs_msg(c, "first znode");
 | |
| 				ubifs_dump_znode(c, prev);
 | |
| 				ubifs_msg(c, "second znode");
 | |
| 				ubifs_dump_znode(c, znode);
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (extra) {
 | |
| 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
 | |
| 			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
 | |
| 				  atomic_long_read(&c->clean_zn_cnt),
 | |
| 				  clean_cnt);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
 | |
| 			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
 | |
| 				  atomic_long_read(&c->dirty_zn_cnt),
 | |
| 				  dirty_cnt);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| int dbg_check_tnc(struct ubifs_info *c, int extra)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * dbg_walk_index - walk the on-flash index.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @leaf_cb: called for each leaf node
 | |
|  * @znode_cb: called for each indexing node
 | |
|  * @priv: private data which is passed to callbacks
 | |
|  *
 | |
|  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
 | |
|  * node and @znode_cb for each indexing node. Returns zero in case of success
 | |
|  * and a negative error code in case of failure.
 | |
|  *
 | |
|  * It would be better if this function removed every znode it pulled to into
 | |
|  * the TNC, so that the behavior more closely matched the non-debugging
 | |
|  * behavior.
 | |
|  */
 | |
| int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
 | |
| 		   dbg_znode_callback znode_cb, void *priv)
 | |
| {
 | |
| 	int err;
 | |
| 	struct ubifs_zbranch *zbr;
 | |
| 	struct ubifs_znode *znode, *child;
 | |
| 
 | |
| 	mutex_lock(&c->tnc_mutex);
 | |
| 	/* If the root indexing node is not in TNC - pull it */
 | |
| 	if (!c->zroot.znode) {
 | |
| 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
 | |
| 		if (IS_ERR(c->zroot.znode)) {
 | |
| 			err = PTR_ERR(c->zroot.znode);
 | |
| 			c->zroot.znode = NULL;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We are going to traverse the indexing tree in the postorder manner.
 | |
| 	 * Go down and find the leftmost indexing node where we are going to
 | |
| 	 * start from.
 | |
| 	 */
 | |
| 	znode = c->zroot.znode;
 | |
| 	while (znode->level > 0) {
 | |
| 		zbr = &znode->zbranch[0];
 | |
| 		child = zbr->znode;
 | |
| 		if (!child) {
 | |
| 			child = ubifs_load_znode(c, zbr, znode, 0);
 | |
| 			if (IS_ERR(child)) {
 | |
| 				err = PTR_ERR(child);
 | |
| 				goto out_unlock;
 | |
| 			}
 | |
| 			zbr->znode = child;
 | |
| 		}
 | |
| 
 | |
| 		znode = child;
 | |
| 	}
 | |
| 
 | |
| 	/* Iterate over all indexing nodes */
 | |
| 	while (1) {
 | |
| 		int idx;
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (znode_cb) {
 | |
| 			err = znode_cb(c, znode, priv);
 | |
| 			if (err) {
 | |
| 				ubifs_err(c, "znode checking function returned error %d",
 | |
| 					  err);
 | |
| 				ubifs_dump_znode(c, znode);
 | |
| 				goto out_dump;
 | |
| 			}
 | |
| 		}
 | |
| 		if (leaf_cb && znode->level == 0) {
 | |
| 			for (idx = 0; idx < znode->child_cnt; idx++) {
 | |
| 				zbr = &znode->zbranch[idx];
 | |
| 				err = leaf_cb(c, zbr, priv);
 | |
| 				if (err) {
 | |
| 					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
 | |
| 						  err, zbr->lnum, zbr->offs);
 | |
| 					goto out_dump;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!znode->parent)
 | |
| 			break;
 | |
| 
 | |
| 		idx = znode->iip + 1;
 | |
| 		znode = znode->parent;
 | |
| 		if (idx < znode->child_cnt) {
 | |
| 			/* Switch to the next index in the parent */
 | |
| 			zbr = &znode->zbranch[idx];
 | |
| 			child = zbr->znode;
 | |
| 			if (!child) {
 | |
| 				child = ubifs_load_znode(c, zbr, znode, idx);
 | |
| 				if (IS_ERR(child)) {
 | |
| 					err = PTR_ERR(child);
 | |
| 					goto out_unlock;
 | |
| 				}
 | |
| 				zbr->znode = child;
 | |
| 			}
 | |
| 			znode = child;
 | |
| 		} else
 | |
| 			/*
 | |
| 			 * This is the last child, switch to the parent and
 | |
| 			 * continue.
 | |
| 			 */
 | |
| 			continue;
 | |
| 
 | |
| 		/* Go to the lowest leftmost znode in the new sub-tree */
 | |
| 		while (znode->level > 0) {
 | |
| 			zbr = &znode->zbranch[0];
 | |
| 			child = zbr->znode;
 | |
| 			if (!child) {
 | |
| 				child = ubifs_load_znode(c, zbr, znode, 0);
 | |
| 				if (IS_ERR(child)) {
 | |
| 					err = PTR_ERR(child);
 | |
| 					goto out_unlock;
 | |
| 				}
 | |
| 				zbr->znode = child;
 | |
| 			}
 | |
| 			znode = child;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&c->tnc_mutex);
 | |
| 	return 0;
 | |
| 
 | |
| out_dump:
 | |
| 	if (znode->parent)
 | |
| 		zbr = &znode->parent->zbranch[znode->iip];
 | |
| 	else
 | |
| 		zbr = &c->zroot;
 | |
| 	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
 | |
| 	ubifs_dump_znode(c, znode);
 | |
| out_unlock:
 | |
| 	mutex_unlock(&c->tnc_mutex);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * add_size - add znode size to partially calculated index size.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @znode: znode to add size for
 | |
|  * @priv: partially calculated index size
 | |
|  *
 | |
|  * This is a helper function for 'dbg_check_idx_size()' which is called for
 | |
|  * every indexing node and adds its size to the 'long long' variable pointed to
 | |
|  * by @priv.
 | |
|  */
 | |
| static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
 | |
| {
 | |
| 	long long *idx_size = priv;
 | |
| 	int add;
 | |
| 
 | |
| 	add = ubifs_idx_node_sz(c, znode->child_cnt);
 | |
| 	add = ALIGN(add, 8);
 | |
| 	*idx_size += add;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dbg_check_idx_size - check index size.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @idx_size: size to check
 | |
|  *
 | |
|  * This function walks the UBIFS index, calculates its size and checks that the
 | |
|  * size is equivalent to @idx_size. Returns zero in case of success and a
 | |
|  * negative error code in case of failure.
 | |
|  */
 | |
| int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
 | |
| {
 | |
| 	int err;
 | |
| 	long long calc = 0;
 | |
| 
 | |
| 	if (!dbg_is_chk_index(c))
 | |
| 		return 0;
 | |
| 
 | |
| 	err = dbg_walk_index(c, NULL, add_size, &calc);
 | |
| 	if (err) {
 | |
| 		ubifs_err(c, "error %d while walking the index", err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	if (calc != idx_size) {
 | |
| 		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
 | |
| 			  calc, idx_size);
 | |
| 		dump_stack();
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| /**
 | |
|  * struct fsck_inode - information about an inode used when checking the file-system.
