1382 lines
39 KiB
C
1382 lines
39 KiB
C
/*
|
|
* Copyright 2017-2018 NXP
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <malloc.h>
|
|
#include <spi.h>
|
|
#include <asm/io.h>
|
|
#include <linux/sizes.h>
|
|
#include <dm.h>
|
|
#include <errno.h>
|
|
#include <watchdog.h>
|
|
#include "fsl_fspi.h"
|
|
#include <asm/mach-imx/sci/sci.h>
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
#define RX_BUFFER_SIZE 0x200
|
|
#define TX_BUFFER_SIZE 0x400
|
|
#define AHB_BUFFER_SIZE 0x800
|
|
|
|
#ifdef CONFIG_SPI_FLASH_4BYTES_ADDR
|
|
#define OFFSET_BITS_MASK GENMASK(31, 0)
|
|
#else
|
|
#define OFFSET_BITS_MASK GENMASK(23, 0)
|
|
#endif
|
|
|
|
#define FLASH_STATUS_WEL 0x02
|
|
|
|
/* SEQID */
|
|
#define SEQID_READ 0
|
|
#define SEQID_WREN 1
|
|
#define SEQID_FAST_READ 2
|
|
#define SEQID_RDSR 3
|
|
#define SEQID_SE 4
|
|
#define SEQID_CHIP_ERASE 5
|
|
#define SEQID_PP 6
|
|
#define SEQID_RDID 7
|
|
#define SEQID_BE_4K 8
|
|
#ifdef CONFIG_SPI_FLASH_BAR
|
|
#define SEQID_BRRD 9
|
|
#define SEQID_BRWR 10
|
|
#define SEQID_RDEAR 11
|
|
#define SEQID_WREAR 12
|
|
#endif
|
|
#define SEQID_RDEVCR 13
|
|
#define SEQID_WREVCR 14
|
|
#define SEQID_QUAD_OUTPUT 15
|
|
#define SEQID_RDFSR 16
|
|
#define SEQID_EN4B 17
|
|
|
|
|
|
/* FSPI CMD */
|
|
#define FSPI_CMD_PP 0x02 /* Page program (up to 256 bytes) */
|
|
#define FSPI_CMD_RDSR 0x05 /* Read status register */
|
|
#define FSPI_CMD_WREN 0x06 /* Write enable */
|
|
#define FSPI_CMD_FAST_READ 0x0b /* Read data bytes (high frequency) */
|
|
#define FSPI_CMD_READ 0x03 /* Read data bytes */
|
|
#define FSPI_CMD_BE_4K 0x20 /* 4K erase */
|
|
#define FSPI_CMD_CHIP_ERASE 0xc7 /* Erase whole flash chip */
|
|
#define FSPI_CMD_SE 0xd8 /* Sector erase (usually 64KiB) */
|
|
#define FSPI_CMD_RDID 0x9f /* Read JEDEC ID */
|
|
|
|
/* Used for Micron, winbond and Macronix flashes */
|
|
#define FSPI_CMD_WREAR 0xc5 /* EAR register write */
|
|
#define FSPI_CMD_RDEAR 0xc8 /* EAR reigster read */
|
|
|
|
/* Used for Spansion flashes only. */
|
|
#define FSPI_CMD_BRRD 0x16 /* Bank register read */
|
|
#define FSPI_CMD_BRWR 0x17 /* Bank register write */
|
|
|
|
/* 4-byte address FSPI CMD - used on Spansion and some Macronix flashes */
|
|
#define FSPI_CMD_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
|
|
#define FSPI_CMD_PP_4B 0x12 /* Page program (up to 256 bytes) */
|
|
#define FSPI_CMD_SE_4B 0xdc /* Sector erase (usually 64KiB) */
|
|
#define FSPI_CMD_BE_4K_4B 0x21 /* 4K erase */
|
|
|
|
#define FSPI_CMD_RD_EVCR 0x65 /* Read EVCR register */
|
|
#define FSPI_CMD_WR_EVCR 0x61 /* Write EVCR register */
|
|
|
|
#define FSPI_CMD_EN4B 0xB7
|
|
|
|
/* 1-1-4 READ CMD */
|
|
#define FSPI_CMD_QUAD_OUTPUT 0x6b
|
|
#define FSPI_CMD_DDR_QUAD_OUTPUT 0x6d
|
|
|
|
/* read flag status register */
|
|
#define FSPI_CMD_RDFSR 0x70
|
|
|
|
/* fsl_fspi_platdata flags */
|
|
#define FSPI_FLAG_REGMAP_ENDIAN_BIG BIT(0)
|
|
|
|
/* default SCK frequency, unit: HZ */
|
|
#define FSL_FSPI_DEFAULT_SCK_FREQ 50000000
|
|
|
|
/* FSPI max chipselect signals number */
|
|
#define FSL_FSPI_MAX_CHIPSELECT_NUM 4
|
|
|
|
#ifdef CONFIG_DM_SPI
|
|
/**
|
|
* struct fsl_fspi_platdata - platform data for NXP FSPI
|
|
*
|
|
* @flags: Flags for FSPI FSPI_FLAG_...
|
|
* @speed_hz: Default SCK frequency
|
|
* @reg_base: Base address of FSPI registers
|
|
* @amba_base: Base address of FSPI memory mapping
|
|
* @amba_total_size: size of FSPI memory mapping
|
|
* @flash_num: Number of active slave devices
|
|
* @num_chipselect: Number of FSPI chipselect signals
|
|
*/
|
|
struct fsl_fspi_platdata {
|
|
u32 flags;
|
|
u32 speed_hz;
|
|
u32 reg_base;
|
|
u32 amba_base;
|
|
u32 amba_total_size;
|
|
u32 flash_num;
|
|
u32 num_chipselect;
|
|
};
|
|
#endif
|
|
|
|
/**
|
|
* struct fsl_fspi_priv - private data for NXP FSPI
|
|
*
|
|
* @flags: Flags for FSPI FSPI_FLAG_...
|
|
* @bus_clk: FSPI input clk frequency
|
|
* @speed_hz: Default SCK frequency
|
|
* @cur_seqid: current LUT table sequence id
|
|
* @sf_addr: flash access offset
|
|
* @amba_base: Base address of FSPI memory mapping of every CS
|
|
* @amba_total_size: size of FSPI memory mapping
|
|
* @cur_amba_base: Base address of FSPI memory mapping of current CS
|
|
* @flash_num: Number of active slave devices
|
|
* @num_chipselect: Number of FSPI chipselect signals
|
|
* @regs: Point to FSPI register structure for I/O access
|
|
*/
|
|
struct fsl_fspi_priv {
|
|
u32 flags;
|
|
u32 bus_clk;
|
|
u32 speed_hz;
|
|
u32 cur_seqid;
|
|
u32 sf_addr;
|
|
u32 amba_base[FSL_FSPI_MAX_CHIPSELECT_NUM];
|
|
u32 amba_total_size;
|
|
u32 cur_amba_base;
|
|
u32 flash_num;
|
|
u32 num_chipselect;
|
|
struct fsl_fspi_regs *regs;
|
|
};
|
|
|
|
#ifndef CONFIG_DM_SPI
|
|
struct fsl_fspi {
|
|
struct spi_slave slave;
|
|
struct fsl_fspi_priv priv;
|
|
};
|
|
#endif
|
|
|
|
static u32 fspi_read32(u32 flags, u32 *addr)
|
|
{
|
|
return flags & FSPI_FLAG_REGMAP_ENDIAN_BIG ?