 | |
|  * @rb: link in the RB-tree of inodes
 | |
|  * @inum: inode number
 | |
|  * @mode: inode type, permissions, etc
 | |
|  * @nlink: inode link count
 | |
|  * @xattr_cnt: count of extended attributes
 | |
|  * @references: how many directory/xattr entries refer this inode (calculated
 | |
|  *              while walking the index)
 | |
|  * @calc_cnt: for directory inode count of child directories
 | |
|  * @size: inode size (read from on-flash inode)
 | |
|  * @xattr_sz: summary size of all extended attributes (read from on-flash
 | |
|  *            inode)
 | |
|  * @calc_sz: for directories calculated directory size
 | |
|  * @calc_xcnt: count of extended attributes
 | |
|  * @calc_xsz: calculated summary size of all extended attributes
 | |
|  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
 | |
|  *             inode (read from on-flash inode)
 | |
|  * @calc_xnms: calculated sum of lengths of all extended attribute names
 | |
|  */
 | |
| struct fsck_inode {
 | |
| 	struct rb_node rb;
 | |
| 	ino_t inum;
 | |
| 	umode_t mode;
 | |
| 	unsigned int nlink;
 | |
| 	unsigned int xattr_cnt;
 | |
| 	int references;
 | |
| 	int calc_cnt;
 | |
| 	long long size;
 | |
| 	unsigned int xattr_sz;
 | |
| 	long long calc_sz;
 | |
| 	long long calc_xcnt;
 | |
| 	long long calc_xsz;
 | |
| 	unsigned int xattr_nms;
 | |
| 	long long calc_xnms;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct fsck_data - private FS checking information.
 | |
|  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
 | |
|  */
 | |
| struct fsck_data {
 | |
| 	struct rb_root inodes;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * add_inode - add inode information to RB-tree of inodes.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @fsckd: FS checking information
 | |
|  * @ino: raw UBIFS inode to add
 | |
|  *
 | |
|  * This is a helper function for 'check_leaf()' which adds information about
 | |
|  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
 | |
|  * case of success and a negative error code in case of failure.
 | |
|  */
 | |
| static struct fsck_inode *add_inode(struct ubifs_info *c,
 | |
| 				    struct fsck_data *fsckd,
 | |
| 				    struct ubifs_ino_node *ino)
 | |
| {
 | |
| 	struct rb_node **p, *parent = NULL;
 | |
| 	struct fsck_inode *fscki;
 | |
| 	ino_t inum = key_inum_flash(c, &ino->key);
 | |
| 	struct inode *inode;
 | |
| 	struct ubifs_inode *ui;
 | |
| 
 | |
| 	p = &fsckd->inodes.rb_node;
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		fscki = rb_entry(parent, struct fsck_inode, rb);
 | |
| 		if (inum < fscki->inum)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (inum > fscki->inum)
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else
 | |
| 			return fscki;
 | |
| 	}
 | |
| 
 | |
| 	if (inum > c->highest_inum) {
 | |
| 		ubifs_err(c, "too high inode number, max. is %lu",
 | |
| 			  (unsigned long)c->highest_inum);
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
 | |
| 	if (!fscki)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	inode = ilookup(c->vfs_sb, inum);
 | |
| 
 | |
| 	fscki->inum = inum;
 | |
| 	/*
 | |
| 	 * If the inode is present in the VFS inode cache, use it instead of
 | |
| 	 * the on-flash inode which might be out-of-date. E.g., the size might
 | |
| 	 * be out-of-date. If we do not do this, the following may happen, for
 | |
| 	 * example:
 | |
| 	 *   1. A power cut happens
 | |
| 	 *   2. We mount the file-system R/O, the replay process fixes up the
 | |
| 	 *      inode size in the VFS cache, but on on-flash.
 | |
| 	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
 | |
| 	 *      size.
 | |
| 	 */
 | |
| 	if (!inode) {
 | |
| 		fscki->nlink = le32_to_cpu(ino->nlink);
 | |
| 		fscki->size = le64_to_cpu(ino->size);
 | |
| 		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
 | |
| 		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
 | |
| 		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
 | |
| 		fscki->mode = le32_to_cpu(ino->mode);
 | |
| 	} else {
 | |
| 		ui = ubifs_inode(inode);
 | |
| 		fscki->nlink = inode->i_nlink;
 | |
| 		fscki->size = inode->i_size;
 | |
| 		fscki->xattr_cnt = ui->xattr_cnt;
 | |
| 		fscki->xattr_sz = ui->xattr_size;
 | |
| 		fscki->xattr_nms = ui->xattr_names;
 | |
| 		fscki->mode = inode->i_mode;
 | |
| 		iput(inode);
 | |
| 	}
 | |
| 
 | |
| 	if (S_ISDIR(fscki->mode)) {
 | |
| 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
 | |
| 		fscki->calc_cnt = 2;
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(&fscki->rb, parent, p);
 | |
| 	rb_insert_color(&fscki->rb, &fsckd->inodes);
 | |
| 
 | |
| 	return fscki;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * search_inode - search inode in the RB-tree of inodes.
 | |
|  * @fsckd: FS checking information
 | |
|  * @inum: inode number to search
 | |
|  *
 | |
|  * This is a helper function for 'check_leaf()' which searches inode @inum in
 | |
|  * the RB-tree of inodes and returns an inode information pointer or %NULL if
 | |
|  * the inode was not found.
 | |
|  */
 | |
| static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
 | |
| {
 | |
| 	struct rb_node *p;
 | |
| 	struct fsck_inode *fscki;
 | |
| 
 | |
| 	p = fsckd->inodes.rb_node;
 | |
| 	while (p) {
 | |
| 		fscki = rb_entry(p, struct fsck_inode, rb);
 | |
| 		if (inum < fscki->inum)
 | |
| 			p = p->rb_left;
 | |
| 		else if (inum > fscki->inum)
 | |
| 			p = p->rb_right;
 | |
| 		else
 | |
| 			return fscki;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * read_add_inode - read inode node and add it to RB-tree of inodes.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @fsckd: FS checking information
 | |
|  * @inum: inode number to read
 | |
|  *
 | |
|  * This is a helper function for 'check_leaf()' which finds inode node @inum in
 | |
|  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
 | |
|  * information pointer in case of success and a negative error code in case of
 | |
|  * failure.
 | |
|  */
 | |
| static struct fsck_inode *read_add_inode(struct ubifs_info *c,
 | |
| 					 struct fsck_data *fsckd, ino_t inum)
 | |
| {
 | |
| 	int n, err;
 | |
| 	union ubifs_key key;
 | |
| 	struct ubifs_znode *znode;
 | |
| 	struct ubifs_zbranch *zbr;
 | |
| 	struct ubifs_ino_node *ino;
 | |
| 	struct fsck_inode *fscki;
 | |
| 
 | |
| 	fscki = search_inode(fsckd, inum);
 | |
| 	if (fscki)
 | |
| 		return fscki;
 | |
| 
 | |
| 	ino_key_init(c, &key, inum);
 | |
| 	err = ubifs_lookup_level0(c, &key, &znode, &n);
 | |
| 	if (!err) {
 | |
| 		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 	} else if (err < 0) {
 | |
| 		ubifs_err(c, "error %d while looking up inode %lu",
 | |
| 			  err, (unsigned long)inum);
 | |
| 		return ERR_PTR(err);
 | |
| 	}
 | |
| 
 | |
| 	zbr = &znode->zbranch[n];
 | |
| 	if (zbr->len < UBIFS_INO_NODE_SZ) {
 | |
| 		ubifs_err(c, "bad node %lu node length %d",
 | |
| 			  (unsigned long)inum, zbr->len);
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	ino = kmalloc(zbr->len, GFP_NOFS);
 | |
| 	if (!ino)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	err = ubifs_tnc_read_node(c, zbr, ino);
 | |
| 	if (err) {
 | |
| 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
 | |
| 			  zbr->lnum, zbr->offs, err);
 | |
| 		kfree(ino);
 | |
| 		return ERR_PTR(err);
 | |
| 	}
 | |
| 
 | |
| 	fscki = add_inode(c, fsckd, ino);
 | |
| 	kfree(ino);
 | |
| 	if (IS_ERR(fscki)) {
 | |
| 		ubifs_err(c, "error %ld while adding inode %lu node",
 | |
| 			  PTR_ERR(fscki), (unsigned long)inum);
 | |
| 		return fscki;
 | |
| 	}
 | |
| 
 | |
| 	return fscki;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * check_leaf - check leaf node.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @zbr: zbranch of the leaf node to check
 | |
|  * @priv: FS checking information
 | |
|  *
 | |
|  * This is a helper function for 'dbg_check_filesystem()' which is called for
 | |
|  * every single leaf node while walking the indexing tree. It checks that the
 | |
|  * leaf node referred from the indexing tree exists, has correct CRC, and does
 | |
|  * some other basic validation. This function is also responsible for building
 | |
|  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
 | |
|  * calculates reference count, size, etc for each inode in order to later
 | |
|  * compare them to the information stored inside the inodes and detect possible
 | |
|  * inconsistencies. Returns zero in case of success and a negative error code
 | |
|  * in case of failure.
 | |
|  */
 | |
| static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 | |
| 		      void *priv)
 | |
| {
 | |
| 	ino_t inum;
 | |
| 	void *node;
 | |
| 	struct ubifs_ch *ch;
 | |
| 	int err, type = key_type(c, &zbr->key);
 | |
| 	struct fsck_inode *fscki;
 | |
| 
 | |
| 	if (zbr->len < UBIFS_CH_SZ) {
 | |
| 		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
 | |
| 			  zbr->len, zbr->lnum, zbr->offs);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	node = kmalloc(zbr->len, GFP_NOFS);
 | |
| 	if (!node)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	err = ubifs_tnc_read_node(c, zbr, node);
 | |
| 	if (err) {
 | |
| 		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
 | |
| 			  zbr->lnum, zbr->offs, err);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	/* If this is an inode node, add it to RB-tree of inodes */
 | |
| 	if (type == UBIFS_INO_KEY) {
 | |
| 		fscki = add_inode(c, priv, node);
 | |
| 		if (IS_ERR(fscki)) {
 | |
| 			err = PTR_ERR(fscki);
 | |
| 			ubifs_err(c, "error %d while adding inode node", err);
 | |
| 			goto out_dump;
 | |
| 		}
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
 | |
| 	    type != UBIFS_DATA_KEY) {
 | |
| 		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
 | |
| 			  type, zbr->lnum, zbr->offs);
 | |
| 		err = -EINVAL;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	ch = node;
 | |
| 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
 | |
| 		ubifs_err(c, "too high sequence number, max. is %llu",
 | |
| 			  c->max_sqnum);
 | |
| 		err = -EINVAL;
 | |
| 		goto out_dump;
 | |
| 	}
 | |
| 
 | |
| 	if (type == UBIFS_DATA_KEY) {
 | |
| 		long long blk_offs;
 | |
| 		struct ubifs_data_node *dn = node;
 | |
| 
 | |
| 		ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
 | |
| 
 | |
| 		/*
 | |
| 		 * Search the inode node this data node belongs to and insert
 | |
| 		 * it to the RB-tree of inodes.
 | |
| 		 */
 | |
| 		inum = key_inum_flash(c, &dn->key);
 | |
| 		fscki = read_add_inode(c, priv, inum);
 | |
| 		if (IS_ERR(fscki)) {
 | |
| 			err = PTR_ERR(fscki);
 | |
| 			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
 | |
| 				  err, (unsigned long)inum);
 | |
| 			goto out_dump;
 | |
| 		}
 | |
| 
 | |
| 		/* Make sure the data node is within inode size */
 | |
| 		blk_offs = key_block_flash(c, &dn->key);
 | |
| 		blk_offs <<= UBIFS_BLOCK_SHIFT;
 | |
| 		blk_offs += le32_to_cpu(dn->size);
 | |
| 		if (blk_offs > fscki->size) {
 | |
| 			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
 | |
| 				  zbr->lnum, zbr->offs, fscki->size);
 | |
| 			err = -EINVAL;
 | |
| 			goto out_dump;
 | |
| 		}
 | |
| 	} else {
 | |
| 		int nlen;
 | |
| 		struct ubifs_dent_node *dent = node;
 | |
| 		struct fsck_inode *fscki1;
 | |
| 
 | |
| 		ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
 | |
| 
 | |
| 		err = ubifs_validate_entry(c, dent);
 | |
| 		if (err)
 | |
| 			goto out_dump;
 | |
| 
 | |
| 		/*
 | |
| 		 * Search the inode node this entry refers to and the parent
 | |
| 		 * inode node and insert them to the RB-tree of inodes.
 | |
| 		 */
 | |
| 		inum = le64_to_cpu(dent->inum);
 | |
| 		fscki = read_add_inode(c, priv, inum);
 | |
| 		if (IS_ERR(fscki)) {
 | |
| 			err = PTR_ERR(fscki);
 | |
| 			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
 | |
| 				  err, (unsigned long)inum);
 | |
| 			goto out_dump;
 | |
| 		}
 | |
| 
 | |
| 		/* Count how many direntries or xentries refers this inode */
 | |
| 		fscki->references += 1;
 | |
| 
 | |
| 		inum = key_inum_flash(c, &dent->key);
 | |
| 		fscki1 = read_add_inode(c, priv, inum);
 | |
| 		if (IS_ERR(fscki1)) {
 | |
| 			err = PTR_ERR(fscki1);
 | |
| 			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
 | |
| 				  err, (unsigned long)inum);
 | |
| 			goto out_dump;
 | |
| 		}
 | |
| 
 | |
| 		nlen = le16_to_cpu(dent->nlen);
 | |
| 		if (type == UBIFS_XENT_KEY) {
 | |
| 			fscki1->calc_xcnt += 1;
 | |
| 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
 | |
| 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
 | |
| 			fscki1->calc_xnms += nlen;
 | |
| 		} else {
 | |
| 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
 | |
| 			if (dent->type == UBIFS_ITYPE_DIR)
 | |
| 				fscki1->calc_cnt += 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	kfree(node);
 | |
| 	return 0;
 | |
| 
 | |
| out_dump:
 | |
| 	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
 | |
| 	ubifs_dump_node(c, node);
 | |
| out_free:
 | |
| 	kfree(node);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * free_inodes - free RB-tree of inodes.