|
|
in_be32(addr) : in_le32(addr);
|
|
}
|
|
|
|
static void fspi_write32(u32 flags, u32 *addr, u32 val)
|
|
{
|
|
flags & FSPI_FLAG_REGMAP_ENDIAN_BIG ?
|
|
out_be32(addr, val) : out_le32(addr, val);
|
|
}
|
|
|
|
/* FSPI support swapping the flash read/write data
|
|
* in hardware
|
|
*/
|
|
static inline u32 fspi_endian_xchg(u32 data)
|
|
{
|
|
return data;
|
|
}
|
|
|
|
static void fspi_set_lut(struct fsl_fspi_priv *priv)
|
|
{
|
|
struct fsl_fspi_regs *regs = priv->regs;
|
|
u32 lut_base;
|
|
|
|
/* Unlock the LUT */
|
|
fspi_write32(priv->flags, ®s->lutkey, FLEXSPI_LUTKEY_VALUE);
|
|
fspi_write32(priv->flags, ®s->lutcr, FLEXSPI_LCKER_UNLOCK);
|
|
|
|
/* READ */
|
|
lut_base = SEQID_READ * 4;
|
|
fspi_write32(priv->flags, ®s->lut[lut_base],
|
|
OPRND0(FSPI_CMD_READ) | PAD0(LUT_PAD1) |
|
|
INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
|
|
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 1],
|
|
OPRND0(0) | PAD0(LUT_PAD1) |
|
|
INSTR0(LUT_READ));
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 2], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 3], 0);
|
|
|
|
/* Write Enable */
|
|
lut_base = SEQID_WREN * 4;
|
|
fspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(FSPI_CMD_WREN) |
|
|
PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 1], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 2], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 3], 0);
|
|
|
|
/* Fast Read */
|
|
lut_base = SEQID_FAST_READ * 4;
|
|
#ifdef CONFIG_SPI_FLASH_BAR
|
|
fspi_write32(priv->flags, ®s->lut[lut_base],
|
|
OPRND0(FSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
|
|
INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
|
|
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
|
|
#else
|
|
if (FSL_FSPI_FLASH_SIZE <= SZ_16M)
|
|
fspi_write32(priv->flags, ®s->lut[lut_base],
|
|
OPRND0(FSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
|
|
INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
|
|
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
|
|
else
|
|
fspi_write32(priv->flags, ®s->lut[lut_base],
|
|
OPRND0(FSPI_CMD_FAST_READ_4B) |
|
|
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
|
|
OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
|
|
INSTR1(LUT_ADDR));
|
|
#endif
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 1],
|
|
OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
|
|
OPRND1(0) | PAD1(LUT_PAD1) |
|
|
INSTR1(LUT_READ));
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 2], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 3], 0);
|
|
|
|
/* Read Status */
|
|
lut_base = SEQID_RDSR * 4;
|
|
fspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(FSPI_CMD_RDSR) |
|
|
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
|
|
PAD1(LUT_PAD1) | INSTR1(LUT_READ));
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 1], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 2], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 3], 0);
|
|
|
|
/* Erase a sector */
|
|
lut_base = SEQID_SE * 4;
|
|
#ifdef CONFIG_SPI_FLASH_BAR
|
|
fspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(FSPI_CMD_SE) |
|
|
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
|
|
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
|
|
#else
|
|
if (FSL_FSPI_FLASH_SIZE <= SZ_16M)
|
|
fspi_write32(priv->flags, ®s->lut[lut_base],
|
|
OPRND0(FSPI_CMD_SE) | PAD0(LUT_PAD1) |
|
|
INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
|
|
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
|
|
else
|
|
fspi_write32(priv->flags, ®s->lut[lut_base],
|
|
OPRND0(FSPI_CMD_SE_4B) | PAD0(LUT_PAD1) |
|
|
INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
|
|
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
|
|
#endif
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 1], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 2], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 3], 0);
|
|
|
|
/* Erase the whole chip */
|
|
lut_base = SEQID_CHIP_ERASE * 4;
|
|
fspi_write32(priv->flags, ®s->lut[lut_base],
|
|
OPRND0(FSPI_CMD_CHIP_ERASE) |
|
|
PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 1], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 2], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 3], 0);
|
|
|
|
/* Page Program */
|
|
lut_base = SEQID_PP * 4;
|
|
#ifdef CONFIG_SPI_FLASH_BAR
|
|
fspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(FSPI_CMD_PP) |
|
|
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
|
|
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
|
|
#else
|
|
if (FSL_FSPI_FLASH_SIZE <= SZ_16M)
|
|
fspi_write32(priv->flags, ®s->lut[lut_base],
|
|
OPRND0(FSPI_CMD_PP) | PAD0(LUT_PAD1) |
|
|
INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
|
|
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
|
|
else
|
|
fspi_write32(priv->flags, ®s->lut[lut_base],
|
|
OPRND0(FSPI_CMD_PP_4B) | PAD0(LUT_PAD1) |
|
|
INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
|
|
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
|
|
#endif
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 1],
|
|
OPRND0(0) |
|
|
PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 2], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 3], 0);
|
|
|
|
/* READ ID */
|
|
lut_base = SEQID_RDID * 4;
|
|
fspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(FSPI_CMD_RDID) |
|
|
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
|
|
PAD1(LUT_PAD1) | INSTR1(LUT_READ));
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 1], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 2], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 3], 0);
|
|
|
|
/* SUB SECTOR 4K ERASE */
|
|
lut_base = SEQID_BE_4K * 4;
|
|
#ifdef CONFIG_SPI_FLASH_BAR
|
|
fspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(FSPI_CMD_BE_4K) |
|
|
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
|
|
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
|
|
#else
|
|
if (FSL_FSPI_FLASH_SIZE <= SZ_16M)
|
|
fspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(FSPI_CMD_BE_4K) |
|
|
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
|
|
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
|
|
else
|
|
fspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(FSPI_CMD_BE_4K_4B) |
|
|
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
|
|
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
|
|
#endif
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 1], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 2], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 3], 0);
|
|
|
|
#ifdef CONFIG_SPI_FLASH_BAR
|
|
/*
|
|
* BRRD BRWR RDEAR WREAR are all supported, because it is hard to
|
|
* dynamically check whether to set BRRD BRWR or RDEAR WREAR during
|
|
* initialization.