 | |
|  * @fsckd: FS checking information
 | |
|  */
 | |
| static void free_inodes(struct fsck_data *fsckd)
 | |
| {
 | |
| 	struct fsck_inode *fscki, *n;
 | |
| 
 | |
| 	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
 | |
| 		kfree(fscki);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * check_inodes - checks all inodes.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @fsckd: FS checking information
 | |
|  *
 | |
|  * This is a helper function for 'dbg_check_filesystem()' which walks the
 | |
|  * RB-tree of inodes after the index scan has been finished, and checks that
 | |
|  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
 | |
|  * %-EINVAL if not, and a negative error code in case of failure.
 | |
|  */
 | |
| static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
 | |
| {
 | |
| 	int n, err;
 | |
| 	union ubifs_key key;
 | |
| 	struct ubifs_znode *znode;
 | |
| 	struct ubifs_zbranch *zbr;
 | |
| 	struct ubifs_ino_node *ino;
 | |
| 	struct fsck_inode *fscki;
 | |
| 	struct rb_node *this = rb_first(&fsckd->inodes);
 | |
| 
 | |
| 	while (this) {
 | |
| 		fscki = rb_entry(this, struct fsck_inode, rb);
 | |
| 		this = rb_next(this);
 | |
| 
 | |
| 		if (S_ISDIR(fscki->mode)) {
 | |
| 			/*
 | |
| 			 * Directories have to have exactly one reference (they
 | |
| 			 * cannot have hardlinks), although root inode is an
 | |
| 			 * exception.
 | |
| 			 */
 | |
| 			if (fscki->inum != UBIFS_ROOT_INO &&
 | |
| 			    fscki->references != 1) {
 | |
| 				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
 | |
| 					  (unsigned long)fscki->inum,
 | |
| 					  fscki->references);
 | |
| 				goto out_dump;
 | |
| 			}
 | |
| 			if (fscki->inum == UBIFS_ROOT_INO &&
 | |
| 			    fscki->references != 0) {
 | |
| 				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
 | |
| 					  (unsigned long)fscki->inum,
 | |
| 					  fscki->references);
 | |
| 				goto out_dump;
 | |
| 			}
 | |
| 			if (fscki->calc_sz != fscki->size) {
 | |
| 				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
 | |
| 					  (unsigned long)fscki->inum,
 | |
| 					  fscki->size, fscki->calc_sz);
 | |
| 				goto out_dump;
 | |
| 			}
 | |
| 			if (fscki->calc_cnt != fscki->nlink) {
 | |
| 				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
 | |
| 					  (unsigned long)fscki->inum,
 | |
| 					  fscki->nlink, fscki->calc_cnt);
 | |
| 				goto out_dump;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (fscki->references != fscki->nlink) {
 | |
| 				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
 | |
| 					  (unsigned long)fscki->inum,
 | |
| 					  fscki->nlink, fscki->references);
 | |
| 				goto out_dump;
 | |
| 			}
 | |
| 		}
 | |
| 		if (fscki->xattr_sz != fscki->calc_xsz) {
 | |
| 			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
 | |
| 				  (unsigned long)fscki->inum, fscki->xattr_sz,
 | |
| 				  fscki->calc_xsz);
 | |
| 			goto out_dump;
 | |
| 		}
 | |
| 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
 | |
| 			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
 | |
| 				  (unsigned long)fscki->inum,
 | |
| 				  fscki->xattr_cnt, fscki->calc_xcnt);
 | |
| 			goto out_dump;
 | |
| 		}
 | |
| 		if (fscki->xattr_nms != fscki->calc_xnms) {
 | |
| 			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
 | |
| 				  (unsigned long)fscki->inum, fscki->xattr_nms,
 | |
| 				  fscki->calc_xnms);
 | |
| 			goto out_dump;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_dump:
 | |
| 	/* Read the bad inode and dump it */
 | |
| 	ino_key_init(c, &key, fscki->inum);
 | |
| 	err = ubifs_lookup_level0(c, &key, &znode, &n);
 | |
| 	if (!err) {
 | |
| 		ubifs_err(c, "inode %lu not found in index",
 | |
| 			  (unsigned long)fscki->inum);
 | |
| 		return -ENOENT;
 | |
| 	} else if (err < 0) {
 | |
| 		ubifs_err(c, "error %d while looking up inode %lu",
 | |
| 			  err, (unsigned long)fscki->inum);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	zbr = &znode->zbranch[n];
 | |
| 	ino = kmalloc(zbr->len, GFP_NOFS);
 | |
| 	if (!ino)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	err = ubifs_tnc_read_node(c, zbr, ino);
 | |
| 	if (err) {
 | |
| 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
 | |
| 			  zbr->lnum, zbr->offs, err);
 | |
| 		kfree(ino);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
 | |
| 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
 | |
| 	ubifs_dump_node(c, ino);
 | |
| 	kfree(ino);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dbg_check_filesystem - check the file-system.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function checks the file system, namely:
 | |
|  * o makes sure that all leaf nodes exist and their CRCs are correct;
 | |
|  * o makes sure inode nlink, size, xattr size/count are correct (for all
 | |
|  *   inodes).
 | |
|  *
 | |
|  * The function reads whole indexing tree and all nodes, so it is pretty
 | |
|  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
 | |
|  * not, and a negative error code in case of failure.
 | |
|  */
 | |
| int dbg_check_filesystem(struct ubifs_info *c)
 | |
| {
 | |
| 	int err;
 | |
| 	struct fsck_data fsckd;
 | |
| 
 | |
| 	if (!dbg_is_chk_fs(c))
 | |
| 		return 0;
 | |
| 
 | |
| 	fsckd.inodes = RB_ROOT;
 | |
| 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
 | |
| 	if (err)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	err = check_inodes(c, &fsckd);
 | |
| 	if (err)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	free_inodes(&fsckd);
 | |
| 	return 0;
 | |
| 
 | |
| out_free:
 | |
| 	ubifs_err(c, "file-system check failed with error %d", err);
 | |
| 	dump_stack();
 | |
| 	free_inodes(&fsckd);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @head: the list of nodes ('struct ubifs_scan_node' objects)
 | |
|  *
 | |
|  * This function returns zero if the list of data nodes is sorted correctly,
 | |
|  * and %-EINVAL if not.