|
|
*/
|
|
lut_base = SEQID_BRRD * 4;
|
|
fspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(FSPI_CMD_BRRD) |
|
|
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
|
|
PAD1(LUT_PAD1) | INSTR1(LUT_READ));
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 1], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 2], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 3], 0);
|
|
|
|
lut_base = SEQID_BRWR * 4;
|
|
fspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(FSPI_CMD_BRWR) |
|
|
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
|
|
PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 1], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 2], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 3], 0);
|
|
|
|
lut_base = SEQID_RDEAR * 4;
|
|
fspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(FSPI_CMD_RDEAR) |
|
|
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
|
|
PAD1(LUT_PAD1) | INSTR1(LUT_READ));
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 1], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 2], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 3], 0);
|
|
|
|
lut_base = SEQID_WREAR * 4;
|
|
fspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(FSPI_CMD_WREAR) |
|
|
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
|
|
PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 1], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 2], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 3], 0);
|
|
#endif
|
|
lut_base = SEQID_RDEVCR * 4;
|
|
fspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(FSPI_CMD_RD_EVCR) |
|
|
PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 1], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 2], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 3], 0);
|
|
|
|
lut_base = SEQID_WREVCR * 4;
|
|
fspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(FSPI_CMD_WR_EVCR) |
|
|
PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 1], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 2], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 3], 0);
|
|
|
|
#ifdef CONFIG_FSPI_QUAD_SUPPORT
|
|
/* QUAD OUTPUT READ */
|
|
lut_base = SEQID_QUAD_OUTPUT * 4;
|
|
fspi_write32(priv->flags, ®s->lut[lut_base],
|
|
OPRND0(FSPI_CMD_DDR_QUAD_OUTPUT) | PAD0(LUT_PAD1) |
|
|
INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
|
|
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR_DDR));
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 1],
|
|
OPRND0(0xc) | PAD0(LUT_PAD4) |
|
|
INSTR0(LUT_DUMMY_DDR) | OPRND1(0) |
|
|
PAD1(LUT_PAD4) | INSTR1(LUT_READ_DDR));
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 2], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 3], 0);
|
|
#endif
|
|
|
|
/* Read Flag Status */
|
|
lut_base = SEQID_RDFSR * 4;
|
|
fspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(FSPI_CMD_RDFSR) |
|
|
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
|
|
PAD1(LUT_PAD1) | INSTR1(LUT_READ));
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 1], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 2], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 3], 0);
|
|
|
|
/* Enter 4 bytes address mode */
|
|
lut_base = SEQID_EN4B * 4;
|
|
fspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(FSPI_CMD_EN4B) |
|
|
PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 1], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 2], 0);
|
|
fspi_write32(priv->flags, ®s->lut[lut_base + 3], 0);
|
|
|
|
/* Lock the LUT */
|
|
fspi_write32(priv->flags, ®s->lutkey, FLEXSPI_LUTKEY_VALUE);
|
|
fspi_write32(priv->flags, ®s->lutcr, FLEXSPI_LCKER_LOCK);
|
|
}
|
|
|
|
#if defined(CONFIG_SYS_FSL_FSPI_AHB)
|
|
/*
|
|
* If we have changed the content of the flash by writing or erasing,
|
|
* we need to invalidate the AHB buffer. If we do not do so, we may read out
|
|
* the wrong data. The spec tells us reset the AHB domain and Serial Flash
|
|
* domain at the same time.
|
|
*/
|
|
static inline void fspi_ahb_invalid(struct fsl_fspi_priv *priv)
|
|
{
|
|
struct fsl_fspi_regs *regs = priv->regs;
|
|
u32 reg;
|
|
|
|
reg = fspi_read32(priv->flags, ®s->mcr0);
|
|
reg |= FLEXSPI_MCR0_SWRST_MASK;
|
|
fspi_write32(priv->flags, ®s->mcr0, reg);
|
|
|
|
/*
|
|
* The minimum delay : 1 AHB + 2 SFCK clocks.
|
|
* Delay 1 us is enough.
|
|
*/
|
|
while ((fspi_read32(priv->flags, ®s->mcr0) & 1))
|
|
;
|
|
}
|
|
|
|
#define FSPI_AHB_BASE_ADDR 0x08000000
|
|
/* Read out the data from the AHB buffer. */
|
|
static inline void fspi_ahb_read(struct fsl_fspi_priv *priv, u8 *rxbuf, int len)
|
|
{
|
|
/* Read out the data directly from the AHB buffer. */
|
|
memcpy(rxbuf, (u8 *)(0x08000000 + (uintptr_t)priv->sf_addr) , len);
|
|
|
|
}
|
|
|
|
/*
|
|
* There are two different ways to read out the data from the flash:
|
|
* the "IP Command Read" and the "AHB Command Read".
|
|
*
|
|
* The IC guy suggests we use the "AHB Command Read" which is faster
|
|
* then the "IP Command Read". (What's more is that there is a bug in
|
|
* the "IP Command Read" in the Vybrid.)
|
|
*
|
|
* After we set up the registers for the "AHB Command Read", we can use
|
|
* the memcpy to read the data directly. A "missed" access to the buffer
|
|
* causes the controller to clear the buffer, and use the sequence pointed
|
|
* by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
|
|
*/
|
|
static void fspi_init_ahb_read(struct fsl_fspi_priv *priv)
|
|
{
|
|
struct fsl_fspi_regs *regs = priv->regs;
|
|
int i;
|
|
|
|
/* AHB configuration for access buffer 0~7 .*/
|
|
for (i = 0; i < 7; i++)
|
|
fspi_write32(priv->flags, ®s->ahbrxbuf0cr0 + i, 0);
|
|
|
|
/*
|
|
* Set ADATSZ with the maximum AHB buffer size to improve the read
|
|
* performance
|
|
*/
|
|
fspi_write32(priv->flags, ®s->ahbrxbuf7cr0, AHB_BUFFER_SIZE / 8 |
|
|
FLEXSPI_AHBRXBUF0CR7_PREF_MASK);
|
|
|
|
fspi_write32(priv->flags, ®s->ahbcr, FLEXSPI_AHBCR_PREF_EN_MASK);
|
|
/*
|
|
* Set the default lut sequence for AHB Read.
|
|
* Parallel mode is disabled.
|
|
*/
|
|
#ifdef CONFIG_FSPI_QUAD_SUPPORT
|
|
fspi_write32(priv->flags, ®s->flsha1cr2, SEQID_QUAD_OUTPUT);
|
|
#else
|
|
fspi_write32(priv->flags, ®s->flsha1cr2, SEQID_FAST_READ);
|
|
#endif
|
|
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPI_FLASH_BAR
|
|
/* Bank register read/write, EAR register read/write */
|
|
static void fspi_op_rdbank(struct fsl_fspi_priv *priv, u8 *rxbuf, u32 len)
|
|
{
|
|
struct fsl_fspi_regs *regs = priv->regs;
|
|
u32 data, seqid;
|
|
|
|
/* invalid the RXFIFO first */
|
|
fspi_write32(priv->flags, ®s->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
|
|
|
|
fspi_write32(priv->flags, ®s->ipcr0, priv->cur_amba_base);
|
|
|
|
if (priv->cur_seqid == FSPI_CMD_BRRD)
|
|
seqid = SEQID_BRRD;
|
|
else
|
|
seqid = SEQID_RDEAR;
|
|
|
|
fspi_write32(priv->flags, ®s->ipcr1,
|
|
(seqid << FLEXSPI_IPCR1_SEQID_SHIFT) | len);
|
|
|
|
/* Trigger the command */
|
|
fspi_write32(priv->flags, ®s->ipcmd, 1);
|
|
|
|
/* Wait for command done */
|
|
while (!(fspi_read32(priv->flags, ®s->intr)
|
|
& FLEXSPI_INTR_IPCMDDONE_MASK))
|
|
;
|
|
|
|
while (1) {
|
|
data = fspi_read32(priv->flags, ®s->rfdr[0]);
|
|
memcpy(rxbuf, &data, len);
|
|
break;
|
|
}
|
|
|
|
fspi_write32(priv->flags, ®s->intr, FLEXSPI_INTR_IPRXWA_MASK);
|
|
fspi_write32(priv->flags, ®s->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
|
|
fspi_write32(priv->flags, ®s->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
|
|
|
|
}
|
|
#endif
|
|
|
|
static void fspi_op_rdevcr(struct fsl_fspi_priv *priv, u8 *rxbuf, u32 len)
|
|
{
|
|
struct fsl_fspi_regs *regs = priv->regs;
|
|
u32 data;
|
|
|
|
/* invalid the RXFIFO first */
|
|
fspi_write32(priv->flags, ®s->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
|
|
|
|
fspi_write32(priv->flags, ®s->ipcr0, priv->cur_amba_base);
|
|
|
|
fspi_write32(priv->flags, ®s->ipcr1,
|
|
(SEQID_RDEVCR << FLEXSPI_IPCR1_SEQID_SHIFT) | len);
|
|
|
|
/* Trigger the command */
|
|
fspi_write32(priv->flags, ®s->ipcmd, 1);
|
|
|
|
/* Wait for command done */
|
|
while (!(fspi_read32(priv->flags, ®s->intr)
|
|
& FLEXSPI_INTR_IPCMDDONE_MASK))
|
|
;
|
|
|
|
while (1) {
|
|
data = fspi_read32(priv->flags, ®s->rfdr[0]);
|
|
memcpy(rxbuf, &data, len);
|
|
break;
|
|
}
|
|
|
|
fspi_write32(priv->flags, ®s->intr, FLEXSPI_INTR_IPRXWA_MASK);
|
|
fspi_write32(priv->flags, ®s->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
|
|
fspi_write32(priv->flags, ®s->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
|
|
|
|
}
|
|
|
|
static void fspi_op_wrevcr(struct fsl_fspi_priv *priv, u8 *txbuf, u32 len)
|
|
{
|
|
struct fsl_fspi_regs *regs = priv->regs;
|
|
|
|
/* invalid the TXFIFO first */
|
|
fspi_write32(priv->flags, ®s->iptxfcr, FLEXSPI_IPTXFCR_CLR_MASK);
|
|
|
|
fspi_write32(priv->flags, ®s->ipcr0, priv->cur_amba_base);
|
|
|
|
/* Wait for TXFIFO empty*/
|
|
while (!(fspi_read32(priv->flags, ®s->intr) & FLEXSPI_INTR_IPTXWE_MASK))
|
|
;
|
|
|
|
/* write the data to TXFIFO */
|
|
memcpy(®s->tfdr, txbuf, len);
|
|
|
|
fspi_write32(priv->flags, ®s->intr, FLEXSPI_INTR_IPTXWE_MASK);
|
|
fspi_write32(priv->flags, ®s->ipcr1,
|
|
(SEQID_WREVCR << FLEXSPI_IPCR1_SEQID_SHIFT) | len);
|
|
|
|
/* Trigger the command */
|
|
fspi_write32(priv->flags, ®s->ipcmd, 1);
|
|
|
|
/* Wait for command done */
|
|
while (!(fspi_read32(priv->flags, ®s->intr) & FLEXSPI_INTR_IPCMDDONE_MASK))
|
|
;
|
|
|
|
/* invalid the TXFIFO first */
|
|
fspi_write32(priv->flags, ®s->iptxfcr, FLEXSPI_IPTXFCR_CLR_MASK);
|
|
fspi_write32(priv->flags, ®s->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
|
|
|
|
}
|
|
|
|
static void fspi_op_rdid(struct fsl_fspi_priv *priv, u32 *rxbuf, u32 len)
|
|
{
|
|
struct fsl_fspi_regs *regs = priv->regs;
|
|
u32 data, size;
|
|
int i;
|
|
|
|
/* invalid the RXFIFO first */
|
|
fspi_write32(priv->flags, ®s->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
|
|
|
|
fspi_write32(priv->flags, ®s->ipcr0, priv->cur_amba_base);
|
|
|
|
fspi_write32(priv->flags, ®s->ipcr1,
|
|
(SEQID_RDID << FLEXSPI_IPCR1_SEQID_SHIFT) | len);
|
|
/* Trigger the command */
|
|
fspi_write32(priv->flags, ®s->ipcmd, 1);
|
|
|
|
/* Wait for command done */
|
|
while (!(fspi_read32(priv->flags, ®s->intr)
|
|
& FLEXSPI_INTR_IPCMDDONE_MASK))
|
|
;
|
|
|
|
i = 0;
|
|
while ((RX_BUFFER_SIZE >= len) && (len > 0)) {
|
|
data = fspi_read32(priv->flags, ®s->rfdr[i]);
|
|
size = (len < 4) ? len : 4;
|
|
memcpy(rxbuf, &data, size);
|
|
len -= size;
|
|
rxbuf++;
|
|
i++;
|
|
}
|
|
fspi_write32(priv->flags, ®s->intr, FLEXSPI_INTR_IPRXWA_MASK);
|
|
|
|
fspi_write32(priv->flags, ®s->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
|
|
fspi_write32(priv->flags, ®s->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
|
|
}
|
|
|
|
#ifndef CONFIG_SYS_FSL_FSPI_AHB
|
|
/* If not use AHB read, read data from ip interface */
|
|
static void fspi_op_read(struct fsl_fspi_priv *priv, u32 *rxbuf, u32 len)
|
|
{
|
|
struct fsl_fspi_regs *regs = priv->regs;
|
|
int i, size, rx_size;
|
|
u32 to_or_from;
|
|
|
|
to_or_from = priv->sf_addr + priv->cur_amba_base;
|
|
|
|
/* invalid the RXFIFO */
|
|
fspi_write32(priv->flags, ®s->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
|
|
|
|
while (len > 0) {
|
|
WATCHDOG_RESET();
|
|
|
|
fspi_write32(priv->flags, ®s->ipcr0, to_or_from);
|
|
|
|
rx_size = (len > RX_BUFFER_SIZE) ?