 | |
|  */
 | |
| int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
 | |
| {
 | |
| 	struct list_head *cur;
 | |
| 	struct ubifs_scan_node *sa, *sb;
 | |
| 
 | |
| 	if (!dbg_is_chk_gen(c))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (cur = head->next; cur->next != head; cur = cur->next) {
 | |
| 		ino_t inuma, inumb;
 | |
| 		uint32_t blka, blkb;
 | |
| 
 | |
| 		cond_resched();
 | |
| 		sa = container_of(cur, struct ubifs_scan_node, list);
 | |
| 		sb = container_of(cur->next, struct ubifs_scan_node, list);
 | |
| 
 | |
| 		if (sa->type != UBIFS_DATA_NODE) {
 | |
| 			ubifs_err(c, "bad node type %d", sa->type);
 | |
| 			ubifs_dump_node(c, sa->node);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (sb->type != UBIFS_DATA_NODE) {
 | |
| 			ubifs_err(c, "bad node type %d", sb->type);
 | |
| 			ubifs_dump_node(c, sb->node);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		inuma = key_inum(c, &sa->key);
 | |
| 		inumb = key_inum(c, &sb->key);
 | |
| 
 | |
| 		if (inuma < inumb)
 | |
| 			continue;
 | |
| 		if (inuma > inumb) {
 | |
| 			ubifs_err(c, "larger inum %lu goes before inum %lu",
 | |
| 				  (unsigned long)inuma, (unsigned long)inumb);
 | |
| 			goto error_dump;
 | |
| 		}
 | |
| 
 | |
| 		blka = key_block(c, &sa->key);
 | |
| 		blkb = key_block(c, &sb->key);
 | |
| 
 | |
| 		if (blka > blkb) {
 | |
| 			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
 | |
| 			goto error_dump;
 | |
| 		}
 | |
| 		if (blka == blkb) {
 | |
| 			ubifs_err(c, "two data nodes for the same block");
 | |
| 			goto error_dump;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error_dump:
 | |
| 	ubifs_dump_node(c, sa->node);
 | |
| 	ubifs_dump_node(c, sb->node);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @head: the list of nodes ('struct ubifs_scan_node' objects)
 | |
|  *
 | |
|  * This function returns zero if the list of non-data nodes is sorted correctly,
 | |
|  * and %-EINVAL if not.
 | |
|  */
 | |
| int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
 | |
| {
 | |
| 	struct list_head *cur;
 | |
| 	struct ubifs_scan_node *sa, *sb;
 | |
| 
 | |
| 	if (!dbg_is_chk_gen(c))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (cur = head->next; cur->next != head; cur = cur->next) {
 | |
| 		ino_t inuma, inumb;
 | |
| 		uint32_t hasha, hashb;
 | |
| 
 | |
| 		cond_resched();
 | |
| 		sa = container_of(cur, struct ubifs_scan_node, list);
 | |
| 		sb = container_of(cur->next, struct ubifs_scan_node, list);
 | |
| 
 | |
| 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
 | |
| 		    sa->type != UBIFS_XENT_NODE) {
 | |
| 			ubifs_err(c, "bad node type %d", sa->type);
 | |
| 			ubifs_dump_node(c, sa->node);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
 | |
| 		    sa->type != UBIFS_XENT_NODE) {
 | |
| 			ubifs_err(c, "bad node type %d", sb->type);
 | |
| 			ubifs_dump_node(c, sb->node);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
 | |
| 			ubifs_err(c, "non-inode node goes before inode node");
 | |
| 			goto error_dump;
 | |
| 		}
 | |
| 
 | |
| 		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
 | |
| 			continue;
 | |
| 
 | |
| 		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
 | |
| 			/* Inode nodes are sorted in descending size order */
 | |
| 			if (sa->len < sb->len) {
 | |
| 				ubifs_err(c, "smaller inode node goes first");
 | |
| 				goto error_dump;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * This is either a dentry or xentry, which should be sorted in
 | |
| 		 * ascending (parent ino, hash) order.
 | |
| 		 */
 | |
| 		inuma = key_inum(c, &sa->key);
 | |
| 		inumb = key_inum(c, &sb->key);
 | |
| 
 | |
| 		if (inuma < inumb)
 | |
| 			continue;
 | |
| 		if (inuma > inumb) {
 | |
| 			ubifs_err(c, "larger inum %lu goes before inum %lu",
 | |
| 				  (unsigned long)inuma, (unsigned long)inumb);
 | |
| 			goto error_dump;
 | |
| 		}
 | |
| 
 | |
| 		hasha = key_block(c, &sa->key);
 | |
| 		hashb = key_block(c, &sb->key);
 | |
| 
 | |
| 		if (hasha > hashb) {
 | |
| 			ubifs_err(c, "larger hash %u goes before %u",
 | |
| 				  hasha, hashb);
 | |
| 			goto error_dump;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error_dump:
 | |
| 	ubifs_msg(c, "dumping first node");
 | |
| 	ubifs_dump_node(c, sa->node);
 | |
| 	ubifs_msg(c, "dumping second node");
 | |
| 	ubifs_dump_node(c, sb->node);
 | |
| 	return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int chance(unsigned int n, unsigned int out_of)
 | |
| {
 | |
| 	return !!((prandom_u32() % out_of) + 1 <= n);
 | |
| 
 | |
| }
 | |
| 
 | |
| static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
 | |
| {
 | |
| 	struct ubifs_debug_info *d = c->dbg;
 | |
| 
 | |
| 	ubifs_assert(dbg_is_tst_rcvry(c));
 | |
| 
 | |
| 	if (!d->pc_cnt) {
 | |
| 		/* First call - decide delay to the power cut */
 | |
| 		if (chance(1, 2)) {
 | |
| 			unsigned long delay;
 | |
| 
 | |
| 			if (chance(1, 2)) {
 | |
| 				d->pc_delay = 1;
 | |
| 				/* Fail within 1 minute */
 | |
| 				delay = prandom_u32() % 60000;
 | |
| 				d->pc_timeout = jiffies;
 | |
| 				d->pc_timeout += msecs_to_jiffies(delay);
 | |
| 				ubifs_warn(c, "failing after %lums", delay);
 | |
| 			} else {
 | |
| 				d->pc_delay = 2;
 | |
| 				delay = prandom_u32() % 10000;
 | |
| 				/* Fail within 10000 operations */
 | |
| 				d->pc_cnt_max = delay;
 | |
| 				ubifs_warn(c, "failing after %lu calls", delay);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		d->pc_cnt += 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Determine if failure delay has expired */
 | |
| 	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
 | |
| 			return 0;
 | |
| 	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
 | |
| 			return 0;
 | |
| 
 | |
| 	if (lnum == UBIFS_SB_LNUM) {
 | |
| 		if (write && chance(1, 2))
 | |
| 			return 0;
 | |
| 		if (chance(19, 20))
 | |
| 			return 0;
 | |
| 		ubifs_warn(c, "failing in super block LEB %d", lnum);
 | |
| 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
 | |
| 		if (chance(19, 20))
 | |
| 			return 0;
 | |
| 		ubifs_warn(c, "failing in master LEB %d", lnum);
 | |
| 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
 | |
| 		if (write && chance(99, 100))
 | |
| 			return 0;
 | |
| 		if (chance(399, 400))
 | |
| 			return 0;
 | |
| 		ubifs_warn(c, "failing in log LEB %d", lnum);
 | |
| 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
 | |
| 		if (write && chance(7, 8))