|
|
RX_BUFFER_SIZE : len;
|
|
|
|
#ifdef CONFIG_FSPI_QUAD_SUPPORT
|
|
fspi_write32(priv->flags, ®s->ipcr1,
|
|
(SEQID_QUAD_OUTPUT << FLEXSPI_IPCR1_SEQID_SHIFT) |
|
|
rx_size);
|
|
#else
|
|
fspi_write32(priv->flags, ®s->ipcr1,
|
|
(SEQID_FAST_READ << FLEXSPI_IPCR1_SEQID_SHIFT) |
|
|
rx_size);
|
|
#endif
|
|
|
|
to_or_from += rx_size;
|
|
len -= rx_size;
|
|
|
|
/* Trigger the command */
|
|
fspi_write32(priv->flags, ®s->ipcmd, 1);
|
|
|
|
size = rx_size / 8;
|
|
for (i = 0; i < size; ++i) {
|
|
/* Wait for RXFIFO available*/
|
|
while (!(fspi_read32(priv->flags, ®s->intr)
|
|
& FLEXSPI_INTR_IPRXWA_MASK))
|
|
;
|
|
|
|
memcpy(rxbuf, ®s->rfdr, 8);
|
|
rxbuf += 2;
|
|
|
|
/* move the FIFO pointer */
|
|
fspi_write32(priv->flags, ®s->intr,
|
|
FLEXSPI_INTR_IPRXWA_MASK);
|
|
}
|
|
|
|
size = rx_size % 8;
|
|
|
|
if (size) {
|
|
/* Wait for data filled*/
|
|
while (!(fspi_read32(priv->flags, ®s->iprxfsts)
|
|
& FLEXSPI_IPRXFSTS_FILL_MASK))
|
|
;
|
|
memcpy(rxbuf, ®s->rfdr, size);
|
|
}
|
|
|
|
/* invalid the RXFIFO */
|
|
fspi_write32(priv->flags, ®s->iprxfcr,
|
|
FLEXSPI_IPRXFCR_CLR_MASK);
|
|
fspi_write32(priv->flags, ®s->intr,
|
|
FLEXSPI_INTR_IPCMDDONE_MASK);
|
|
}
|
|
|
|
}
|
|
#endif
|
|
|
|
static void fspi_op_write(struct fsl_fspi_priv *priv, u8 *txbuf, u32 len)
|
|
{
|
|
struct fsl_fspi_regs *regs = priv->regs;
|
|
u32 seqid;
|
|
int i, size, tx_size;
|
|
u32 to_or_from = 0;
|
|
|
|
/* invalid the TXFIFO first */
|
|
fspi_write32(priv->flags, ®s->iptxfcr, FLEXSPI_IPTXFCR_CLR_MASK);
|
|
|
|
fspi_write32(priv->flags, ®s->ipcr0, priv->cur_amba_base);
|
|
|
|
fspi_write32(priv->flags, ®s->ipcr1,
|
|
(SEQID_WREN << FLEXSPI_IPCR1_SEQID_SHIFT) | 0);
|
|
|
|
/* Trigger the command */
|
|
fspi_write32(priv->flags, ®s->ipcmd, 1);
|
|
|
|
/* Wait for command done */
|
|
while (!(fspi_read32(priv->flags, ®s->intr)
|
|
& FLEXSPI_INTR_IPCMDDONE_MASK))
|
|
;
|
|
|
|
fspi_write32(priv->flags, ®s->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
|
|
|
|
/* invalid the TXFIFO first */
|
|
fspi_write32(priv->flags, ®s->iptxfcr, FLEXSPI_IPTXFCR_CLR_MASK);
|
|
|
|
to_or_from = priv->sf_addr + priv->cur_amba_base;
|
|
|
|
while (len > 0) {
|
|
|
|
/* Default is page programming */
|
|
seqid = SEQID_PP;
|
|
#ifdef CONFIG_SPI_FLASH_BAR
|
|
if (priv->cur_seqid == FSPI_CMD_BRWR)
|
|
seqid = SEQID_BRWR;
|
|
else if (priv->cur_seqid == FSPI_CMD_WREAR)
|
|
seqid = SEQID_WREAR;
|
|
#endif
|
|
|
|
|
|
fspi_write32(priv->flags, ®s->ipcr0, to_or_from);
|
|
|
|
tx_size = (len > TX_BUFFER_SIZE) ?
|
|
TX_BUFFER_SIZE : len;
|
|
|
|
to_or_from += tx_size;
|
|
len -= tx_size;
|
|
|
|
size = tx_size / 8;
|
|
for (i = 0; i < size; i++) {
|
|
/* Wait for TXFIFO empty*/
|
|
while (!(fspi_read32(priv->flags, ®s->intr)
|
|
& FLEXSPI_INTR_IPTXWE_MASK))
|
|
;
|
|
|
|
memcpy(®s->tfdr, txbuf, 8);
|
|
txbuf += 8;
|
|
fspi_write32(priv->flags, ®s->intr,
|
|
FLEXSPI_INTR_IPTXWE_MASK);
|
|
}
|
|
|
|
size = tx_size % 8;
|
|
if (size) {
|
|
/* Wait for TXFIFO empty*/
|
|
while (!(fspi_read32(priv->flags, ®s->intr)
|
|
& FLEXSPI_INTR_IPTXWE_MASK))
|
|
;
|
|
|
|
memcpy(®s->tfdr, txbuf, size);
|
|
fspi_write32(priv->flags, ®s->intr,
|
|
FLEXSPI_INTR_IPTXWE_MASK);
|
|
}
|
|
|
|
fspi_write32(priv->flags, ®s->ipcr1,
|
|
(seqid << FLEXSPI_IPCR1_SEQID_SHIFT) | tx_size);
|
|
|
|
|
|
/* Trigger the command */
|
|
fspi_write32(priv->flags, ®s->ipcmd, 1);
|
|
|
|
/* Wait for command done */
|
|
while (!(fspi_read32(priv->flags, ®s->intr)
|
|
& FLEXSPI_INTR_IPCMDDONE_MASK))
|
|
;
|
|
|
|
/* invalid the TXFIFO first */
|
|
fspi_write32(priv->flags, ®s->iptxfcr,
|
|
FLEXSPI_IPTXFCR_CLR_MASK);
|
|
fspi_write32(priv->flags, ®s->intr,
|
|
FLEXSPI_INTR_IPCMDDONE_MASK);
|
|
}
|
|
}
|
|
|
|
static void fspi_op_rdsr(struct fsl_fspi_priv *priv, void *rxbuf, u32 len)
|
|
{
|
|
struct fsl_fspi_regs *regs = priv->regs;
|
|
u32 data;
|
|
|
|
/* invalid the RXFIFO first */
|
|
fspi_write32(priv->flags, ®s->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
|
|
|
|
fspi_write32(priv->flags, ®s->ipcr0, priv->cur_amba_base);
|
|
|
|
fspi_write32(priv->flags, ®s->ipcr1,
|
|
(SEQID_RDSR << FLEXSPI_IPCR1_SEQID_SHIFT) | len);
|
|
/* Trigger the command */
|
|
fspi_write32(priv->flags, ®s->ipcmd, 1);
|
|
|
|
/* Wait for command done */
|
|
while (!(fspi_read32(priv->flags, ®s->intr)
|
|
& FLEXSPI_INTR_IPCMDDONE_MASK))
|
|
;
|
|
|
|
data = fspi_read32(priv->flags, ®s->rfdr[0]);
|
|
memcpy(rxbuf, &data, len);
|
|
|
|
fspi_write32(priv->flags, ®s->intr, FLEXSPI_INTR_IPRXWA_MASK);
|
|
fspi_write32(priv->flags, ®s->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
|
|
fspi_write32(priv->flags, ®s->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
|
|
}
|
|
|
|
static void fspi_op_rdfsr(struct fsl_fspi_priv *priv, void *rxbuf, u32 len)
|
|
{
|
|
struct fsl_fspi_regs *regs = priv->regs;
|
|
u32 data;
|
|
|
|
/* invalid the RXFIFO first */
|
|
fspi_write32(priv->flags, ®s->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
|
|
|
|
fspi_write32(priv->flags, ®s->ipcr0, priv->cur_amba_base);
|
|
|
|
fspi_write32(priv->flags, ®s->ipcr1,
|
|
(SEQID_RDFSR << FLEXSPI_IPCR1_SEQID_SHIFT) | len);
|
|
/* Trigger the command */
|
|
fspi_write32(priv->flags, ®s->ipcmd, 1);
|
|
|
|
/* Wait for command done */
|
|
while (!(fspi_read32(priv->flags, ®s->intr)
|
|
& FLEXSPI_INTR_IPCMDDONE_MASK))
|
|
;
|
|
|
|
data = fspi_read32(priv->flags, ®s->rfdr[0]);
|
|
memcpy(rxbuf, &data, len);
|
|
|
|
fspi_write32(priv->flags, ®s->intr, FLEXSPI_INTR_IPRXWA_MASK);
|
|
fspi_write32(priv->flags, ®s->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
|
|
fspi_write32(priv->flags, ®s->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
|
|
}
|
|
|
|
static void fspi_op_erase(struct fsl_fspi_priv *priv)
|
|
{
|
|
struct fsl_fspi_regs *regs = priv->regs;
|
|
u32 to_or_from = 0;
|
|
|
|
to_or_from = priv->sf_addr + priv->cur_amba_base;
|
|
|
|
fspi_write32(priv->flags, ®s->ipcr0, to_or_from);
|
|
|
|
fspi_write32(priv->flags, ®s->ipcr1,
|
|
(SEQID_WREN << FLEXSPI_IPCR1_SEQID_SHIFT) | 0);
|
|
/* Trigger the command */
|
|
fspi_write32(priv->flags, ®s->ipcmd, 1);
|
|
|
|
while (!(fspi_read32(priv->flags, ®s->intr)
|
|
& FLEXSPI_INTR_IPCMDDONE_MASK))
|
|
;
|
|
|
|
fspi_write32(priv->flags, ®s->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
|
|
|
|
if (priv->cur_seqid == FSPI_CMD_SE || priv->cur_seqid == FSPI_CMD_SE_4B) {
|
|
fspi_write32(priv->flags, ®s->ipcr1,
|
|
(SEQID_SE << FLEXSPI_IPCR1_SEQID_SHIFT) | 0);
|
|
} else if (priv->cur_seqid == FSPI_CMD_BE_4K || priv->cur_seqid == FSPI_CMD_BE_4K_4B) {
|
|
fspi_write32(priv->flags, ®s->ipcr1,
|
|
(SEQID_BE_4K << FLEXSPI_IPCR1_SEQID_SHIFT) | 0);
|
|
}
|
|
/* Trigger the command */
|
|
fspi_write32(priv->flags, ®s->ipcmd, 1);
|
|
|
|
while (!(fspi_read32(priv->flags, ®s->intr)
|
|
& FLEXSPI_INTR_IPCMDDONE_MASK))
|
|
;
|
|
|
|
fspi_write32(priv->flags, ®s->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
|
|
}
|
|
|
|
static void fspi_op_enter_4bytes(struct fsl_fspi_priv *priv)
|
|
{
|
|
struct fsl_fspi_regs *regs = priv->regs;
|
|
|
|
/* invalid the TXFIFO first */
|
|
fspi_write32(priv->flags, ®s->iptxfcr, FLEXSPI_IPTXFCR_CLR_MASK);
|
|
|
|
fspi_write32(priv->flags, ®s->ipcr0, priv->cur_amba_base);
|
|
|
|
fspi_write32(priv->flags, ®s->ipcr1,
|
|
(SEQID_EN4B << FLEXSPI_IPCR1_SEQID_SHIFT) | 0);
|
|
|
|
/* Trigger the command */
|
|
fspi_write32(priv->flags, ®s->ipcmd, 1);
|
|
|
|
/* Wait for command done */
|
|
while (!(fspi_read32(priv->flags, ®s->intr)
|
|
& FLEXSPI_INTR_IPCMDDONE_MASK))
|
|
;
|
|
|
|
fspi_write32(priv->flags, ®s->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
|
|
|
|
|
|
}
|
|
|
|
int fspi_xfer(struct fsl_fspi_priv *priv, unsigned int bitlen,
|
|
const void *dout, void *din, unsigned long flags)
|
|
{
|
|
u32 bytes = DIV_ROUND_UP(bitlen, 8);
|
|
static u32 wr_sfaddr;
|
|
u32 txbuf = 0;
|
|
|
|
if (dout) {
|
|
if (flags & SPI_XFER_BEGIN) {
|
|
priv->cur_seqid = *(u8 *)dout;
|
|
#ifdef CONFIG_SPI_FLASH_4BYTES_ADDR
|
|
if (FSL_FSPI_FLASH_SIZE > SZ_16M)
|
|
dout = (u8 *)dout + 1;
|
|
#endif
|
|
memcpy(&txbuf, dout, 4);
|
|
}
|
|
|
|
if (flags == SPI_XFER_END) {
|
|
if (priv->cur_seqid == FSPI_CMD_WR_EVCR) {
|
|
fspi_op_wrevcr(priv, (u8 *)dout, bytes);
|
|
return 0;
|
|
}
|
|
priv->sf_addr = wr_sfaddr;
|
|
fspi_op_write(priv, (u8 *)dout, bytes);
|
|
return 0;
|
|
}
|
|
|
|
if (priv->cur_seqid == FSPI_CMD_QUAD_OUTPUT ||
|
|
priv->cur_seqid == FSPI_CMD_FAST_READ ||
|
|
priv->cur_seqid == FSPI_CMD_FAST_READ_4B) {
|
|
priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
|
|
} else if ((priv->cur_seqid == FSPI_CMD_SE) ||
|
|
(priv->cur_seqid == FSPI_CMD_BE_4K) ||
|
|
(priv->cur_seqid == FSPI_CMD_SE_4B) ||
|
|
(priv->cur_seqid == FSPI_CMD_BE_4K_4B)) {
|
|
priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
|
|
fspi_op_erase(priv);
|
|
} else if (priv->cur_seqid == FSPI_CMD_PP ||
|
|
priv->cur_seqid == FSPI_CMD_PP_4B) {
|
|
wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
|
|
} else if (priv->cur_seqid == FSPI_CMD_WR_EVCR) {