 | |
| 			return 0;
 | |
| 		if (chance(19, 20))
 | |
| 			return 0;
 | |
| 		ubifs_warn(c, "failing in LPT LEB %d", lnum);
 | |
| 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
 | |
| 		if (write && chance(1, 2))
 | |
| 			return 0;
 | |
| 		if (chance(9, 10))
 | |
| 			return 0;
 | |
| 		ubifs_warn(c, "failing in orphan LEB %d", lnum);
 | |
| 	} else if (lnum == c->ihead_lnum) {
 | |
| 		if (chance(99, 100))
 | |
| 			return 0;
 | |
| 		ubifs_warn(c, "failing in index head LEB %d", lnum);
 | |
| 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
 | |
| 		if (chance(9, 10))
 | |
| 			return 0;
 | |
| 		ubifs_warn(c, "failing in GC head LEB %d", lnum);
 | |
| 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
 | |
| 		   !ubifs_search_bud(c, lnum)) {
 | |
| 		if (chance(19, 20))
 | |
| 			return 0;
 | |
| 		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
 | |
| 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
 | |
| 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
 | |
| 		if (chance(999, 1000))
 | |
| 			return 0;
 | |
| 		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
 | |
| 	} else {
 | |
| 		if (chance(9999, 10000))
 | |
| 			return 0;
 | |
| 		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
 | |
| 	}
 | |
| 
 | |
| 	d->pc_happened = 1;
 | |
| 	ubifs_warn(c, "========== Power cut emulated ==========");
 | |
| 	dump_stack();
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int corrupt_data(const struct ubifs_info *c, const void *buf,
 | |
| 			unsigned int len)
 | |
| {
 | |
| 	unsigned int from, to, ffs = chance(1, 2);
 | |
| 	unsigned char *p = (void *)buf;
 | |
| 
 | |
| 	from = prandom_u32() % len;
 | |
| 	/* Corruption span max to end of write unit */
 | |
| 	to = min(len, ALIGN(from + 1, c->max_write_size));
 | |
| 
 | |
| 	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
 | |
| 		   ffs ? "0xFFs" : "random data");
 | |
| 
 | |
| 	if (ffs)
 | |
| 		memset(p + from, 0xFF, to - from);
 | |
| 	else
 | |
| 		prandom_bytes(p + from, to - from);
 | |
| 
 | |
| 	return to;
 | |
| }
 | |
| 
 | |
| int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
 | |
| 		  int offs, int len)
 | |
| {
 | |
| 	int err, failing;
 | |
| 
 | |
| 	if (c->dbg->pc_happened)
 | |
| 		return -EROFS;
 | |
| 
 | |
| 	failing = power_cut_emulated(c, lnum, 1);
 | |
| 	if (failing) {
 | |
| 		len = corrupt_data(c, buf, len);
 | |
| 		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
 | |
| 			   len, lnum, offs);
 | |
| 	}
 | |
| 	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	if (failing)
 | |
| 		return -EROFS;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
 | |
| 		   int len)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (c->dbg->pc_happened)
 | |
| 		return -EROFS;
 | |
| 	if (power_cut_emulated(c, lnum, 1))
 | |
| 		return -EROFS;
 | |
| 	err = ubi_leb_change(c->ubi, lnum, buf, len);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	if (power_cut_emulated(c, lnum, 1))
 | |
| 		return -EROFS;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int dbg_leb_unmap(struct ubifs_info *c, int lnum)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (c->dbg->pc_happened)
 | |
| 		return -EROFS;
 | |
| 	if (power_cut_emulated(c, lnum, 0))
 | |
| 		return -EROFS;
 | |
| 	err = ubi_leb_unmap(c->ubi, lnum);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	if (power_cut_emulated(c, lnum, 0))
 | |
| 		return -EROFS;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int dbg_leb_map(struct ubifs_info *c, int lnum)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (c->dbg->pc_happened)
 | |
| 		return -EROFS;
 | |
| 	if (power_cut_emulated(c, lnum, 0))
 | |
| 		return -EROFS;
 | |
| 	err = ubi_leb_map(c->ubi, lnum);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	if (power_cut_emulated(c, lnum, 0))
 | |
| 		return -EROFS;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
 | |
|  * contain the stuff specific to particular file-system mounts.
 | |
|  */
 | |
| static struct dentry *dfs_rootdir;
 | |
| 
 | |
| static int dfs_file_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	file->private_data = inode->i_private;
 | |
| 	return nonseekable_open(inode, file);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * provide_user_output - provide output to the user reading a debugfs file.
 | |
|  * @val: boolean value for the answer
 | |
|  * @u: the buffer to store the answer at
 | |
|  * @count: size of the buffer
 | |
|  * @ppos: position in the @u output buffer
 | |
|  *
 | |
|  * This is a simple helper function which stores @val boolean value in the user
 | |
|  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
 | |
|  * bytes written to @u in case of success and a negative error code in case of
 | |
|  * failure.
 | |
|  */
 | |
| static int provide_user_output(int val, char __user *u, size_t count,
 | |
| 			       loff_t *ppos)
 | |
| {
 | |
| 	char buf[3];
 | |
| 
 | |
| 	if (val)
 | |
| 		buf[0] = '1';
 | |
| 	else
 | |
| 		buf[0] = '0';
 | |
| 	buf[1] = '\n';
 | |
| 	buf[2] = 0x00;
 | |
| 
 | |
| 	return simple_read_from_buffer(u, count, ppos, buf, 2);
 | |
| }
 | |
| 
 | |
| static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
 | |
| 			     loff_t *ppos)
 | |
| {
 | |
| 	struct dentry *dent = file->f_path.dentry;
 | |
| 	struct ubifs_info *c = file->private_data;
 | |
| 	struct ubifs_debug_info *d = c->dbg;
 | |
| 	int val;
 | |
| 
 | |
| 	if (dent == d->dfs_chk_gen)
 | |
| 		val = d->chk_gen;
 | |
| 	else if (dent == d->dfs_chk_index)
 | |
| 		val = d->chk_index;
 | |
| 	else if (dent == d->dfs_chk_orph)
 | |
| 		val = d->chk_orph;
 | |
| 	else if (dent == d->dfs_chk_lprops)
 | |
| 		val = d->chk_lprops;
 | |
| 	else if (dent == d->dfs_chk_fs)
 | |
| 		val = d->chk_fs;
 | |
| 	else if (dent == d->dfs_tst_rcvry)
 | |
| 		val = d->tst_rcvry;
 | |
| 	else if (dent == d->dfs_ro_error)
 | |
| 		val = c->ro_error;
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return provide_user_output(val, u, count, ppos);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * interpret_user_input - interpret user debugfs file input.
 | |
|  * @u: user-provided buffer with the input
 | |
|  * @count: buffer size
 | |
|  *
 | |
|  * This is a helper function which interpret user input to a boolean UBIFS
 | |
|  * debugfs file. Returns %0 or %1 in case of success and a negative error code
 | |
|  * in case of failure.