|
|
wr_sfaddr = 0;
|
|
} else if ((priv->cur_seqid == FSPI_CMD_BRWR) ||
|
|
(priv->cur_seqid == FSPI_CMD_WREAR)) {
|
|
#ifdef CONFIG_SPI_FLASH_BAR
|
|
wr_sfaddr = 0;
|
|
#endif
|
|
} else if (priv->cur_seqid == FSPI_CMD_EN4B) {
|
|
fspi_op_enter_4bytes(priv);
|
|
}
|
|
}
|
|
|
|
if (din) {
|
|
if (priv->cur_seqid == FSPI_CMD_QUAD_OUTPUT ||
|
|
priv->cur_seqid == FSPI_CMD_FAST_READ ||
|
|
priv->cur_seqid == FSPI_CMD_FAST_READ_4B) {
|
|
#ifdef CONFIG_SYS_FSL_FSPI_AHB
|
|
fspi_ahb_read(priv, din, bytes);
|
|
#else
|
|
fspi_op_read(priv, din, bytes);
|
|
#endif
|
|
} else if (priv->cur_seqid == FSPI_CMD_RDID)
|
|
fspi_op_rdid(priv, din, bytes);
|
|
else if (priv->cur_seqid == FSPI_CMD_RDSR)
|
|
fspi_op_rdsr(priv, din, bytes);
|
|
else if (priv->cur_seqid == FSPI_CMD_RDFSR)
|
|
fspi_op_rdfsr(priv, din, bytes);
|
|
else if (priv->cur_seqid == FSPI_CMD_RD_EVCR)
|
|
fspi_op_rdevcr(priv, din, bytes);
|
|
#ifdef CONFIG_SPI_FLASH_BAR
|
|
else if ((priv->cur_seqid == FSPI_CMD_BRRD) ||
|
|
(priv->cur_seqid == FSPI_CMD_RDEAR)) {
|
|
priv->sf_addr = 0;
|
|
fspi_op_rdbank(priv, din, bytes);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_FSL_FSPI_AHB
|
|
if ((priv->cur_seqid == FSPI_CMD_SE) ||
|
|
(priv->cur_seqid == FSPI_CMD_SE_4B) ||
|
|
(priv->cur_seqid == FSPI_CMD_PP) ||
|
|
(priv->cur_seqid == FSPI_CMD_PP_4B) ||
|
|
(priv->cur_seqid == FSPI_CMD_BE_4K) ||
|
|
(priv->cur_seqid == FSPI_CMD_BE_4K_4B) ||
|
|
(priv->cur_seqid == FSPI_CMD_WREAR) ||
|
|
(priv->cur_seqid == FSPI_CMD_BRWR))
|
|
fspi_ahb_invalid(priv);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
void fspi_module_disable(struct fsl_fspi_priv *priv, u8 disable)
|
|
{
|
|
u32 mcr_val;
|
|
|
|
mcr_val = fspi_read32(priv->flags, &priv->regs->mcr0);
|
|
if (disable)
|
|
mcr_val |= FLEXSPI_MCR0_MDIS_MASK;
|
|
else
|
|
mcr_val &= ~FLEXSPI_MCR0_MDIS_MASK;
|
|
fspi_write32(priv->flags, &priv->regs->mcr0, mcr_val);
|
|
}
|
|
|
|
void fspi_cfg_smpr(struct fsl_fspi_priv *priv, u32 clear_bits, u32 set_bits)
|
|
{
|
|
return;
|
|
#if 0
|
|
u32 smpr_val;
|
|
|
|
smpr_val = fspi_read32(priv->flags, &priv->regs->smpr);
|
|
smpr_val &= ~clear_bits;
|
|
smpr_val |= set_bits;
|
|
fspi_write32(priv->flags, &priv->regs->smpr, smpr_val);
|
|
#endif
|
|
}
|
|
|
|
__weak void init_clk_fspi(int index)
|
|
{
|
|
}
|
|
|
|
#ifndef CONFIG_DM_SPI
|
|
static unsigned long spi_bases[] = {
|
|
FSPI0_BASE_ADDR,
|
|
};
|
|
|
|
static unsigned long amba_bases[] = {
|
|
FSPI0_AMBA_BASE,
|
|
};
|
|
|
|
static inline struct fsl_fspi *to_fspi_spi(struct spi_slave *slave)
|
|
{
|
|
return container_of(slave, struct fsl_fspi, slave);
|
|
}
|
|
|
|
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
|
|
unsigned int max_hz, unsigned int mode)
|
|
{
|
|
struct fsl_fspi *fspi;
|
|
struct fsl_fspi_regs *regs;
|
|
u32 total_size;
|
|
|
|
if (bus >= ARRAY_SIZE(spi_bases))
|
|
return NULL;
|
|
|
|
if (cs >= FSL_FSPI_FLASH_NUM)
|
|
return NULL;
|
|
|
|
fspi = spi_alloc_slave(struct fsl_fspi, bus, cs);
|
|
if (!fspi)
|
|
return NULL;
|
|
|
|
#ifdef CONFIG_SYS_FSL_FSPI_BE
|
|
fspi->priv.flags |= FSPI_FLAG_REGMAP_ENDIAN_BIG;
|
|
#endif
|
|
|
|
init_clk_fspi(bus);
|
|
|
|
regs = (struct fsl_fspi_regs *)spi_bases[bus];
|
|
fspi->priv.regs = regs;
|
|
/*
|
|
* According cs, use different amba_base to choose the
|
|
* corresponding flash devices.
|
|
*
|
|
* If not, only one flash device is used even if passing
|
|
* different cs using `sf probe`
|
|
*/
|
|
fspi->priv.cur_amba_base = amba_bases[bus] + cs * FSL_FSPI_FLASH_SIZE;
|
|
|
|
fspi->slave.max_write_size = TX_BUFFER_SIZE;
|
|
|
|
#ifdef CONFIG_FSPI_QUAD_SUPPORT
|
|
fspi->slave.mode |= SPI_RX_QUAD;
|
|
#endif
|
|
|
|
fspi_write32(fspi->priv.flags, ®s->mcr0,
|
|
FLEXSPI_MCR0_SWRST_MASK);
|
|
do {
|
|
udelay(1);
|
|
} while (0x1 & fspi_read32(fspi->priv.flags, ®s->mcr0));
|
|
|
|
/* Disable the module */
|
|
fspi_module_disable(&fspi->priv, 1);
|
|
|
|
/* Enable the module and set to proper value*/
|
|
fspi_write32(fspi->priv.flags, ®s->mcr0,
|
|
0xFFFF0000);
|
|
|
|
total_size = FSL_FSPI_FLASH_SIZE * FSL_FSPI_FLASH_NUM >> 10;
|
|
/*
|
|
* Any read access to non-implemented addresses will provide
|
|
* undefined results.
|
|
*
|
|
* In case single die flash devices, TOP_ADDR_MEMA2 and
|
|
* TOP_ADDR_MEMB2 should be initialized/programmed to
|
|
* TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
|
|
* setting the size of these devices to 0. This would ensure
|
|
* that the complete memory map is assigned to only one flash device.