 | |
|  */
 | |
| static int interpret_user_input(const char __user *u, size_t count)
 | |
| {
 | |
| 	size_t buf_size;
 | |
| 	char buf[8];
 | |
| 
 | |
| 	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
 | |
| 	if (copy_from_user(buf, u, buf_size))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (buf[0] == '1')
 | |
| 		return 1;
 | |
| 	else if (buf[0] == '0')
 | |
| 		return 0;
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static ssize_t dfs_file_write(struct file *file, const char __user *u,
 | |
| 			      size_t count, loff_t *ppos)
 | |
| {
 | |
| 	struct ubifs_info *c = file->private_data;
 | |
| 	struct ubifs_debug_info *d = c->dbg;
 | |
| 	struct dentry *dent = file->f_path.dentry;
 | |
| 	int val;
 | |
| 
 | |
| 	/*
 | |
| 	 * TODO: this is racy - the file-system might have already been
 | |
| 	 * unmounted and we'd oops in this case. The plan is to fix it with
 | |
| 	 * help of 'iterate_supers_type()' which we should have in v3.0: when
 | |
| 	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
 | |
| 	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
 | |
| 	 * superblocks and fine the one with the same UUID, and take the
 | |
| 	 * locking right.
 | |
| 	 *
 | |
| 	 * The other way to go suggested by Al Viro is to create a separate
 | |
| 	 * 'ubifs-debug' file-system instead.
 | |
| 	 */
 | |
| 	if (file->f_path.dentry == d->dfs_dump_lprops) {
 | |
| 		ubifs_dump_lprops(c);
 | |
| 		return count;
 | |
| 	}
 | |
| 	if (file->f_path.dentry == d->dfs_dump_budg) {
 | |
| 		ubifs_dump_budg(c, &c->bi);
 | |
| 		return count;
 | |
| 	}
 | |
| 	if (file->f_path.dentry == d->dfs_dump_tnc) {
 | |
| 		mutex_lock(&c->tnc_mutex);
 | |
| 		ubifs_dump_tnc(c);
 | |
| 		mutex_unlock(&c->tnc_mutex);
 | |
| 		return count;
 | |
| 	}
 | |
| 
 | |
| 	val = interpret_user_input(u, count);
 | |
| 	if (val < 0)
 | |
| 		return val;
 | |
| 
 | |
| 	if (dent == d->dfs_chk_gen)
 | |
| 		d->chk_gen = val;
 | |
| 	else if (dent == d->dfs_chk_index)
 | |
| 		d->chk_index = val;
 | |
| 	else if (dent == d->dfs_chk_orph)
 | |
| 		d->chk_orph = val;
 | |
| 	else if (dent == d->dfs_chk_lprops)
 | |
| 		d->chk_lprops = val;
 | |
| 	else if (dent == d->dfs_chk_fs)
 | |
| 		d->chk_fs = val;
 | |
| 	else if (dent == d->dfs_tst_rcvry)
 | |
| 		d->tst_rcvry = val;
 | |
| 	else if (dent == d->dfs_ro_error)
 | |
| 		c->ro_error = !!val;
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static const struct file_operations dfs_fops = {
 | |
| 	.open = dfs_file_open,
 | |
| 	.read = dfs_file_read,
 | |
| 	.write = dfs_file_write,
 | |
| 	.owner = THIS_MODULE,
 | |
| 	.llseek = no_llseek,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function creates all debugfs files for this instance of UBIFS. Returns
 | |
|  * zero in case of success and a negative error code in case of failure.
 | |
|  *
 | |
|  * Note, the only reason we have not merged this function with the
 | |
|  * 'ubifs_debugging_init()' function is because it is better to initialize
 | |
|  * debugfs interfaces at the very end of the mount process, and remove them at
 | |
|  * the very beginning of the mount process.
 | |
|  */
 | |
| int dbg_debugfs_init_fs(struct ubifs_info *c)
 | |
| {
 | |
| 	int err, n;
 | |
| 	const char *fname;
 | |
| 	struct dentry *dent;
 | |
| 	struct ubifs_debug_info *d = c->dbg;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
 | |
| 		return 0;
 | |
| 
 | |
| 	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
 | |
| 		     c->vi.ubi_num, c->vi.vol_id);
 | |
| 	if (n == UBIFS_DFS_DIR_LEN) {
 | |
| 		/* The array size is too small */
 | |
| 		fname = UBIFS_DFS_DIR_NAME;
 | |
| 		dent = ERR_PTR(-EINVAL);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	fname = d->dfs_dir_name;
 | |
| 	dent = debugfs_create_dir(fname, dfs_rootdir);
 | |
| 	if (IS_ERR_OR_NULL(dent))
 | |
| 		goto out;
 | |
| 	d->dfs_dir = dent;
 | |
| 
 | |
| 	fname = "dump_lprops";
 | |
| 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
 | |
| 	if (IS_ERR_OR_NULL(dent))
 | |
| 		goto out_remove;
 | |
| 	d->dfs_dump_lprops = dent;
 | |
| 
 | |
| 	fname = "dump_budg";
 | |
| 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
 | |
| 	if (IS_ERR_OR_NULL(dent))
 | |
| 		goto out_remove;
 | |
| 	d->dfs_dump_budg = dent;
 | |
| 
 | |
| 	fname = "dump_tnc";
 | |
| 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
 | |
| 	if (IS_ERR_OR_NULL(dent))
 | |
| 		goto out_remove;
 | |
| 	d->dfs_dump_tnc = dent;
 | |
| 
 | |
| 	fname = "chk_general";
 | |
| 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
 | |
| 				   &dfs_fops);
 | |
| 	if (IS_ERR_OR_NULL(dent))
 | |
| 		goto out_remove;
 | |
| 	d->dfs_chk_gen = dent;
 | |
| 
 | |
| 	fname = "chk_index";
 | |
| 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
 | |
| 				   &dfs_fops);
 | |
| 	if (IS_ERR_OR_NULL(dent))
 | |
| 		goto out_remove;
 | |
| 	d->dfs_chk_index = dent;
 | |
| 
 | |
| 	fname = "chk_orphans";
 | |
| 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
 | |
| 				   &dfs_fops);
 | |
| 	if (IS_ERR_OR_NULL(dent))
 | |
| 		goto out_remove;
 | |
| 	d->dfs_chk_orph = dent;
 | |
| 
 | |
| 	fname = "chk_lprops";
 | |
| 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
 | |
| 				   &dfs_fops);
 | |
| 	if (IS_ERR_OR_NULL(dent))
 | |
| 		goto out_remove;
 | |
| 	d->dfs_chk_lprops = dent;
 | |
| 
 | |
| 	fname = "chk_fs";
 | |
| 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
 | |
| 				   &dfs_fops);
 | |
| 	if (IS_ERR_OR_NULL(dent))
 | |
| 		goto out_remove;
 | |
| 	d->dfs_chk_fs = dent;
 | |
| 
 | |
| 	fname = "tst_recovery";
 | |
| 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
 | |
| 				   &dfs_fops);
 | |
| 	if (IS_ERR_OR_NULL(dent))
 | |
| 		goto out_remove;
 | |
| 	d->dfs_tst_rcvry = dent;
 | |
| 
 | |
| 	fname = "ro_error";
 | |
| 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
 | |
| 				   &dfs_fops);
 | |
| 	if (IS_ERR_OR_NULL(dent))
 | |
| 		goto out_remove;
 | |
| 	d->dfs_ro_error = dent;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_remove:
 | |
| 	debugfs_remove_recursive(d->dfs_dir);
 | |
| out:
 | |
| 	err = dent ? PTR_ERR(dent) : -ENODEV;
 | |
| 	ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
 | |
| 		  fname, err);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dbg_debugfs_exit_fs - remove all debugfs files.
 | |
|  * @c: UBIFS file-system description object
 | |
|  */
 | |
| void dbg_debugfs_exit_fs(struct ubifs_info *c)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_DEBUG_FS))
 | |
| 		debugfs_remove_recursive(c->dbg->dfs_dir);
 | |
| }
 | |
| 
 | |
| struct ubifs_global_debug_info ubifs_dbg;
 | |
| 
 | |
| static struct dentry *dfs_chk_gen;
 | |
| static struct dentry *dfs_chk_index;
 | |
| static struct dentry *dfs_chk_orph;
 | |
| static struct dentry *dfs_chk_lprops;
 | |
| static struct dentry *dfs_chk_fs;
 | |
| static struct dentry *dfs_tst_rcvry;
 | |
| 
 | |
| static ssize_t dfs_global_file_read(struct file *file, char __user *u,
 | |
| 				    size_t count, loff_t *ppos)
 | |
| {
 | |
| 	struct dentry *dent = file->f_path.dentry;
 | |
| 	int val;
 | |
| 
 | |
| 	if (dent == dfs_chk_gen)
 | |
| 		val = ubifs_dbg.chk_gen;
 | |
| 	else if (dent == dfs_chk_index)
 | |
| 		val = ubifs_dbg.chk_index;
 | |
| 	else if (dent == dfs_chk_orph)
 | |
| 		val = ubifs_dbg.chk_orph;
 | |
| 	else if (dent == dfs_chk_lprops)
 | |
| 		val = ubifs_dbg.chk_lprops;
 | |
| 	else if (dent == dfs_chk_fs)
 | |
| 		val = ubifs_dbg.chk_fs;
 | |
| 	else if (dent == dfs_tst_rcvry)
 | |
| 		val = ubifs_dbg.tst_rcvry;
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return provide_user_output(val, u, count, ppos);
 | |
| }
 | |
| 
 | |
| static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
 | |
| 				     size_t count, loff_t *ppos)
 | |
| {
 | |
| 	struct dentry *dent = file->f_path.dentry;
 | |
| 	int val;
 | |
| 
 | |
| 	val = interpret_user_input(u, count);
 | |
| 	if (val < 0)
 | |
| 		return val;
 | |
| 
 | |
| 	if (dent == dfs_chk_gen)
 | |
| 		ubifs_dbg.chk_gen = val;
 | |
| 	else if (dent == dfs_chk_index)
 | |
| 		ubifs_dbg.chk_index = val;
 | |
| 	else if (dent == dfs_chk_orph)
 | |
| 		ubifs_dbg.chk_orph = val;
 | |
| 	else if (dent == dfs_chk_lprops)
 | |
| 		ubifs_dbg.chk_lprops = val;
 | |
| 	else if (dent == dfs_chk_fs)
 | |
| 		ubifs_dbg.chk_fs = val;
 | |
| 	else if (dent == dfs_tst_rcvry)
 | |
| 		ubifs_dbg.tst_rcvry = val;
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static const struct file_operations dfs_global_fops = {
 | |
| 	.read = dfs_global_file_read,
 | |
| 	.write = dfs_global_file_write,
 | |
| 	.owner = THIS_MODULE,
 | |
| 	.llseek = no_llseek,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * dbg_debugfs_init - initialize debugfs file-system.
 | |
|  *
 | |
|  * UBIFS uses debugfs file-system to expose various debugging knobs to
 | |
|  * user-space. This function creates "ubifs" directory in the debugfs
 | |
|  * file-system. Returns zero in case of success and a negative error code in
 | |
|  * case of failure.
 | |
|  */
 | |
| int dbg_debugfs_init(void)
 | |
| {
 | |
| 	int err;
 | |
| 	const char *fname;
 | |
| 	struct dentry *dent;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
 | |
| 		return 0;
 | |
| 
 | |
| 	fname = "ubifs";
 | |
| 	dent = debugfs_create_dir(fname, NULL);
 | |
| 	if (IS_ERR_OR_NULL(dent))
 | |
| 		goto out;
 | |
| 	dfs_rootdir = dent;
 | |
| 
 | |
| 	fname = "chk_general";
 | |
| 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
 | |
| 				   &dfs_global_fops);
 | |
| 	if (IS_ERR_OR_NULL(dent))
 | |
| 		goto out_remove;
 | |
| 	dfs_chk_gen = dent;
 | |
| 
 | |
| 	fname = "chk_index";
 | |
| 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
 | |
| 				   &dfs_global_fops);
 | |
| 	if (IS_ERR_OR_NULL(dent))
 | |
| 		goto out_remove;
 | |
| 	dfs_chk_index = dent;
 | |
| 
 | |
| 	fname = "chk_orphans";
 | |
| 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
 | |
| 				   &dfs_global_fops);
 | |
| 	if (IS_ERR_OR_NULL(dent))
 | |
| 		goto out_remove;
 | |
| 	dfs_chk_orph = dent;
 | |
| 
 | |
| 	fname = "chk_lprops";
 | |
| 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
 | |
| 				   &dfs_global_fops);
 | |
| 	if (IS_ERR_OR_NULL(dent))
 | |
| 		goto out_remove;
 | |
| 	dfs_chk_lprops = dent;
 | |
| 
 | |
| 	fname = "chk_fs";
 | |
| 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
 | |
| 				   &dfs_global_fops);
 | |
| 	if (IS_ERR_OR_NULL(dent))
 | |
| 		goto out_remove;
 | |
| 	dfs_chk_fs = dent;
 | |
| 
 | |
| 	fname = "tst_recovery";
 | |
| 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
 | |
| 				   &dfs_global_fops);
 | |
| 	if (IS_ERR_OR_NULL(dent))
 | |
| 		goto out_remove;
 | |
| 	dfs_tst_rcvry = dent;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_remove:
 | |
| 	debugfs_remove_recursive(dfs_rootdir);
 | |
| out:
 | |
| 	err = dent ? PTR_ERR(dent) : -ENODEV;
 | |
| 	pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
 | |
| 	       current->pid, fname, err);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
 | |
|  */
 | |
| void dbg_debugfs_exit(void)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_DEBUG_FS))
 | |
| 		debugfs_remove_recursive(dfs_rootdir);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_debugging_init - initialize UBIFS debugging.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function initializes debugging-related data for the file system.
 | |
|  * Returns zero in case of success and a negative error code in case of
 | |
|  * failure.
 | |
|  */
 | |
| int ubifs_debugging_init(struct ubifs_info *c)
 | |
| {
 | |
| 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
 | |
| 	if (!c->dbg)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_debugging_exit - free debugging data.
 | |
|  * @c: UBIFS file-system description object
 | |
|  */
 | |
| void ubifs_debugging_exit(struct ubifs_info *c)
 | |
| {
 | |
| 	kfree(c->dbg);
 | |
| }
 | |
| #endif
 |