|
|
*/
|
|
fspi_write32(fspi->priv.flags, ®s->flsha1cr0,
|
|
total_size);
|
|
fspi_write32(fspi->priv.flags, ®s->flsha2cr0,
|
|
0);
|
|
fspi_write32(fspi->priv.flags, ®s->flshb1cr0,
|
|
0);
|
|
fspi_write32(fspi->priv.flags, ®s->flshb2cr0,
|
|
0);
|
|
|
|
fspi_set_lut(&fspi->priv);
|
|
|
|
#ifdef CONFIG_SYS_FSL_FSPI_AHB
|
|
fspi_init_ahb_read(&fspi->priv);
|
|
#endif
|
|
|
|
fspi_module_disable(&fspi->priv, 0);
|
|
|
|
return &fspi->slave;
|
|
}
|
|
|
|
void spi_free_slave(struct spi_slave *slave)
|
|
{
|
|
struct fsl_fspi *fspi = to_fspi_spi(slave);
|
|
|
|
free(fspi);
|
|
}
|
|
|
|
int spi_claim_bus(struct spi_slave *slave)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void spi_release_bus(struct spi_slave *slave)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
|
|
int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
|
|
const void *dout, void *din, unsigned long flags)
|
|
{
|
|
struct fsl_fspi *fspi = to_fspi_spi(slave);
|
|
|
|
return fspi_xfer(&fspi->priv, bitlen, dout, din, flags);
|
|
}
|
|
|
|
void spi_init(void)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
#else
|
|
static int fsl_fspi_child_pre_probe(struct udevice *dev)
|
|
{
|
|
struct spi_slave *slave = dev_get_parent_priv(dev);
|
|
|
|
slave->max_write_size = TX_BUFFER_SIZE;
|
|
|
|
#ifdef CONFIG_FSPI_QUAD_SUPPORT
|
|
slave->mode |= SPI_RX_QUAD;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_fspi_probe(struct udevice *bus)
|
|
{
|
|
u32 total_size;
|
|
struct fsl_fspi_platdata *plat = dev_get_platdata(bus);
|
|
struct fsl_fspi_priv *priv = dev_get_priv(bus);
|
|
struct dm_spi_bus *dm_spi_bus;
|
|
|
|
init_clk_fspi(bus->seq);
|
|
|
|
dm_spi_bus = bus->uclass_priv;
|
|
|
|
dm_spi_bus->max_hz = plat->speed_hz;
|
|
|
|
priv->regs = (struct fsl_fspi_regs *)(uintptr_t)plat->reg_base;
|
|
priv->flags = plat->flags;
|
|
|
|
priv->speed_hz = plat->speed_hz;
|
|
priv->amba_base[0] = plat->amba_base;
|
|
priv->amba_total_size = plat->amba_total_size;
|
|
priv->flash_num = plat->flash_num;
|
|
priv->num_chipselect = plat->num_chipselect;
|
|
|
|
fspi_write32(priv->flags, &priv->regs->mcr0,
|
|
FLEXSPI_MCR0_SWRST_MASK);
|
|
do {
|
|
udelay(1);
|
|
} while (0x1 & fspi_read32(priv->flags, &priv->regs->mcr0));
|
|
|
|
/* Disable the module */
|
|
fspi_module_disable(priv, 1);
|
|
|
|
/* Enable the module and set to proper value*/
|
|
fspi_write32(priv->flags, &priv->regs->mcr0,
|
|
0xFFFF0000);
|
|
|
|
/* Reset the DLL register to default value */
|
|
fspi_write32(priv->flags, &priv->regs->dllacr, 0x0100);
|
|
fspi_write32(priv->flags, &priv->regs->dllbcr, 0x0100);
|
|
|
|
/* Flash Size in KByte */
|
|
total_size = FSL_FSPI_FLASH_SIZE * FSL_FSPI_FLASH_NUM >> 10;
|
|
|
|
/*
|
|
* Any read access to non-implemented addresses will provide
|
|
* undefined results.
|
|
*
|
|
* In case single die flash devices, TOP_ADDR_MEMA2 and
|
|
* TOP_ADDR_MEMB2 should be initialized/programmed to
|
|
* TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
|
|
* setting the size of these devices to 0. This would ensure
|
|
* that the complete memory map is assigned to only one flash device.
|
|
*/
|
|
|
|
fspi_write32(priv->flags, &priv->regs->flsha1cr0,
|
|
total_size);
|
|
fspi_write32(priv->flags, &priv->regs->flsha2cr0,
|
|
0);
|
|
fspi_write32(priv->flags, &priv->regs->flshb1cr0,
|
|
0);
|
|
fspi_write32(priv->flags, &priv->regs->flshb2cr0,
|
|
0);
|
|
|
|
fspi_set_lut(priv);
|
|
|
|
#ifdef CONFIG_SYS_FSL_FSPI_AHB
|
|
fspi_init_ahb_read(priv);
|
|
#endif
|
|
|
|
fspi_module_disable(priv, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_fspi_ofdata_to_platdata(struct udevice *bus)
|
|
{
|
|
struct fdt_resource res_regs, res_mem;
|
|
struct fsl_fspi_platdata *plat = bus->platdata;
|
|
const void *blob = gd->fdt_blob;
|
|
int node = ofnode_to_offset(bus->node);
|
|
int ret, flash_num = 0, subnode;
|
|
|
|
if (fdtdec_get_bool(blob, node, "big-endian"))
|
|
plat->flags |= FSPI_FLAG_REGMAP_ENDIAN_BIG;
|
|
|
|
ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
|
|
"FlexSPI", &res_regs);
|
|
if (ret) {
|
|
debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
|
|
return -ENOMEM;
|
|
}
|
|
ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
|
|
"FlexSPI-memory", &res_mem);
|
|
if (ret) {
|
|
debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Count flash numbers */
|
|
fdt_for_each_subnode(subnode, blob, node)
|
|
++flash_num;
|
|
|
|
if (flash_num == 0) {
|
|
debug("Error: Missing flashes!\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
|
|
FSL_FSPI_DEFAULT_SCK_FREQ);
|
|
plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs",
|
|
FSL_FSPI_MAX_CHIPSELECT_NUM);
|
|
|
|
plat->reg_base = res_regs.start;
|
|
plat->amba_base = 0;
|
|
plat->amba_total_size = res_mem.end - res_mem.start + 1;
|
|
plat->flash_num = flash_num;
|
|
|
|
debug("%s: regs=<0x%x> <0x%x, 0x%x>, max-frequency=%d, endianess=%s\n",
|
|
__func__,
|
|
plat->reg_base,
|
|
plat->amba_base,
|
|
plat->amba_total_size,
|
|
plat->speed_hz,
|
|
plat->flags & FSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le"
|
|
);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_fspi_xfer(struct udevice *dev, unsigned int bitlen,
|
|
const void *dout, void *din, unsigned long flags)
|
|
{
|
|
struct fsl_fspi_priv *priv;
|
|
struct udevice *bus;
|
|
|
|
bus = dev->parent;
|
|
priv = dev_get_priv(bus);
|
|
|
|
return fspi_xfer(priv, bitlen, dout, din, flags);
|
|
}
|
|
|
|
static int fsl_fspi_claim_bus(struct udevice *dev)
|
|
{
|
|
struct fsl_fspi_priv *priv;
|
|
struct udevice *bus;
|
|
struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
|
|
|
|
bus = dev->parent;
|
|
priv = dev_get_priv(bus);
|
|
|
|
priv->cur_amba_base =
|
|
priv->amba_base[0] + FSL_FSPI_FLASH_SIZE * slave_plat->cs;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_fspi_release_bus(struct udevice *dev)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_fspi_set_speed(struct udevice *bus, uint speed)
|
|
{
|
|
/* Nothing to do */
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_fspi_set_mode(struct udevice *bus, uint mode)
|
|
{
|
|
/* Nothing to do */
|
|
return 0;
|
|
}
|
|
|
|
static const struct dm_spi_ops fsl_fspi_ops = {
|
|
.claim_bus = fsl_fspi_claim_bus,
|
|
.release_bus = fsl_fspi_release_bus,
|
|
.xfer = fsl_fspi_xfer,
|
|
.set_speed = fsl_fspi_set_speed,
|
|
.set_mode = fsl_fspi_set_mode,
|
|
};
|
|
|
|
static const struct udevice_id fsl_fspi_ids[] = {
|
|
{ .compatible = "fsl,imx8qm-flexspi" },
|
|
{ }
|
|
};
|
|
|
|
U_BOOT_DRIVER(fsl_fspi) = {
|
|
.name = "fsl_fspi",
|
|
.id = UCLASS_SPI,
|
|
.of_match = fsl_fspi_ids,
|
|
.ops = &fsl_fspi_ops,
|
|
.ofdata_to_platdata = fsl_fspi_ofdata_to_platdata,
|
|
.platdata_auto_alloc_size = sizeof(struct fsl_fspi_platdata),
|
|
.priv_auto_alloc_size = sizeof(struct fsl_fspi_priv),
|
|
.probe = fsl_fspi_probe,
|
|
.child_pre_probe = fsl_fspi_child_pre_probe,
|
|
};
|
|
#endif
|